摘" " "要:【目的】全面了解多倍體獼猴桃種質(zhì)資源的染色體倍性和基因組特征,并分析其在獼猴桃屬植物中的系統(tǒng)進(jìn)化關(guān)系,以期為多倍體獼猴桃全基因組組裝提供參考?!痉椒ā炕诹魇郊?xì)胞術(shù)分析中華獼猴桃AcD2301(Actinidia chinensis)、軟棗獼猴桃AcD2302(Actinidia arguta)、對(duì)萼獼猴桃AcD2303(Actinidia valvata)染色體倍性,利用Illumina二代測(cè)序平臺(tái)開展基因組Survey分析,并基于SNP構(gòu)建15種獼猴桃屬植物系統(tǒng)進(jìn)化樹?!窘Y(jié)果】中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對(duì)萼獼猴桃AcD2303的染色體倍性分別為四倍體、四倍體、六倍體,與survey分析結(jié)果一致。K-mer分析預(yù)測(cè)中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對(duì)萼獼猴桃AcD2303單套基因組大小分別約為626 Mb、668 Mb、585 Mb,雜合度為3.00%、3.30%、8.06%,重復(fù)序列比例為43.70%、45.30%、40.70%。系統(tǒng)進(jìn)化樹顯示軟棗獼猴桃與對(duì)萼獼猴桃親緣關(guān)系較近,且均從中華獼猴桃獨(dú)立進(jìn)化而來?!窘Y(jié)論】分析了中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對(duì)萼獼猴桃AcD2303的染色體倍性、基因組大小和系統(tǒng)進(jìn)化關(guān)系,為將來開展多倍體獼猴桃全基因組測(cè)序提供了參考,也為深入研究獼猴桃多倍化和系統(tǒng)進(jìn)化提供了理論支持。
關(guān)鍵詞:獼猴桃;基因組survey分析;基因組大??;系統(tǒng)進(jìn)化
中圖分類號(hào):S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號(hào):1009-9980(2024)11-2214-10
Survey analysis and phylogenetic study of three polyploid kiwifruit genomes
ZHOU Jia1, WANG Feifei1, 2, ZHONG Weimin1, QI Yong1, LIU Qing1, SHI Binbin1, ZHANG Sheng1, NIU Xinyu2, ZHENG Qianming1, TANG Dongmei1*
(1Guizhou Fruit Science Research Institute, Guizhou Academy of Agricultural Sciences, Guiyang 550006, Guizhou, China; 2College of Plant Sciences, Tibet Agricultural and Animal Husbandry College, Nyingchi 860000, Xizang, China)
Abstract: 【Objective】 Plant polyploidization is the evolution of adaption to environmental changes and protection of their own population development. The polyploidization of kiwifruit could double its chromosome number and affect the structure and function of its genome, thereby enriching the genetic diversity of the species. The study aimed to comprehensively understand the chromosomal ploidy and genomic characteristics of polyploid kiwifruit germplasm resources, and analyze their systematic evolutionary relationships in kiwifruit. 【Methods】 This study analyzed the chromosome ploidy of AcD2301 (Actinidia chinensis), AcD2302 (A. arguta) and AcD2303 (A. valvata) with reference to the diploid A. chinensis ‘Hongyang’. The samples were analyzed by flow cytometry on the CyFlow Space flow cytometer after being lysed by CyStar UV Precise P kit and dyed by DAPI fluorescent dye in the dark. The total genomic DNA of kiwifruit was extracted by CTAB method, and then electrophoresis was conducted with 0.8% agarose gel. The DNA quality was detected with UV spectrophotometer. The second-generation sequencing technology Illumina NovaSeq sequencing platform was used to perform double end sequencing on the sample library. The softwares such as FastP were used to view the distribution of base quality, average error rate distribution of reads, and base content distribution of reads sequencing. The