摘" " "要:【目的】對萼獼猴桃是一種新型耐澇營養(yǎng)系砧木,生產(chǎn)中發(fā)現(xiàn)雄株作為砧木效果更好,其種質(zhì)多樣性分析可為選育雄性耐澇對萼獼猴桃砧木提供參考?!痉椒ā恳?2份對萼獼猴桃種質(zhì)為材料,根據(jù)表型性狀及7個簡單重復(fù)序列標(biāo)記(SSR)基因型進(jìn)行多樣性分析;同時(shí)使用性別相關(guān)分子標(biāo)記進(jìn)行性別鑒定,并觀察其中開花的34份對萼獼猴桃的花朵形態(tài)以驗(yàn)證標(biāo)記鑒定結(jié)果?!窘Y(jié)果】所用62份對萼獼猴桃種質(zhì)在7個SSR標(biāo)記位點(diǎn)上共擴(kuò)增出69個等位基因,平均等位基因數(shù)為9.86,有效等位基因數(shù)為2~18,平均多態(tài)性信息含量(PIC)為0.626,平均觀測雜合度(Ho)和期望雜合度(He)值分別為0.994和0.686。性別相關(guān)標(biāo)記共鑒定出雌株18份,雄株43份;根據(jù)34份單株的花器官形態(tài)鑒定,發(fā)現(xiàn)有13份雌株和21份雄株(標(biāo)記鑒定結(jié)果為9份雌株和25份雄株),標(biāo)記與表型鑒定的一致性為79.14%?!窘Y(jié)論】62份對萼獼猴桃種質(zhì)多樣性豐富,結(jié)合植株表型性狀和DNA標(biāo)記基因型可有效地鑒定對萼獼猴桃種質(zhì),可為進(jìn)一步選育優(yōu)良對萼獼猴桃雄性營養(yǎng)系砧木提供工具和材料。
關(guān)鍵詞:對萼獼猴桃;SSR;毛細(xì)管電泳;聚類分析;性別鑒定
中圖分類號:S663.4 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-9980(2024)11-2182-13
Study on diversity and sex determination of Actinidia valvata
MO Sha, SHI Shenshen, TIAN Jie, ZHU Jiahui, WANG Rencai*, LUO Feixiong*
(College of Horticulture, Hunan Agricultural University, Changsha 410128, Hunan, China)
Abstract: 【Objective】 Actinidia species are native to China, which provide rich germplasm resources for rootstock breeding. Kiwifruit is one of the most successful wild fruit trees domesticated in the 20th century and is increasingly popular among consumers because of its unique taste and high vitamin content. Grafting is an asexual plant propagation technique that combines desired traits from both rootstock and scion. This technique has been used extensively in fruit crops. The current kiwifruit industry relies on a few rootstock cultivars from seedlings of Actinidia chinensis and A. deliciosa. The rootstocks selected from A. valvata are much more tolerant to waterlogging stress than those from A. deliciosa, and are commonly used in kiwifruit production. However, supposed consistent clonal rootstocks of A. valvata accessions are mixed and their genetic backgrounds are various. The genetic diversity analysis of plant germplasm resources could lay a solid foundation for kiwifruit breeding and utilization. To clarify the relationship among different A. valvata accessions, the diversity of 62 A. valvata accessions was analyzed using seven microsatellite DNA markers and 36 phenotypic traits. The plant sex determination for cultivars and accessions within species is the first step towards the correct classification of kiwifruit germplasm. The present study used sex-related DNA markers to identify plant gender at its juvenile stage and these plants could be maintained as male and female plant populations separately. The performance of male individuals of A. valvata rootstock is found better than the female ones in kiwifruit production. The aim of this study was to identify plant genders of these 62 accessions with sex-related DNA markers for better utilization of the male A. valvata germplasm. 【Methods】 The sixty-two A. valvata accessions were used as materials. The diversity of these studied accessions was evaluated based on their phenotypic characters and genotypes of seven Simple Repeat Sequence (SSR). The sex-related DNA markers were used to identify plant gender, and 34 flower-related attributes were evaluated to verify genotyping results. 【Results】 Among all the 36 phenotypic traits, except for the lenticel color (grayish white), leaf texture (membranous), leaf tip shape (caudiform), flatness of leaf surface blade (green), flatness of leaf pubescence (none), petal shape (ovate), the main color of the interior of the petal (white), clutch condition base of the petal (reunion), calyx color (green), female style posture (oblique growth), style color (ivory), female ovary shape (bottle), male filament color (white), anther shape (oblong), anther color (yellow), petal color gradient(none), the remaining 20 traits showed different degrees of phenotypic variation, of them 16 traits were descriptive traits and 10 traits were quantitative traits. There were 25 various types for 10 descriptive traits, according to the characteristics of shoots and leaves, these 62 accessions could be clustered into five groups. The first group had the most diverse twig and leaf traits, and the petioles were mostly purple red. The second group only had one individual--A11 and its internode length and annual branch thickness were lower than the average of all individuals. The internode length of the annual branches of the individuals in third group was higher than the average of the all samples, and the thickness of the annual branches was lower than the average of the all samples and the leaf shape was oval. The leaf length of the fourth group was higher than the average of the all samples. The fifth group only had two individuals, A43 and A27. The internode length of the annual branches in this group was the largest among the all samples, and the thickness of the annual branches was higher than the average of the all samples. The color of the annual branches was grayish brown, the pores were all elliptical, the leaf shape was oval, the leaf edge was all wavy, the leaf base was all circular, the petiole length was lower than the average of the all samples, the petiole color was all greenish yellow, and the leaf length was higher than the average of the all samples. The used seven SSR markers amplified a total of 69 alleles, with an average number of alleles 9.86 on each marker locus, the effective alleles were 2-18, the average polymorphism information content (PIC) was 0.626, and the average observed heterozygosity (Ho) and expected heterozygosity (He) values was 0.994 and 0.686, respectively. According to the SSR marker polymorphism, the 62 individuals could be clustered into four groups. The gender-related markers had identified 18 female plants and 43 male plants; the 34 individuals of flowering had been identified, 13 individuals were female plants and 21 individuals were male plants, while result of the gender-related marker identification showed that there were 9 female individuals and 25 male ones. The consistency between the morphological sex determination and the sex-related DNA marker identification was 79.14%. 【Conclusion】 A total of 62 accessions of A. valvata showed abundant phenotypic diversity, especially for twig and leaf traits. Combined with plant phenotypic characters and DNA marker genotypes could effectively characterize the A. valvata germplasm, which could provide tools and materials for further breeding clonal male A. valvata rootstock.