raw data with adapters and low-quality reads were filtered to obtain high-quality sequences, and the sequences were compared with nucleic acid databases. The high quality sequencing data was generated using Jellyfish (version 2.3.0) software k-mer19 to generate K-mer frequency tables, and genome size, heterozygosity, and repeatability were estimated using the GenomeScope 2. The next-generation sequencing data of kiwifruit, published in the NGDC and NCBI databases, were compared with the reference genome A. chinensis Hongyang v4.0. The SNP calling was performed using GATK software, and the Maximum likelihood algorithm in fast Tree software was used to construct phylogenetic trees of the 15 kiwifruit species, including A. chinensis, A. arguta and A. valvata. 【Results】 The samples were subjected to flow cytometry analysis, and the peak values of the diploid Hongyang kiwifruit were compared with the reference species. The chromosome ploidy of the AcD2301 and AcD2302 were both tetraploid, while the chromosome ploidy of the AcD2303 was hexaploid. The subsequent genome survey analysis results were consistent with this. The AcD2301, AcD2302 and AcD2303 gene DNA were sequenced by the Illumina NovaSeq sequencing platform. The sequencing yielded raw data of 162.91 Gb, 139.74 Gb, and 142.44 Gb, followed by filtering to obtain high-quality data of 160.64 Gb, 138.16 Gb, and 140.73 Gb. The sequencing quality assessment showed that the Q20 and Q30 values of the AcD2301 were 96.95% and 91.91%, respectively. The Q20 and Q30 values of the AcD2302 were 97.09% and 92.07%, respectively. The Q20 and Q30 values of the AcD2303 were 96.80% and 91.43%, respectively; The GC contents were approximately 37.20%, 36.77%, and 36.15%, respectively. The sequencing data quality values were all greater than 35, and the base error rates were all less than 0.045, indicating that the genome reads had high quality and could be used for subsequent analysis. The reads from the sequencing data of the AcD2301, AcD2302, and AcD2303 were randomly selected and compared with the nucleic acid library (NT library). The results showed that all the randomly selected reads could be compared with the genome of kiwifruit plants, indicating that there was no contamination in the sequencing data. Through K-mer analysis of the kiwifruit genome data after quality control, the genome size of the AcD2301 was estimated to be 626 Mb, heterozygosity to be 3.00%, and repeat sequence ratio to be 43.70%; The estimated size of the AcD2302 genome was 668 Mb, with a heterozygosity of 3.30% and a repeat sequence ratio of 45.30%; The estimated genome size of the AcD2303 was 585 Mb, with a heterozygosity of 8.06% and a repeat sequence ratio of 40.70%. In addition, the support rates for homologous tetraploids of the AcD2301 and AcD2302 were 97% and 