Key words: Actinidia valvata; Simple sequence repeat; Capillary electrophoresis; Cluster analysis; Sex determination
獼猴桃為獼猴桃科(Actinidiaceae)獼猴桃屬(Actinidia)果樹,起源于中國,因其果實(shí)營養(yǎng)價(jià)值高和口感豐富而深受消費(fèi)者喜愛[1],該屬共有54個種,21個變種,共約75個分類單元[2],獼猴桃的馴化栽培歷史僅百余年,是近代由野生到商品化栽培最成功的植物馴化案例[3]。獼猴桃的繁育主要通過嫁接繁育、扦插繁育和組織培養(yǎng)等方式,其中嫁接繁育是獼猴桃商品生產(chǎn)、保持品種一致性的最主要和最常規(guī)的方式,選擇品種特性不同且親和的砧木不僅可以利用砧木的優(yōu)勢,調(diào)節(jié)接穗品種的長勢、開花結(jié)果習(xí)性、果實(shí)產(chǎn)量和品質(zhì)等,還可以提高接穗品種的抗逆性和適應(yīng)性,提高生產(chǎn)效率[4]。生產(chǎn)上主要使用的砧木為美味獼猴桃(A. chinensis var. deliciosa)實(shí)生苗[5]。實(shí)生砧木遺傳變異較大,對接穗樹勢、果實(shí)品質(zhì)和果實(shí)產(chǎn)量等均有影響[6],通過營養(yǎng)系砧木繁育可以保證苗木的一致性,有利于苗期管理,同時(shí)可以提高接穗果實(shí)品質(zhì)的整齊度和均一性[7],而對萼獼猴桃扦插極易成活。獼猴桃根為肉質(zhì)須根系,土壤中分布較淺,對水分敏感,極其不耐澇,易受澇害脅迫。澇害已成為制約許多獼猴桃產(chǎn)區(qū)品質(zhì)和規(guī)模的重要因素之一[8]。常用的美味實(shí)生砧木,雖然出苗率高且整齊粗壯,但根系對旱澇鹽堿抗性差,不耐貧瘠[9]。因此,選育獼猴桃耐澇砧木成為獼猴桃產(chǎn)業(yè)發(fā)展的關(guān)鍵環(huán)節(jié)。湖南省湘西永順縣的獼猴桃種植戶于2003年率先使用野生的“水楊桃”作為砧木,以對萼獼猴桃為主,嫁接獼猴桃優(yōu)良品種,提高了接穗品種耐澇性[10]?!八畻钐摇笔窍嫖鞯貐^(qū)對軟棗獼猴桃(A. arguta)、對萼獼猴桃(A. valvata)、大籽獼猴桃(A. macrosperma)和四萼獼猴桃(A. tetramera)等的俗稱,因其扦插易生根,且與中華系獼猴桃品種嫁接親和性較好[11],可以作為良好的營養(yǎng)系砧木?!八畻钐摇背R姷?個種作砧木的表現(xiàn)各異,在生產(chǎn)實(shí)踐應(yīng)用中也有不同的表現(xiàn),不同基因型個體能顯著影響接穗品種[12]。對萼獼猴桃為砧木耐澇性強(qiáng)[13],在淹水條件下的抗缺氧能力優(yōu)于其他獼猴桃種[14];用對萼獼猴桃作砧木嫁接中華系或美味系獼猴桃,不僅可以提高植株的長勢和耐澇性,還可使果實(shí)提前成熟,促進(jìn)果實(shí)膨大、提高產(chǎn)量等[15]。目前對于“水楊桃”的應(yīng)用并沒有明確的分類,因此生產(chǎn)上常用的對萼獼猴桃種質(zhì)遺傳背景混亂,種植戶自育的砧木來源復(fù)雜,沒有達(dá)到營養(yǎng)系砧木遺傳背景一致的要求。因此,明晰生產(chǎn)上常用的對萼獼猴桃資源遺傳背景,可為選擇優(yōu)良且遺傳背景清晰的砧木奠定基礎(chǔ)。
獼猴桃的遺傳多樣性主要體現(xiàn)在形態(tài)性狀多樣性、營養(yǎng)成分及風(fēng)味多樣性、染色體倍性變異、同工酶水平遺傳多樣性和DNA序列遺傳多樣性方面[16]。對表型性狀多樣性的研究是衡量物種多樣性和檢測遺傳變異最主要且最直觀的重要指標(biāo)[17-18]。DNA分子標(biāo)記是DNA序列水平遺傳變異的直接反映,它既不受環(huán)境和其他因素的影響,也不受基因表達(dá)的限制,多態(tài)性高且遺傳相對穩(wěn)定[17]。簡單重復(fù)序列(simple sequence repeats,SSR)是研究植物遺傳多樣性的優(yōu)異的分子標(biāo)記之一,已被用于多種植物的遺傳多樣性研究[19]。研究發(fā)現(xiàn)黑龍江野生軟棗獼猴桃遺傳多樣性豐富,具有很大的育種選擇潛力[20]。獼猴桃絕大多數(shù)是雌雄異株果樹,必須通過授粉才能實(shí)現(xiàn)獼猴桃果實(shí)的高產(chǎn)優(yōu)質(zhì),尋求早期鑒定性別的方法以達(dá)到人為控制植物性別分化的目的,在農(nóng)業(yè)生產(chǎn)上具有重要的應(yīng)用價(jià)值[21],生產(chǎn)實(shí)踐表明用對萼獼猴桃雄株作砧木嫁接美味獼猴桃,親和力最好[11],對萼獼猴桃的雄性優(yōu)系有望成為獼猴桃嫁接砧木首選[22]。獼猴桃雌雄的形態(tài)特征只能通過觀察花器官進(jìn)行識別,而獼猴桃實(shí)生播種至開花結(jié)果需4 a(年)以上[23]。因此,使用DNA分子標(biāo)記早期鑒定獼猴桃植株性別是必要的。
筆者在本研究中以62份對萼獼猴桃種質(zhì)為試材,結(jié)合分析其表型性狀多樣性和使用SSR標(biāo)記技術(shù),對研究的對萼獼猴桃種質(zhì)進(jìn)行遺傳多樣性分析,以明晰這些種質(zhì)的遺傳背景和種內(nèi)遺傳關(guān)系,同時(shí)使用性別相關(guān)標(biāo)記鑒定這些種質(zhì)的植株性別,為選育優(yōu)良對萼獼猴桃雄性營養(yǎng)性砧木提供材料。
1 材料和方法
1.1 試驗(yàn)材料
試驗(yàn)于2022年10月至2024年5月在湖南省湖南農(nóng)業(yè)大學(xué)長安基地進(jìn)行,所用的62份對萼獼猴桃種質(zhì)均從湖南省湘西土家族苗族自治州鳳凰縣收集而來,均通過扦插繁育保存在湖南農(nóng)業(yè)大學(xué)長安基地獼猴桃資源圃中,分別對這62份材料進(jìn)行編號。
1.2 表型性狀觀測
按照中華人民共和國行業(yè)標(biāo)準(zhǔn)(NY/T 2933—2016)《獼猴桃種質(zhì)資源描述規(guī)范》[24]共選取36個表型性狀進(jìn)行觀測和記錄。同時(shí)在對萼獼猴桃花期通過觀察花器官狀態(tài)對花性進(jìn)行形態(tài)性別鑒定,雄蕊敗育則判定為雌株;雌蕊敗育不形成胚珠則判定為雄株[25-26](圖1)。在2023年先對其中19個枝葉性狀進(jìn)行觀測與記錄,62份對萼獼猴桃種質(zhì)中有34份于2024年4月開花,在花期對這34份對萼獼猴桃的17個花器官性狀進(jìn)行觀測與記錄。共觀測了36種表型性狀,其中26個描述性性狀根據(jù)分級標(biāo)準(zhǔn)進(jìn)行觀測并賦值(表1)。10種數(shù)值型性狀包括1年生枝節(jié)間長度、1年生枝粗度、葉片長度、葉片寬度、葉柄長度、花冠直徑、花瓣數(shù)量、花萼數(shù)量、花柱數(shù)和雄蕊數(shù)。
采用游標(biāo)卡尺測量1年生枝節(jié)間長度、1年生枝粗度、葉片長度、葉片寬度、葉柄長度和花冠直徑,花瓣數(shù)量、花萼數(shù)量、花柱數(shù)和雄蕊數(shù)則直接計(jì)數(shù),10次重復(fù)。
1.3 基因組DNA的提取
分別采取對萼獼猴桃幼嫩葉3~4枚,置于冰盒帶回實(shí)驗(yàn)室,將葉片保存于-80 ℃冰箱。采用試劑盒(北京奧博來科技有限責(zé)任公司)提取DNA。所提取DNA經(jīng)1%瓊脂糖凝膠電泳和紫外分光光度計(jì)檢測其質(zhì)量和濃度,-20 ℃保存?zhèn)溆茫珼NA提取同時(shí)用于SSR分析和性別鑒定。
1.4 PCR體系與毛細(xì)管電泳檢測
參照Lai等[27]篩選出的15個SSR標(biāo)記,根據(jù)多態(tài)性等信息從中選擇多態(tài)性較好且擴(kuò)增效率高的7對SSR引物進(jìn)行PCR(表2)。7對引物由生工生物工程(上海)股份有限公司合成。PCR擴(kuò)增反應(yīng)總體積為10 μL,包含 5 μL Mix酶、上下游引物各0.35 μL、1 μL 30 ng·mL-1 DNA模板,3.3 μL ddH2O。PCR擴(kuò)增程序?yàn)椋?4 ℃ 5 min;94 ℃ 30 s;55 ℃ 30 s;72 ℃ 40 s;72 ℃ 7 min,共35個循環(huán),10 ℃保存。取PCR產(chǎn)物0.3 μL、分子質(zhì)量內(nèi)標(biāo)0.5 μL和去離子甲酰胺9.5 μL混合加入PCR板,95 ℃變性5 min,4 ℃冷卻后離心,1×Buffer緩沖液上機(jī)進(jìn)行毛細(xì)管電泳檢測。具體操作步驟和流程參考儀器操作說明。
1.5 性別分子標(biāo)記鑒定
利用SyGI和FrBy基因設(shè)計(jì)引物進(jìn)行性別分子鑒定,區(qū)分對萼獼猴桃雌雄株,以Ank marker作為對照,以測試PCR擴(kuò)增是否成功。通過存在/不存在來區(qū)分雌株和雄株,雄株能擴(kuò)增出3種PCR產(chǎn)物,而雌性植物僅擴(kuò)增出對照[28]。引物由生工生物工程(上海)股份有限公司合成。取PCR產(chǎn)物0.3 μL、分子質(zhì)量內(nèi)標(biāo)0.5 μL和去離子甲酰胺9.5 μL混合加入PCR板,95 ℃變性5 min,4 ℃冷卻后離心,1×Buffer緩沖液上機(jī)檢測(表3)。
1.6 數(shù)據(jù)處理
根據(jù)描述性性狀的分級標(biāo)準(zhǔn),使用Microsoft Excel 2010對枝葉性狀進(jìn)行頻率和變異系數(shù)分析。使用SPSS 23.0軟件對數(shù)值型性狀進(jìn)行相關(guān)性分析。使用R語言[29]計(jì)算表型歐式距離并用非加權(quán)組配對算術(shù)平均法(UPGMA)進(jìn)行聚類分析;用GenAlex[30]計(jì)算擴(kuò)增后的等位基因數(shù)(Na)、有效等位基因數(shù)(Ne)、觀測雜合度(Ho)和期望雜合度(He);用Power Marker V 3.25[31]計(jì)算引物多態(tài)信息含量(PIC)。根據(jù)遺傳距離利用R語言進(jìn)行UPGMA聚類分析。
2 結(jié)果與分析
2.1 對萼獼猴桃表型性狀多樣性分析
2.1.1 對萼獼猴桃描述性性狀的頻率分布和多樣性 對萼獼猴桃的表型多樣性豐富,種內(nèi)變異較大。觀察的26種描述性性狀中,共有10種性狀有變異幅度,共檢測到25個變異類型。分別是1年生枝顏色、皮孔形狀、皮孔密度、葉片形狀、葉緣鋸齒形狀、葉基形狀、葉柄顏色、葉表面顏色、葉面平展度和花序類型,其中花序類型的變異系數(shù)最高(42.74%),而葉片形狀的變異系數(shù)最?。?2.80%)。其余的16種描述性性狀都沒有變異,皮孔顏色都為灰白色;葉片都是膜質(zhì);葉尖均為急尖;葉背顏色都為綠色;葉背均無茸毛;花瓣都是卵圓形;花瓣內(nèi)側(cè)主色均為白色;花瓣基部都是重疊;花萼都是綠色;雌花花柱都是斜生、乳白色;子房瓶形;雄花花絲均為白色;花藥長橢圓形、黃色;花瓣均無顏色梯度(表4)。