96.7%, respectively. To analyze the evolutionary relationship of kiwifruit plants, the SNP sequences were screened from the second-generation sequencing data of the 15 kiwifruit, including the AcD2301, AcD2302, and AcD2303. The Maximum likelihood algorithm was used to construct a phylogenetic tree. The results showed that the 15 kiwifruit plants were divided into three major evolutionary branches, with Actinidia chinensis AcD2301 as an independent branch, Actinidia chinensis ‘Donghong’ as another independent branch, and the remaining 13 kiwifruit species as an evolutionary branch. Actinidia chinensis var. deliciosa in the third evolutionary branch was a small evolutionary branch, while the other 12 kiwifruit species formed a small evolutionary branch. For the latter, Actinidia hubeiensis was a separate group; The remaining 11 kiwifruit species were grouped together, and the 6 kiwifruit species in the net fruit group were clustered into a small evolutionary branch, while the 9 kiwifruit species in the remaining branches were all part of the spotted fruit group. From this, it could be seen that the AcD2302, which belonged to the net fruit group, was closely related to the AcD2303, and both had evolved independently from the AcD2301 in the spotted fruit group. 【Conclusion】 The chromosome ploidy, genome size, and phylogenetic relationships of the AcD2301, AcD2302 and AcD2303 were analyzed, which could provide reference for the whole genome sequencing of the polyploid kiwifruit in the future.
Key words: Kiwifruit; Genome survey analysis; Genome size; System evolution
獼猴桃(Actinidia spp.)是獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia Lindl.)植物,是20世紀(jì)初開始人工馴化栽培的特色經(jīng)濟(jì)果樹,由于果實(shí)風(fēng)味獨(dú)特、營養(yǎng)豐富、維生素C含量高等優(yōu)點(diǎn),被譽(yù)為水果之王且深受廣大消費(fèi)者青睞[1-2]。2024年聯(lián)合國糧農(nóng)組織FAO(https://www.fao.org/home/zh/)統(tǒng)計(jì)數(shù)據(jù)顯示,截至2022年世界獼猴桃采收面積28.61萬hm2,產(chǎn)量429.15萬t,是全球性重要的水果產(chǎn)業(yè)。其中中國獼猴桃產(chǎn)量約占世界獼猴桃總產(chǎn)量的2/3,已成為中國重要的特色水果產(chǎn)業(yè)之一。獼猴桃為功能性雌雄異株植物,起源和分布中心均在中國,是廣大山區(qū)常見的一種水果,生長在路旁、林中、水溝邊、灌叢中,自然狀態(tài)下存在著廣泛的種間和種內(nèi)雜交現(xiàn)象,造成了獼猴桃屬植物復(fù)雜的形態(tài)結(jié)構(gòu)變異。在獼猴桃屬植物中,多倍化現(xiàn)象普遍存在,例如已知的主栽品種中華獼猴桃紅陽、軟棗獼猴桃魁綠、美味獼猴桃貴長分別為二倍體、四倍體、六倍體。此外,獼猴桃種內(nèi)染色體倍性變異也較為常見,不同倍性材料在生態(tài)適應(yīng)[3]、抗逆[4]及果實(shí)品質(zhì)[5]方面存在顯著差異。獼猴桃多倍化是適應(yīng)環(huán)境變化保護(hù)自身種群發(fā)展的進(jìn)化,不僅使獼猴桃的染色體數(shù)目加倍,還影響其基因組的結(jié)構(gòu)和功能,從而豐富獼猴桃遺傳多樣性[6]。
隨著基因組學(xué)時(shí)代的到來和發(fā)展,測(cè)序成本不斷降低,高通量測(cè)序已被廣泛應(yīng)用于植物基因組測(cè)序中。在獼猴桃屬植物中,中華獼猴桃(Actinidia chinensis)[7]、毛花獼猴桃(Actinidia eriantha)[8]、闊葉獼猴桃(Actinidia latifolia)[9]、山梨獼猴桃(Actinidia rufa)[10]、軟棗獼猴桃(Actinidia arguta)[11]、長葉獼猴桃(Actinidia hemsleyana)[12]、葛棗獼猴桃(Actinidia polygama)[10]等基因組已有報(bào)道,為其他獼猴桃屬植物的全基因組測(cè)序、重要性狀解析和遺傳改良等工作奠定了基礎(chǔ)[13]。然而中華獼猴桃、美味獼猴桃、軟棗獼猴桃等主要栽培利用的物種普遍存在多倍化的現(xiàn)象,盡管不同倍性種質(zhì)的基因組信息有共性之處,但多倍體獼猴桃的全基因組信息仍有待解析[14-15]。此外,對(duì)萼獼猴桃作為新型獼猴桃砧木,具備較強(qiáng)的抗?jié)?、抗寒、抗病能力,在產(chǎn)區(qū)中也已經(jīng)得到較大規(guī)模的推廣[16],但缺乏其基因組信息,阻礙了對(duì)其重要抗逆性狀的解析。因此,考察中華獼猴桃、軟棗獼猴桃、對(duì)萼獼猴桃的倍性及基因組信息對(duì)后續(xù)指導(dǎo)多倍體基因組的組裝和輔助其他相關(guān)研究具有十分重要的意義。