1年生枝顏色有4種,即灰白色、褐色、灰褐色和黃褐色。其中灰褐色的1年生枝最多,占74.19%,其次是褐色,占22.58%,灰白色和黃褐色最少,均僅占1.61%。皮孔形狀多為橢圓形,占82.26%;其余17.74%均為短梭形。皮孔密度都較高,其中66.13%皮孔多數(shù),33.87%皮孔密度中等。葉片形狀93.55%是卵圓形,僅6.45%為披針形。葉緣鋸齒形狀有3類,細(xì)鋸齒葉緣占1.61%,波浪狀和粗鋸齒分別占48.39%和50.00%。葉基形狀為圓形的個體最多,占95.16%,少數(shù)為心形。葉柄顏色有綠色、綠黃色和紫紅色,分別占4.84%、53.23%和41.93%。葉表面91.93%是綠色,淺綠和深綠分別占4.84%和3.23%。葉面多數(shù)平展,僅9.68%具褶皺,花序類型有94.12%是單花,其余5.88%是多岐聚傘花序(表4)。
2.1.2 數(shù)值型性狀的多樣性和相關(guān)性分析 觀測對萼獼猴桃的10個數(shù)值型性狀變異系數(shù)范圍為7.96%~40.47%,平均變異系數(shù)為21.27%,表明其數(shù)值型性狀多樣性較豐富。葉柄長度的變異系數(shù)最大,為40.47%,雄蕊數(shù)的變異系數(shù)最小,為7.96%,枝葉數(shù)值型性狀平均變異系數(shù)為30.26%,花器官數(shù)值型性狀平均變異系數(shù)為12.29%(表5)。
對對萼獼猴桃枝葉的5個數(shù)值型性狀進(jìn)行相關(guān)性分析,5個數(shù)值型性狀間均呈現(xiàn)極顯著正相關(guān)(p<0.01)。其中葉片長度與葉片寬度的相關(guān)系數(shù)最高(0.860),1年生枝粗度與葉柄長度的相關(guān)系數(shù)最?。?.678)(表6)。
2.1.3 基于枝葉性狀的聚類分析 根據(jù)62份對萼獼猴桃枝葉性狀間的歐式距離,采用 UPGMA 法進(jìn)行聚類分析,在歐式距離為7.5處可將62份對萼獼猴桃種質(zhì)分為5組(圖2)。
第一組包括:B63、A59、B49、B3、B26等共27個單株,該組枝葉性狀遺傳變異最豐富。1年生枝顏色灰褐和褐色,葉片形狀卵圓形和闊卵形,葉緣波浪狀、粗鋸齒和細(xì)鋸齒,葉基圓形和心形,葉柄顏色紫紅色、黃綠色和綠色,葉表面顏色淺綠、綠和黃綠,葉面多平展少數(shù)具褶皺,1年生枝節(jié)間長度均低于總樣本平均值。
第二組僅A11一個單株,該組1年生枝節(jié)間長度和1年生枝粗度均低于總樣本平均值,1年生枝顏色褐色,皮孔數(shù)量中,皮孔形狀短梭形,葉片形狀卵圓形,葉緣粗鋸齒,葉基圓形,葉柄黃綠色,葉表面綠色,葉面平展,葉背綠色,葉柄長度是所有樣本中最高的。
第三組包括A49、A4、A23、B1、A50等15個單株,該組1年生枝節(jié)間長度均高于總樣本平均值,1年生枝粗度均低于總樣本平均值,1年生枝顏色多灰褐,少數(shù)褐色;皮孔橢圓或短梭,皮孔密度中或多,葉片形狀均為卵圓形,葉緣波浪狀或粗鋸齒,葉基除A26是心形外,其余均為圓形;葉柄紫紅或黃綠色,葉表面均為綠色。
第四組包括A35、A6、A7、A30、B48等17個單株。該組1年生枝節(jié)間長度僅次于第三組,1年生枝顏色灰褐和褐色,葉片多卵圓形、少數(shù)披針形,葉緣波浪狀和粗鋸齒,葉柄長度多數(shù)高于平均值,葉柄多紫紅色,少數(shù)黃綠色;葉表面均為綠色,葉片長度均高于總樣本平均值,葉片寬度大多數(shù)高于平均值。
第五組只有A43和A27兩個單株。該組1年生枝節(jié)間長度是所有樣本中最大的,1年生枝粗度均高于總樣本平均值,1年生枝顏色灰褐色,皮孔均橢圓形,葉片形狀卵圓形,葉緣均波浪狀,葉基均圓形,葉柄長度均低于總樣本平均值,葉柄顏色均黃綠色,葉片長度均高于總樣本平均值。
2.2 基于SSR標(biāo)記的對萼獼猴桃多樣性分析
用篩選的7對多態(tài)性高的SSR引物分析62份對萼獼猴桃種質(zhì)的多樣性,試驗(yàn)所用的7對SSR標(biāo)記在62份對萼獼猴桃資源中共擴(kuò)增出69個等位基因,每個標(biāo)記位點(diǎn)的平均等位基因數(shù)為9.857,變異范圍為2~18。其中等位基因數(shù)最豐富的引物是UDK-125,擴(kuò)增出18個等位基因,而引物UDK-103只擴(kuò)增出2個等位基因。平均有效等位基因數(shù)(Ne)為3.977;平均觀測雜合度(Ho)為0.994;平均期望雜合度(He)為0.696;SSR多態(tài)信息含量(PIC)的變化范圍為0.375~0.848,所篩選的引物中UDK-096的多態(tài)性最高(0.848),UDK-103的多態(tài)性最低(0.375),平均多態(tài)信息含量為0.626(圖3,表7)。
2.3 SSR遺傳距離及聚類分析
通過7對SSR引物分析,62株對萼獼猴桃單株的遺傳距離變異范圍為0.06~0.71,平均值為0.39。其中B21和B62等遺傳距離最大(0.71),而A23和B58等的遺傳距離最?。?.05)。
根據(jù)材料間的遺傳距離,采用UPGMA法對62份特異性單株進(jìn)行聚類分析(圖4),最終可將62份對萼獼猴桃種質(zhì)分為4個組,第Ⅰ組包括B21、A27和B11等16個單株;第Ⅱ組包括A38、A5和B52等24個單株;第Ⅲ組包括A54、B62和A7共16個單株。第Ⅳ組包括B7、B20和A1等6個單株。
2.4 性別鑒定
62株對萼獼猴桃單株中,由于A11未成活,只能對剩余61株進(jìn)行性別分子鑒定,進(jìn)行分子性別鑒定的61株單株中有18株為雌株,其余43株為雄株,在對萼獼猴桃盛花期(2024年4月22日—30日),61株中有34株開花,可進(jìn)行形態(tài)觀察。花器官形態(tài)觀察結(jié)果表明,34份對萼獼猴桃種質(zhì)中共有13份雌株,21份雄株。這34份對萼獼猴桃種質(zhì)的性別分子標(biāo)記鑒定結(jié)果為9份雌株和25份雄株(表8)。34份對萼獼猴桃種質(zhì)分子性別鑒定和形態(tài)觀察鑒定結(jié)果一致性為79.14%。
3 討 論
生產(chǎn)上使用的對萼獼猴桃種質(zhì)混雜,基于對萼獼猴桃枝葉性狀多樣性和SSR標(biāo)記位點(diǎn)多態(tài)性分析,可鑒別其多樣性。根據(jù)對萼獼猴桃的36個表型性狀進(jìn)行多樣性分析,有20個性狀存在變異,不同性狀間的變異系數(shù)介于7.96%~42.74%,平均變異系數(shù)為21.99%,表明對萼獼猴桃單株性狀變異類型較多、變異幅度較大,存在較豐富的多樣性。根據(jù)表型性狀也確定了收集的種質(zhì)符合對萼獼猴桃的生物學(xué)特征[32]。觀測的62份種質(zhì)的平均枝葉變異系數(shù)為23.98%,其中34份種質(zhì)的花器性狀平均變異系數(shù)為17.36%,對萼獼猴桃種內(nèi)枝條和葉片的變異幅度比花器性狀更為豐富,根據(jù)枝條和葉片表型可將62份對萼獼猴桃資源分為5組,同樣可以看出不同對萼獼猴桃單株間存在明顯的表型差異。62份對萼獼猴桃種質(zhì)枝葉的5個數(shù)值型性狀間顯著相關(guān),其中葉片長度和葉片寬度相關(guān)性最高,這與蘋果[33]和荔枝[34]中葉片長度與葉片寬度強(qiáng)相關(guān)的結(jié)果一致。
本研究中利用SSR分子標(biāo)記技術(shù),分析對萼獼猴桃的遺傳多樣性,研究結(jié)果表明挑選的7個SSR標(biāo)記,平均多態(tài)性信息含量(PIC)為0.626。根據(jù)多態(tài)性信息含量評價(jià)體系(高:PIC≥0.5;適中:0.5>PIC≥0.25;低:PIC<0.25),表明本試驗(yàn)所用的7對SSR引物多態(tài)性較豐富。62份對萼獼猴桃種質(zhì)單株間的平均遺傳距離為0.39,高于5個毛花獼猴桃群體間的平均遺傳距離(0.25)[35],說明對萼獼猴桃有豐富的遺傳多樣性。平均有效等位基因數(shù)(Ne)低于等位基因數(shù)(Na),說明本研究所用材料間親緣關(guān)系較近,有效等位基因較少;平均觀測雜合度(Ho)為0.994;平均期望雜合度(He)為0.686,觀測雜合度高于期望雜合度,可能是因?yàn)楸驹囼?yàn)進(jìn)行的是個體間的多樣性分析,材料間的雜合度較低。根據(jù)遺傳距離,對62份種質(zhì)特異性單株進(jìn)行聚類分析,共將這些材料聚為4組,其中每組材料里面的枝葉性狀有一定的多樣性,可能是在基因型相似的情況下,枝葉性狀受環(huán)境影響的結(jié)果,而SSR聚類結(jié)果表明的是遺傳背景相似度,與品種類型有一定的相關(guān)性[36]。表型是遺傳背景和環(huán)境共同作用的結(jié)果,由于62份種質(zhì)中僅觀察到34份種質(zhì)的花器性狀,因此,只能根據(jù)枝葉性狀進(jìn)行表型聚類。表型聚類與SSR標(biāo)記聚類結(jié)果相比,兩種聚類方法的結(jié)果一致性僅30.65%,這可能是本研究的表型聚類是基于枝葉形狀,而枝葉性狀更容易受環(huán)境及栽培管理的影響。將表型性狀分析與SSR分析結(jié)合起來,能更準(zhǔn)確地反映出對萼獼猴桃的多樣性,表型和分子兩者都能作為分類依據(jù),但DNA標(biāo)記不易受環(huán)境影響,因此,可以通過表型為輔,DNA標(biāo)記為主的方法對植株進(jìn)行多樣性分析。
獼猴桃早期性別鑒定一般用于育種群體的早期篩選,雌株的經(jīng)濟(jì)價(jià)值高于雄株,但雄株在抗性等方面優(yōu)于雌株,軟棗獼猴桃雄株的抗寒性強(qiáng)于雌株[37],此外軟棗獼猴桃雄株平均株高顯著高于雌株[38],對山楊的雌株和雄株進(jìn)行的抗寒性差異研究同樣發(fā)現(xiàn)雄株更能適應(yīng)低溫的變化[39]。沙棘的耐凍性研究發(fā)現(xiàn),雄株對低溫的反應(yīng)比雌株更強(qiáng)烈,雄株比雌株更抗寒[40]。目前獼猴桃性別鑒定的方法主要有形態(tài)學(xué)標(biāo)記[35]、生理生化[41]、同工酶鑒定[42-43]和DNA分子標(biāo)記[44]等,但生理生化和同工酶鑒定主要針對成熟植株[45],而獼猴桃的童期長,因此可以采用DNA分子標(biāo)記在童期對獼猴桃性別進(jìn)行鑒定,節(jié)約育種成本。本研究中,既進(jìn)行分子性別鑒定又有形態(tài)觀察的34個單株中有79.14%鑒定結(jié)果一致,其中7個分子鑒定結(jié)果與形態(tài)觀察不一致,B13的兩種性別鑒定結(jié)果不一致可能是它的SyGI-select引物沒有擴(kuò)增出條帶導(dǎo)致分子鑒定為雌株;A2、A38、A43、A53、A54和B8分子鑒定為雄株但形態(tài)觀察表明這些植株的雌蕊可育,具有結(jié)果能力,這可能是由于所選取的引物只能鑒定穩(wěn)定的雌雄之分,不能區(qū)分雄株和可結(jié)果雄株[28],這些材料是否為可結(jié)果雄株,還需進(jìn)一步授粉驗(yàn)證。SyGI在61個單株中共擴(kuò)增出86、88和90 bp三個等位基因片段,F(xiàn)rBy共擴(kuò)增出289和297 bp兩個等位基因片段,但在相關(guān)研究中所用對萼獼猴桃在SyGI位點(diǎn)僅擴(kuò)增出89 bp,F(xiàn)rBy僅擴(kuò)增出292 bp[28],這可能是由于兩個研究所用材料的遺傳背景不同。FrBy在雌株中會發(fā)生意外擴(kuò)增,這與該標(biāo)記在某些獼猴桃種如毛花獼猴桃雌株中擴(kuò)增出282 bp一致[28],61份材料中標(biāo)記鑒定為雌株的18份中有17份在FrBy位點(diǎn)發(fā)生了意外擴(kuò)增,且發(fā)生意外擴(kuò)增的都是289和289這個等位基因型,這也為在早期使用標(biāo)記判斷性別時(shí)提供參考。標(biāo)記FrBy在不同種間擴(kuò)增情況不同,在實(shí)際應(yīng)用中要先進(jìn)行驗(yàn)證,相較于FrBy,SyGI的準(zhǔn)確性可能更高。試驗(yàn)下一步將觀察此次未完成花器官形態(tài)鑒定的植株,分析花器官形態(tài)鑒定與性別鑒定的一致性,也會進(jìn)一步研究對萼獼猴桃耐澇性與性別的相關(guān)性。