筆者在本研究中選取野生種質(zhì)中華獼猴桃AcD2301(Actinidia chinensis)、軟棗獼猴桃AcD2302(Actinidia arguta)、對(duì)萼獼猴桃AcD2303(Actinidia valvata)進(jìn)行多倍體獼猴桃基因組Survey分析及系統(tǒng)進(jìn)化研究,通過流式細(xì)胞術(shù)、K-mer分析和系統(tǒng)進(jìn)化樹構(gòu)建,進(jìn)行染色體倍性、物種雜合率、基因組重復(fù)序列比例和基因組大小的評(píng)估及系統(tǒng)進(jìn)化關(guān)系研究,以期為多倍體獼猴桃全基因組組裝提供參考,也可為深入研究獼猴桃多倍化和系統(tǒng)進(jìn)化提供理論支持。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)材料中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對(duì)萼獼猴桃AcD2303均為野生資源(表1),保存于貴州省農(nóng)業(yè)科學(xué)院果樹科學(xué)研究所百宜落葉果樹試驗(yàn)基地。試驗(yàn)樣品采集,剪取頂端幼嫩葉片,液氮速凍后置于-80 ℃超低溫冰箱保存?zhèn)溆谩?/p>
1.2 試驗(yàn)方法
1.2.1 染色體倍性檢測(cè) 以二倍體紅陽獼猴桃(Actinidia chinensis ‘Hongyang’,2n=58)為內(nèi)參樣本,采用流式細(xì)胞術(shù)進(jìn)行染色體倍性檢測(cè)[17]。分別稱取AcD2301、AcD2302和AcD2303新鮮頂端葉片0.2 g,置于培養(yǎng)皿中,用CyStain UV Precise P試劑盒進(jìn)行細(xì)胞核裂解,提取完成后用50 μm Celltrics濾網(wǎng)過濾至樣品管中,加入DAPI熒光染液避光染色2 min后在CyFlow Space流式細(xì)胞儀上進(jìn)行流式細(xì)胞術(shù)測(cè)試,用FloMax軟件分析核懸浮液。
1.2.2 DNA提取及測(cè)序 采用CTAB法提取獼猴桃基因組總DNA,并通過0.8%瓊脂糖凝膠電泳檢測(cè)DNA提取質(zhì)量,同時(shí)采用紫外分光光度計(jì)對(duì)DNA進(jìn)行定量。利用第二代測(cè)序技術(shù)Illumina NovaSeq測(cè)序平臺(tái)對(duì)樣本文庫進(jìn)行雙末端測(cè)序。采用fastp[18]等軟件查看堿基質(zhì)量分布、Reads平均錯(cuò)誤率分布、Reads測(cè)序堿基含量分布,原始數(shù)據(jù)過濾接頭和低質(zhì)量reads獲得高質(zhì)量序列,并與核酸庫進(jìn)行比對(duì),排除外源物種污染。
1.2.3 基因組Survey分析 高質(zhì)量測(cè)序數(shù)據(jù)基于jellyfish(version 2.3.0)軟件設(shè)置K-mer為19生成 K-mer 頻數(shù)表和頻率直方圖,統(tǒng)計(jì)總K-mer數(shù)、唯一K-mer數(shù)等,并運(yùn)用GenomeScope 2工具進(jìn)行基因組大小、雜合度和重復(fù)序列比例的估計(jì)[19-20]。
1.2.4 基于SNP的系統(tǒng)進(jìn)化樹構(gòu)建 基于自測(cè)數(shù)據(jù)(AcD2301、AcD2302、AcD2303)和公共數(shù)據(jù)庫(NGDC、NCBI)下載部分已公布的獼猴桃二代測(cè)序數(shù)據(jù)(表2),在貴州省農(nóng)業(yè)科學(xué)院果樹科學(xué)研究所生物信息學(xué)分析平臺(tái)進(jìn)行系統(tǒng)進(jìn)化分析,與參考基因組紅陽v4.0[21]進(jìn)行比對(duì),利用GATK軟件[22]進(jìn)行SNP calling(僅保留二等位基因),用fastTree軟件中的Maximum likelihood算法構(gòu)建系統(tǒng)進(jìn)化樹,并將樹文件進(jìn)行可視化處理。
2 結(jié)果與分析
2.1 獼猴桃染色體倍性分析
以二倍體紅陽獼猴桃(Actinidia chinensis var. ‘Hongyang’,2n=58)為內(nèi)參樣本,分析3份獼猴桃樣品的倍性,圖1展示為獼猴桃多倍體樣品倍性的流式直方圖。其流式直方圖中橫坐標(biāo)代表熒光強(qiáng)度,縱坐標(biāo)代表細(xì)胞數(shù)量,熒光強(qiáng)度與DNA含量成正比,即峰值的位置反映測(cè)試樣品的倍性。根據(jù)內(nèi)參物種二倍體紅陽獼猴桃(圖1-A)的峰值比較,AcD2301(圖1-B)和AcD2302(圖1-C)的染色體倍性均為四倍體,而AcD2303(圖1-D)染色體倍性為六倍體,流式細(xì)胞術(shù)測(cè)得染色體倍性結(jié)果與后續(xù)全基因組測(cè)序結(jié)果一致,圖中雜峰可能是部分細(xì)胞核降解造成的。
2.2 獼猴桃基因組測(cè)序及質(zhì)控
通過二代Illumina NovaSeq測(cè)序平臺(tái)對(duì)AcD2301、AcD2302和AcD2303基因DNA進(jìn)行測(cè)序,分別獲得162.91 Gb、139.74 Gb和142.44 Gb原始測(cè)序數(shù)據(jù),經(jīng)過過濾后分別獲得160.64 Gb、138.16 Gb和140.73 Gb高質(zhì)量測(cè)序數(shù)據(jù);測(cè)序的質(zhì)量評(píng)估結(jié)果顯示,AcD2301的Q20、Q30值分別為96.95%、91.91%,AcD2302的Q20、Q30值分別為97.09%、92.07%,AcD2303的Q20、Q30值分別為96.80%、91.43%,表明基因組數(shù)據(jù)可靠,可用于后續(xù)分析。AcD2301、AcD2302和AcD2303基因GC含量分別約為37.20%、36.77%和36.15%(表3)。AcD2301(圖2-A、圖3-A)、AcD2302(圖2-B、圖3-B)和AcD2303(圖2-C、圖3-C)基因組中大部分測(cè)序數(shù)據(jù)質(zhì)量值均大于35(圖2),其堿基錯(cuò)誤率均小于0.045(圖3),表明其基因組測(cè)序的Reads質(zhì)量較高,測(cè)序結(jié)果可信度較高。