4 結(jié) 論
觀測的36個表型性狀中有20個性狀發(fā)生變異。選取的7對SSR引物,平均多態(tài)性信息含量(PIC)為0.65,結(jié)合表型和分子聚類結(jié)果,發(fā)現(xiàn)對萼獼猴桃不同單株之間存在較大的遺傳差異,由于表型性狀受環(huán)境較大,從分子水平上進(jìn)行的SSR聚類不受環(huán)境影響,更具可靠性。針對其中的34份對萼獼猴桃種質(zhì)進(jìn)行早期性別鑒定,形態(tài)學(xué)觀察與分子標(biāo)記鑒定結(jié)果79%一致,表明選取的標(biāo)記可以在獼猴桃童期對性別進(jìn)行初步鑒定,若需要對性別精確鑒定還需要在花期對生殖器官進(jìn)行觀察。本研究結(jié)果表明了生產(chǎn)上應(yīng)用的對萼獼猴桃種質(zhì)遺傳背景較為混亂,根據(jù)聚類分析結(jié)果,初步明確了不同類群的特征,可以依據(jù)分類結(jié)果分析每個類群的利用價(jià)值,同時(shí)應(yīng)用性別分子標(biāo)記和形態(tài)觀察對性別進(jìn)行鑒定,為選育優(yōu)質(zhì)對萼獼猴桃雄性砧木提供參考和材料。
參考文獻(xiàn) References:
[1] 徐小彪,張秋明. 中國獼猴桃種質(zhì)資源的研究與利用[J]. 植物學(xué)通報(bào),2003,38(6):648-655.
XU Xiaobiao,ZHANG Qiuming. Researches and utilizations of germplasm resource of kiwifruit in China[J]. Chinese Bulletin of Botany,2003,38(6):648-655.
[2] WARRINGTON I J,WESTON G C. Kiwifruits:Science and management[M]. New Zealand:Ray Richards Publisher,1990:183-204.
[3] 黃宏文. 獼猴桃研究進(jìn)展[M]. 北京:科學(xué)出版社,2000.
HUANG Hongwen. Advances in Actinidia research[M]. Beijing:Science Press,2000.
[4] WEBSTER A D. Rootstock and interstock effects on deciduous fruit tree vigour,precocity,and yield productivity[J]. New Zealand Journal of Crop and Horticultural Science,2010,23(4):373-382.
[5] 王莉,王圣梅,黃宏文. 獼猴桃屬種間嫁接親和性試驗(yàn)研究及抗根結(jié)線蟲砧木的初步篩選[J]. 武漢植物學(xué)研究,2001,19(1):47-51.
WANG Li,WANG Shengmei,HUANG Hongwen. Graft compatibility among Actinidia species and screening rootstocks resistant to root-knot nematodes[J]. Journal of Wuhan Botanical Research,2001,19(1):47-51.
[6] MORAES A F G,MICHELETTI L B,SANTORO M B,TEIXEIRA DOS SANTOS N,AVILéS T C,DA SILVA S R. Horticultural performance of ‘Hass’ avocado grafted onto seedling and clonal rootstocks under tropical wet-dry climate conditions[J]. Scientia Horticulturae,2022,302:111155.
[7] 鐘彩虹,劉小莉,李大衛(wèi),韓飛,張瓊. 不同獼猴桃種硬枝扦插快繁研究[J]. 中國果樹,2014(4):23-26.
ZHONG Caihong,LIU Xiaoli,LI Dawei,HAN Fei,ZHANG Qiong. Research on fast propagation of hard branch cutting of different kiwifruit species[J]. China Fruits,2014(4):23-26.
[8] 張琛,張慧琴,肖金平,馬常念,謝鳴. 三個品種獼猴桃實(shí)生苗的耐澇性比較[J]. 浙江農(nóng)業(yè)學(xué)報(bào),2013,25(5):1007-1012.
ZHANG Chen,ZHANG Huiqin,XIAO Jinping,MA Changnian,XIE Ming. Comparison on seedling waterlogging tolerance of three cultivars of Actinidia chinensis Planch.[J]. Acta Agriculturae Zhejiangensis,2013,25(5):1007-1012.
[9] 陳環(huán),馬幸幸,賈德翠,周德勇,彭書明,王元順. 獼猴桃砧木研究進(jìn)展[J]. 北方園藝,2022(5):125-133.