2.3 獼猴桃基因組測(cè)序數(shù)據(jù)與NT數(shù)據(jù)庫比對(duì)
進(jìn)一步從AcD2301、AcD2302和AcD2303基因組測(cè)序數(shù)據(jù)中隨機(jī)抽取10 000條Reads數(shù)據(jù)使用Blast軟件與核酸庫(NT庫)進(jìn)行比對(duì),挑選最優(yōu)比對(duì)結(jié)果按物種統(tǒng)計(jì)(表4),結(jié)果顯示隨機(jī)選取Reads均能比對(duì)上獼猴桃屬植物基因組,表明此次測(cè)序的基因組數(shù)據(jù)不存在污染,部分樣本與核酸庫比對(duì)率較低的原因與取樣少有關(guān)。
2.4 獼猴桃基因組survey分析
高質(zhì)量數(shù)據(jù)通過K-mer分析,預(yù)估物種基因組大小,并對(duì)物種的雜合度、重復(fù)情況進(jìn)行分析。通過對(duì)質(zhì)控后的獼猴桃基因組數(shù)據(jù)進(jìn)行K-mer分析(圖4、表5),可知AcD2301(圖4-A)預(yù)估單套基因組大小為626 Mb,雜合度為3.00%,重復(fù)序列比例為43.70%;AcD2302(圖4-B)預(yù)估單套基因組大小為668 Mb,雜合度為3.30%,重復(fù)序列比例為45.30%;AcD2303(圖4-C)預(yù)估單套基因組大小為585 Mb,雜合度為8.06%,重復(fù)序列比例為40.70%?;讷J猴桃基因組Survey數(shù)據(jù)分析得出AcD2301(圖4-A)同源四倍體支持率為97%,AcD2302(圖4-B)同源四倍體支持率為96.7%。
2.5 獼猴桃屬植物進(jìn)化樹分析
為分析獼猴桃屬植物的進(jìn)化關(guān)系,篩選了已報(bào)道的中華獼猴桃東紅、美味獼猴桃和湖北獼猴桃等15種獼猴桃屬植物的二代測(cè)序數(shù)據(jù)中的SNP序列,采用Maximum likelihood算法構(gòu)建系統(tǒng)進(jìn)化樹。該系統(tǒng)進(jìn)化樹顯示(圖5),15種獼猴桃屬植物分為三大進(jìn)化分枝,且均得到了較好的支持,其中中華獼猴桃AcD2301為一個(gè)獨(dú)立進(jìn)化枝,東紅獼猴桃為另一個(gè)獨(dú)立進(jìn)化枝,其余13種獼猴桃組成一個(gè)進(jìn)化枝。在第三個(gè)進(jìn)化分枝中的美味獼猴桃為一個(gè)小進(jìn)化枝,其余12種獼猴桃組成一個(gè)小進(jìn)化分枝。對(duì)于后者湖北獼猴桃單獨(dú)一組;其余11種獼猴桃為一組,其中凈果組的6種獼猴桃(軟棗獼猴桃AcD2302、軟棗獼猴桃、葛棗獼猴桃、大籽獼猴桃、對(duì)萼獼猴桃AcD2303、對(duì)萼獼猴桃)聚為一個(gè)小進(jìn)化分枝,而其余分枝的9種獼猴桃均為斑果組。
3 討 論
多倍化是推動(dòng)植物遺傳多樣性和適應(yīng)環(huán)境變化的重要機(jī)制之一,在植物中廣泛存在,其中獼猴桃屬植物中多倍化現(xiàn)象非常普遍。獼猴桃多倍化表現(xiàn)為體細(xì)胞均增大、果形更加圓潤飽滿,葉片顏色更深、表皮毛被明顯增多、產(chǎn)量高、抗性強(qiáng)等特征[3-5]。盡管以往的研究已經(jīng)從很大程度上揭示了獼猴桃屬物種的基因組信息以及主要倍性,但仍有部分物種尚未明確。本研究中就基于流式細(xì)胞術(shù)分析AcD2301、AcD2302、AcD2303的染色體倍性分別為四倍體、四倍體和六倍體。而基于獼猴桃基因組Survey數(shù)據(jù)分析所得AcD2301同源四倍體支持率為97%,AcD2302同源四倍體支持率為96.7%,與上述結(jié)果基本一致。以上工作為進(jìn)一步豐富獼猴桃物種基因組奠定了基礎(chǔ)。
基于測(cè)序技術(shù)解析全基因組信息,為植物起源、進(jìn)化、生殖、發(fā)育、抗性和性別調(diào)控等研究提供了基礎(chǔ)。不同種類的植物基因組大小相差很大,根據(jù)目前已經(jīng)公布的基因組數(shù)據(jù)中梅溪蕨(Tmesipteris oblanceolata)的基因組大小約160.45 Gb,而旋刺草(Genlisea aurea)的基因組大小僅為約0.063 6 Gb,相差約2500倍[23]。目前主要采用流式細(xì)胞術(shù)和高通量測(cè)序技術(shù)等方法評(píng)估植物的基因組大小,例如在四數(shù)九里香[24]、白及[25]、荊芥[26]等多種植物基因組大小特征評(píng)估中都有應(yīng)用。流式細(xì)胞術(shù)是通過測(cè)量細(xì)胞中DNA與熒光染料結(jié)合后發(fā)出的熒光信號(hào)強(qiáng)度,來間接預(yù)估基因組大小的相對(duì)值,而基因組Survey分析是利用高通量測(cè)序技術(shù)對(duì)植物基因組進(jìn)行測(cè)序和直接獲取基因組大小等信息的測(cè)序技術(shù),這兩種技術(shù)結(jié)合起來評(píng)估基因組大小和特征相對(duì)可靠[27]。已報(bào)道獼猴桃屬植物的基因組大小通常在600 Mb左右,中華獼猴桃為610.1 Mb[7],毛花獼猴桃為619.3 Mb和611.7 Mb[8]等,本研究結(jié)果所揭示的單套基因組大小較為相近,AcD2301為626 Mb、AcD2302為668 Mb、AcD2303為585 Mb,均都在600 Mb左右,但基因組具體大小又取決于不同的種質(zhì)資源。
基因組學(xué)研究還可以揭示物種的遺傳多樣性、基因組演化歷程以及基因功能等,通過構(gòu)建系統(tǒng)進(jìn)化樹可以直觀地展現(xiàn)親緣關(guān)系和進(jìn)化歷程[28]。已有研究通過UPGMA聚類分析得到星毛組的中華獼猴桃與凈果組的軟棗獼猴桃親緣關(guān)系較遠(yuǎn)[29],并且與凈果組的對(duì)萼獼猴桃親緣關(guān)系也較遠(yuǎn)[30],由此推測(cè)同為凈果組的軟棗獼猴桃和對(duì)萼獼猴桃親緣關(guān)系較近,并均與星毛組的中華獼猴桃親緣關(guān)系較遠(yuǎn)。本研究中構(gòu)建的獼猴桃屬植物系統(tǒng)進(jìn)化樹,證明了軟棗獼猴桃AcD2302與對(duì)萼獼猴桃AcD2303親緣關(guān)系較近,且均與中華獼猴桃AcD2301獨(dú)立進(jìn)化而來的結(jié)果一致,為闡明物種進(jìn)化關(guān)系及基因組的內(nèi)在結(jié)構(gòu)奠定了基礎(chǔ)。
4 結(jié) 論
中華獼猴桃AcD2301、軟棗獼猴桃AcD2302、對(duì)萼獼猴桃AcD2303的染色體倍性分別為四倍體、四倍體和六倍體,與全基因組測(cè)序預(yù)估結(jié)果一致;基于全基因組Survey分析預(yù)測(cè)基因組大小分別為626 Mb、668 Mb、585 Mb,雜合度為3.00%、3.30%、8.06%,重復(fù)序列比例為43.70%、45.30%、40.7%。SNP系統(tǒng)進(jìn)化樹顯示軟棗獼猴桃AcD2302與對(duì)萼獼猴桃AcD2303親緣關(guān)系較近,且均與中華獼猴桃AcD2301獨(dú)立進(jìn)化而來。
參考文獻(xiàn)References:
[1] 黃宏文. 獼猴桃屬 分類 資源 馴化 栽培[M]. 北京:科學(xué)出版社,2013.
HUANG Hongwen. Actinidia taxonomy germplasm domestication cultivation[M]. Beijing:Science Press,2013.
[2] 鐘彩虹. 獼猴桃栽培理論與生產(chǎn)技術(shù)[M]. 北京:科學(xué)出版社,2020.
ZHONG Caihong. Cultivation theory and production technology of kiwifruit[M]. Beijing:Science Press,2020.
[3] 劉彩艷,李大衛(wèi),楊石建,潘志立,金若涵,陳芳,郭雯. 不同倍性獼猴桃的適生區(qū)預(yù)測(cè)及生態(tài)位分化[J]. 應(yīng)用生態(tài)學(xué)報(bào),2021,32(9):3167-3176.
LIU Caiyan,LI Dawei,YANG Shijian,PAN Zhili,JIN Ruohan,CHEN Fang,GUO Wen. Potential suitable area and niche shift of different ploidy kiwifruit[J]. Chinese Journal of Applied Ecology,2021,32(9):3167-3176.
[4] 金若涵. 不同倍性獼猴桃木質(zhì)部解剖結(jié)構(gòu)和水分傳導(dǎo)功能關(guān)系的研究[D]. 昆明:云南大學(xué),2022.
JIN Ruohan. Relationship between xylem anatomical structure and hydraulic function of kiwifruit with different ploidy levels[D]. Kunming:Yunnan University,2022.
[5] 李志,方金豹,齊秀娟,林苗苗,陳錦永,顧紅. 不同倍性雄株對(duì)軟棗獼猴桃坐果及果實(shí)性狀的影響[J]. 果樹學(xué)報(bào),2016,33(6):658-663.
LI Zhi,F(xiàn)ANG Jinbao,QI Xiujuan,LIN Miaomiao,CHEN Jinyong,GU Hong. Effects of male plants with different ploidy on the fruit set and fruit characteristics in Actinidia arguta kiwifruit[J]. Journal of Fruit Science,2016,33(6):658-663.
[6] 李文萃. 中華獼猴桃和多倍體美味獼猴桃的抗冷基因表達(dá)及進(jìn)化研究[D]. 北京:中國環(huán)境科學(xué)研究院,2024.
LI Wencui. Study on the expression and evolution of cold resistance genes in Actinidia chinensis and polyploid Actinidia deliciosa[D]. Beijing:Chinese Research Academy of Environmental Sciences,2024.
[7] HUANG S X,DING J,DENG D J,TANG W,SUN H H,LIU D Y,ZHANG L,NIU X L,ZHANG X,MENG M,YU J D,LIU J,HAN Y,SHI W,ZHANG D F,CAO S Q,WEI Z J,CUI Y L,XIA Y H,ZENG H P,BAO K,LIN L,MIN Y,ZHANG H,MIAO M,TANG X F,ZHU Y Y,SUI Y,LI G W,SUN H J,YUE J Y,SUN J Q,LIU F F,ZHOU L Q,LEI L,ZHENG X Q,LIU M,HUANG L,SONG J,XU C H,LI J W,YE K Y,ZHONG S L,LU B R,HE G H,XIAO F M,WANG H L,ZHENG H K,F(xiàn)EI Z J,LIU Y S. Draft genome of the kiwifruit Actinidia chinensis[J]. Nature Communications,2013,4:2640.
[8] WANG Y Z,DONG M H,WU Y,ZHANG F,REN W M,LIN Y Z,CHEN Q Y,ZHANG S J,YUE J Y,LIU Y S. Telomere-to-telomere and haplotype-resolved genome of the kiwifruit Actinidia eriantha[J]. Molecular Horticulture,2023,3(1):4.