CHEN Huan,MA Xingxing,JIA Decui,ZHOU Deyong,PENG Shuming,WANG Yuanshun. Research progress on rootstock of kiwifruit[J]. Northern Horticulture,2022(5):125-133.
[10] 郭興利,魏遠(yuǎn)新,張振營,李金良,張金偉,孫繼中. 獼猴桃新型砧木水楊桃及其在河南西峽的應(yīng)用實(shí)踐[J]. 西北園藝,2022(6):58-61.
GUO Xingli,WEI Yuanxin,ZHANG Zhenying,LI Jinliang,ZHANG Jinwei,SUN Jizhong. A new type of kiwifruit rootstock and its application in Xixia,Henan Province[J]. Northwest Horticulture,2022(6):58-61.
[11] 郭曉成,楊莉,段眉會,陳春曉. 再說獼猴桃新型砧木水楊桃[J]. 西北園藝(果樹),2019(6):4-6.
GUO Xiaocheng,YANG Li,DUAN Meihui,CHEN Chunxiao. A new rootstock of kiwi fruit[J]. Northwest Horticulture (Fruit),2019(6):4-6.
[12] 李大衛(wèi),劉小莉,韓飛,呂海燕,解瀟冬,張琦,田華,鐘彩虹. 獼猴桃新型砧木對金梅獼猴桃果實(shí)品質(zhì)的影響[J]. 果樹學(xué)報(bào),2023,40(10):2160-2169.
LI Dawei,LIU Xiaoli,HAN Fei,Lü Haiyan,XIE Xiaodong,ZHANG Qi,TIAN Hua,ZHONG Caihong. Effect of new rootstocks on the fruit quality in Jinmei kiwifruit[J]. Journal of Fruit Science,2023,40(10):2160-2169.
[13] 白丹鳳,李志,齊秀娟,陳錦永,顧紅,黃武權(quán),任建杰,鐘云鵬,方金豹. 4種基因型獼猴桃對淹水脅迫的生理響應(yīng)及耐澇性評價(jià)[J]. 果樹學(xué)報(bào),2019,36(2):163-173.
BAI Danfeng,LI Zhi,QI Xiujuan,CHEN Jinyong,GU Hong,HUANG Wuquan,REN Jianjie,ZHONG Yunpeng,F(xiàn)ANG Jinbao. Physiological responses and tolerance evaluation of four species of Actinidia to waterlogging stress[J]. Journal of Fruit Science,2019,36(2):163-173.
[14] 高敏霞,馮新,賴瑞聯(lián),陳文光,陳義挺. 淹水脅迫對不同品種獼猴桃生理特性的影響[J]. 中國南方果樹,2022,51(4):114-118.
GAO Minxia,F(xiàn)ENG Xin,LAI Ruilian,CHEN Wenguang,CHEN Yiting. Effects of flooding stress on physiological characteristics of different kiwifruit varieties[J]. South China Fruits,2022,51(4):114-118.
[15] 宋云云,呂巖,馬康利. 水楊桃砧木在陜西周至的生產(chǎn)表現(xiàn)與推廣建議[J]. 西北園藝,2022(2):54-55.
SONG Yunyun,Lü Yan,MA Kangli. Production performance and promotion suggestions of Shui Yangtao rootstock in Zhouzhi,Shaanxi province[J]. Northwest Horticulture,2022(2):54-55.
[16] 黃宏文,龔俊杰,王圣梅,何子燦,張忠慧,李建強(qiáng). 獼猴桃屬(Actinidia)植物的遺傳多樣性[J]. 生物多樣性,2000,8(1):1-12.
HUANG Hongwen,GONG Junjie,WANG Shengmei,HE Zican,ZHANG Zhonghui,LI Jianqiang. Genetic diversity in the genus Actinidia[J]. Chinese Biodiversity,2000,8(1):1-12.
[17] 陳萬秋,李思光,羅玉萍. 分子標(biāo)記技術(shù)在獼猴桃屬植物中的研究進(jìn)展[J]. 江西科學(xué),2001,19(3):162-165.
CHEN Wanqiu,LI Siguang,LUO Yuping. Application of molecular markers on Actinidia[J]. Jiangxi Science,2001,19(3):162-165.
[18] 辛景樹,郭景倫,張軟斌. 幾種常用分子標(biāo)記技術(shù)在種子純度和品種真實(shí)性鑒定方面的比較與分析[J]. 種子,2005,24(1):58-60.
XIN Jingshu,GUO Jinglun,ZHANG Ruanbin. Comparison and analysis of several commonly used molecular marker techniques in seed purity and variety authenticity identification[J]. Seed,2005,24(1):58-60.
[19] 楊進(jìn). SSR標(biāo)記技術(shù)在植物遺傳多樣性研究上的應(yīng)用[J]. 中國農(nóng)學(xué)通報(bào),2006,22(7):90-94.
YANG Jin. The application of microsatellite DNA marker in plant genetic diversity research[J]. Chinese Agricultural Science Bulletin,2006,22(7):90-94.
[20] 李紅莉,王澎,李雪,陶雙勇,孫強(qiáng),逄宏揚(yáng),張躍新,孫向輝. 黑龍江野生軟棗獼猴桃種質(zhì)資源表型性狀的遺傳多樣性[J]. 經(jīng)濟(jì)林研究,2022,40(1):150-158.
LI Hongli,WANG Peng,LI Xue,TAO Shuangyong,SUN Qiang,PANG Hongyang,ZHANG Yuexin,SUN Xianghui. Genetic diversity of phenotypic traits of wild Actinidia arguta germplasm resources in Heilongjiang[J]. Non-wood Forest Research,2022,40(1):150-158.
[21] 楊妙賢,梁紅,賀蘇丹. 獼猴桃性別分化與鑒定研究進(jìn)展[J]. 仲愷農(nóng)業(yè)工程學(xué)院學(xué)報(bào),2009,22(1):57-60.
YANG Miaoxian,LIANG Hong,HE Sudan. Research progress in sex differentiation and identification of Actinidia[J]. Journal of Zhongkai University of Agriculture and Technology,2009,22(1):57-60.
[22] 段眉會,陳春曉. “水楊桃” 作獼猴桃砧木行不行?[J]. 果樹實(shí)用技術(shù)與信息,2019(4):13-14.
DUAN Meihui,CHEN Chunxiao. Is it feasible to use “Shui Yang Tao” as a Actinidia rootstock?[J]. Practical Techniques and Information on Fruit Trees,2019(4):13-14.