[9] HAN X,ZHANG Y L,ZHANG Q,MA N,LIU X Y,TAO W J,LOU Z Y,ZHONG C H,DENG X W,LI D W,HE H. Two haplotype-resolved,gap-free genome assemblies for Actinidia latifolia and Actinidia chinensis shed light on the regulatory mechanisms of vitamin C and sucrose metabolism in kiwifruit[J]. Molecular Plant,2023,16(2):452-470.
[10] AKAGI T,VARKONYI-GASIC E,SHIRASAWA K,CATANACH A,HENRY I M,MERTTEN D,DATSON P,MASUDA K,F(xiàn)UJITA N,KUWADA E,USHIJIMA K,BEPPU K,ALLAN A C,CHARLESWORTH D,KATAOKA I. Recurrent neo-sex chromosome evolution in kiwifruit[J]. Nature Plants,2023,9(3):393-402.
[11] LU X M,YU X F,LI G Q,QU M H,WANG H,LIU C,MAN Y P,JIANG X H,LI M Z,WANG J,CHEN Q Q,LEI R,ZHAO C C,ZHOU Y Q,JIANG Z W,LI Z Z,ZHENG S,DONG C,WANG B L,SUN Y X,ZHANG H Q,LI J W,MO Q H,ZHANG Y,LOU X,PENG H X,YI Y T,WANG H X,ZHANG X J,WANG Y B,WANG D,LI L,ZHANG Q,WANG W X,LIU Y B,GAO L,WU J H,WANG Y C. Genome assembly of autotetraploid Actinidia arguta highlights adaptive evolution and enables dissection of important economic traits[J]. Plant Communications,2024,5(6):100856.
[12] QI X Q,XIE X D,YANG M J,ATAK A,ZHONG C H,LI D W. Characterization of the complete chloroplast genome of Actinidia hemsleyana[J]. Mitochondrial DNA. Part B,Resources,2021,6(11):3259-3260.
[13] 孫雷明,方金豹. 我國獼猴桃種質(zhì)資源的保存與研究利用[J]. 植物遺傳資源學(xué)報(bào),2020,21(6):1483-1493.
SUN Leiming,F(xiàn)ANG Jinbao. Conservation,research and utilization of kiwifruit germplasm resources in China[J]. Journal of Plant Genetic Resources,2020,21(6):1483-1493.
[14] 滕曉梅,廖川江,劉暢,徐雨生. 葡萄葉獼猴桃(獼猴桃科)葉綠體全基因組測(cè)序[J]. 種子科技,2021,39(21):23-25.
TENG Xiaomei,LIAO Chuanjiang,LIU Chang,XU Yusheng. Whole genome sequencing of chloroplasts from Actinidia chinensis (Actinidiaceae)[J]. Seed Science amp; Technology,2021,39(21):23-25.
[15] 王連潤,陶磅,萬紅,陳霞,李坤明,沙毓滄,丁仁展. 云南4種野生獼猴桃基因組大小測(cè)定與比較[J]. 中國南方果樹,2022,51(4):100-103.
WANG Lianrun,TAO Bang,WAN Hong,CHEN Xia,LI Kunming,SHA Yucang,DING Renzhan. Detection and comparison of genome size of four wild kiwifruit varieties from Yunnan[J]. South China Fruits,2022,51(4):100-103.
[16] 魏遠(yuǎn)新,郭興利,張振營,孫繼中,李金良,李書林. 對(duì)萼獼猴桃新型砧木及其綠枝嫁接關(guān)鍵技術(shù)[J]. 北方果樹,2023(6):35-36.
WEI Yuanxin,GUO Xingli,ZHANG Zhenying,SUN Jizhong,LI Jinliang,LI Shulin. New rootstock of Actinidia chinensis and key technology of green branch grafting[J]. Northern Fruits,2023(6):35-36.
[17] 呂雅雅,白事麟,韓宜潔,邱娟,師小軍. 基于流式細(xì)胞術(shù)對(duì)棱葉韭染色體的倍性鑒定和基因組大小分析[J/OL]. 分子植物育種,2024(2024-03-19)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20240318.1332.006.
Lü Yaya,BAI Shilin,HAN Yijie,QIU Juan,SHI Xiaojun. Estimation ploidy and genome size of Allium caeruleum Pall. by flow cytometry[J/OL]. Molecular Plant Breeding,2024(2024-03-19)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20240-
318.1332.006.
[18] CHEN S F,ZHOU Y Q,CHEN Y R,GU J. Fastp:An ultra-fast all-in-one FASTQ preprocessor[J]. Bioinformatics,2018,34(17):i884-i890.
[19] MAR?AIS G,KINGSFORD C. A fast,lock-free approach for efficient parallel counting of occurrences of k-mers[J]. Bioinformatics,2011,27(6):764-770.
[20] VURTURE G W,SEDLAZECK F J,NATTESTAD M,UNDERWOOD C J,F(xiàn)ANG H,GURTOWSKI J,SCHATZ M C. GenomeScope:Fast reference-free genome profiling from short reads[J]. Bioinformatics,2017,33(14):2202-2204.
[21] YUE J Y,CHEN Q Y,WANG Y Z,ZHANG L,YE C,WANG X,CAO S,LIN Y Z,HUANG W,XIAN H,QIN H Y,WANG Y L,ZHANG S J,WU Y,WANG S H,YUE Y,LIU Y S. Telomere-to-telomere and gap-free reference genome assembly of the kiwifruit Actinidia chinensis[J]. Horticulture Research,2023,10(2):uhac264.
[22] ZHOU Y,KATHIRESAN N,YU Z C,RIVERA L F,YANG Y J,THIMMA M,MANICKAM K,CHEBOTAROV D,MAULEON R,CHOUGULE K,WEI S,GAO T T,GREEN C D,ZUCCOLO A,XIE W B,WARE D,ZHANG J W,MCNALLY K L,WING R A. A high-performance computational workflow to accelerate GATK SNP detection across a 25-genome dataset[J]. BMC Biology,2024,22(1):13.
[23] FERNáNDEZ P,AMICE R,BRUY D,CHRISTENHUSZ M J M,LEITCH I J,LEITCH A L,POKORNY L,HIDALGO O,PELLICER J. A 160 Gbp fork fern genome shatters size record for eukaryotes[J]. iScience,2024,27(6):109889.
[24] 邢琴琴,周韜,卜家豪,沈植國,韓文軍. 四數(shù)九里香全基因組Survey分析[J/OL]. 分子植物育種,2023(2023-12-08)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20231207.1357.012.
XING Qinqin,ZHOU Tao,BU Jiahao,SHEN Zhiguo,HAN Wenjun. Genome Survey Analysis in Murraya tetramera Huang[J/OL]. Molecular Plant Breeding,2023(2023-12-08)[2024-09-11]. https://link.cnki.net/urlid/46.1068.S.20231207.1357.012.
[25] 楊淵,黃明進(jìn),王大昌,阮寶麗,楊秋悅,楊洋,羅影子,覃玉強(qiáng). 基于流式細(xì)胞術(shù)與基因組Survey分析白及基因組大小及特征[J]. 中成藥,2023,45(11):3677-3682.
YANG Yuan,HUANG Mingjin,WANG Dachang,RUAN Baoli,YANG Qiuyue,YANG Yang,LUO Yingzi,QIN Yuqiang. Analysis of genome size and characteristics of Bletilla striata based on flow cytometry and genomic survey[J]. Chinese Traditional Patent Medicine,2023,45(11):3677-3682.
[26] 姜濤,劉靈娣,田偉,劉銘,溫春秀. 基于流式細(xì)胞術(shù)和K-mer分析的荊芥基因組大小評(píng)估[J]. 特產(chǎn)研究,2023,45(6):1-5.
JIANG Tao,LIU Lingdi,TIAN Wei,LIU Ming,WEN Chunxiu. Genome-determination of Nepeta cataria based on flow cytometry and K-mer analysis[J]. Special Wild Economic Animal and Plant Research,2023,45(6):1-5.
[27] 饒靜云,劉義飛,黃宏文. 中華獼猴桃不同倍性間雜交后代倍性分離和遺傳變異分析[J]. 園藝學(xué)報(bào),2012,39(8):1447-1456.
RAO Jingyun,LIU Yifei,HUANG Hongwen. Analysis of ploidy segregation and genetic variation of progenies of different interploidy crosses in Actinidia chinensis[J]. Acta Horticulturae Sinica,2012,39(8):1447-1456.
[28] LIU Y B,ZHOU Y,CHENG F,ZHOU R C,YANG Y Q,WANG Y C,ZHANG X T,SOLTIS D E,XIAO N W,QUAN Z J,LI J S. Chromosome-level genome of putative autohexaploid Actinidia deliciosa provides insights into polyploidisation and evolution[J]. The Plant Journal,2024,118(1):73-89.
[29] 劉娟,廖明安,謝玥,周良強(qiáng),李明章. 獼猴桃屬16個(gè)雄性材料遺傳多樣性的ISSR分析[J]. 植物遺傳資源學(xué)報(bào),2015,16(3):618-623.
LIU Juan,LIAO Ming’an,XIE Yue,ZHOU Liangqiang,LI Mingzhang. Genetic diversity of 16 male Actinidia cultivars based on ISSR[J]. Journal of Plant Genetic Resources,2015,16(3):618-623.
[30] 張慧,張世鑫,吳紹華,田維敏,彭小列,劉世彪. 獼猴桃屬33份種質(zhì)資源的AFLP遺傳多樣性分析[J]. 生物學(xué)雜志,2018,35(2):29-33.
ZHANG Hui,ZHANG Shixin,WU Shaohua,TIAN Weimin,PENG Xiaolie,LIU Shibiao. Genetic diversity of 33 kiwifruit germplasms based on AFLP markers[J]. Journal of Biology,2018,35(2):29-33.