[23] 周玲艷,秦華明,梁紅. 分子標(biāo)記在獼猴桃性別基因研究中的應(yīng)用[J]. 河南農(nóng)業(yè)科學(xué),2007,36(8):10-12.
ZHOU Lingyan,QIN Huaming,LIANG Hong. Application of molecular markers in the study of sex genes in Actinidia[J]. Journal of Henan Agricultural Sciences,2007,36(8):10-12.
[24] 中華人民共和國農(nóng)業(yè)部. 獼猴桃種質(zhì)資源描述規(guī)范:NY/T 2933—2016[S]. 北京:中國標(biāo)準(zhǔn)出版社,2016.
Ministry of Agriculture of the People’s Republic of China. Descriptors for kiwifruit germplasm resources:NY/T 2933—2016[S]. Beijing:China Standards Press,2016.
[25] 王立軍,張友民,賈偉平,谷安根. 狗棗獼猴桃的解剖學(xué)研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),1994,16(3):55-58.
WANG Lijun,ZHANG Youmin,JIA Weiping,GU Angen. Anatomical studies of Actinidia kolokikta[J]. Journal of Jilin Agricultural University,1994,16(3):55-58.
[26] 王立軍. 軟棗獼猴桃的解剖學(xué)研究[J]. 吉林農(nóng)業(yè)大學(xué)學(xué)報(bào),1990,12(4):34-38.
WANG Lijun. Studies of the anatomy of Actinidia arguta (Sieb et Zucc.) Planch ex Miquel[J]. Journal of Jilin Agricultural University,1990,12(4):34-38.
[27] LAI J J,LI Z Z,MAN Y P,LEI R,WANG Y C. Genetic diversity of five wild Actinidia arguta populations native to China as revealed by SSR markers[J]. Scientia Horticulturae,2015,191:101-107.
[28] DE MORI G,TESTOLIN R,CIPRIANI G. A molecular protocol for early sex discrimination (ESD) in Actinidia spp.[J]. Journal of Berry Research,2022,12(2):249-266.
[29] IHAKA R,GENTLEMAN R. R:A language for data analysis and graphics[J]. Journal of Computational and Graphical Statistics,1996,5(3):299.
[30] PEAKALL R,SMOUSE P E. GenAlEx 6.5:Genetic analysis in excel. population genetic software for teaching and research:An update[J]. Bioinformatics,2012,28(19):2537-2539.
[31] LIU K J,MUSE S V. PowerMarker:An integrated analysis environment for genetic marker analysis[J]. Bioinformatics,2005,21(9):2128-2129.
[32] 黃宏文. 獼猴桃屬 分類 資源 馴化 栽培[M]. 北京:科學(xué)出版社,2013.
HUANG Hongwen. Actinidia taxonomy germplasm domestication cultivation[M]. Beijing:Science Press,2013.
[33] 李昕蔓,楊開宇,柳俊明,王立成,李清泉,張軍. 基于形態(tài)指標(biāo)和葉片生理指標(biāo)對新疆野蘋果無性系的綜合評價(jià)[J]. 林業(yè)與生態(tài)科學(xué),2021,36(4):418-427.
LI Xinman,YANG Kaiyu,LIU Junming,WANG Licheng,LI Qingquan,ZHANG Jun. Comprehensive evaluation of Xinjiang wild apple clones based on morphological and physiological indicators[J]. Forestry and Ecological Sciences,2021,36(4):418-427.
[34] 林祺英,李芳,蔡汝鵬,張蕾,黎瑤,李煥苓,王家保. 海南荔枝資源葉片性狀多樣性分析[J]. 熱帶生物學(xué)報(bào),2023,14(6):628-635.
LIN Qiying,LI Fang,CAI Rupeng,ZHANG Lei,LI Yao,LI Huanling,WANG Jiabao. Diversity analysis of leaf traits of litchi genetic resources in Hainan[J]. Journal of Tropical Biology,2023,14(6):628-635.
[35] 鐘敏,陶俊杰,黃春輝,黃清,鄒梁峰,廖光聯(lián),陳璐,徐小彪. 江西野生毛花獼猴桃群體SSR遺傳多樣性研究[J]. 核農(nóng)學(xué)報(bào),2019,33(5):863-869.
ZHONG Min,TAO Junjie,HUANG Chunhui,HUANG Qing,ZOU Liangfeng,LIAO Guanglian,CHEN Lu,XU Xiaobiao. Analysis of genetic diversity of populations in Actinidia eriantha Benth. based on simple sequence repeat (SSR) markers[J]. Journal of Nuclear Agricultural Sciences,2019,33(5):863-869.
[36] 殷紀(jì)偉,韓貝貝,馬瑩雪,武星廷,徐振江,姜建福,陳昌文,韓瑞璽. 基于SSR分子標(biāo)記的154份桃品種遺傳多樣性分析[J]. 江蘇農(nóng)業(yè)科學(xué),2023,51(16):18-26.
YIN Jiwei,HAN Beibei,MA Yingxue,WU Xingting,XU Zhenjiang,JIANG Jianfu,CHEN Changwen,HAN Ruixi. Analysis of genetic diversity of 154 peach cultivars based on SSR markers[J]. Jiangsu Agricultural Sciences,2023,51(16):18-26.
[37] 金君,辛樹權(quán),韋欣霈,宋任鋒,萬楚. 自然越冬期軟棗獼猴桃雌雄株的生理生化響應(yīng)差異[J]. 長春師范大學(xué)學(xué)報(bào),2023,42(10):86-91.
JIN Jun,XIN Shuquan,WEI Xinpei,SONG Renfeng,WAN Chu. Analysis of cold resistance difference between male and female plants of Actinidia arguta during over-wintering period[J]. Journal of Changchun Normal University,2023,42(10):86-91.
[38] 李旭,曹萬萬,姜丹,劉迪,樸一龍. 基于形態(tài)觀察法和生理生化法的軟棗獼猴桃性別鑒別研究[J]. 北方園藝,2014(24):6-9.
LI Xu,CAO Wanwan,JIANG Dan,LIU Di,PIAO Yilong. Study on sex identification of Actinidia arguta by morphology and physiological biochemical[J]. Northern Horticulture,2014(24):6-9.
[39] 高露雙,趙秀海,王曉明,張春雨. 雌雄異株植物山楊的氣候響應(yīng)差異[J]. 應(yīng)用生態(tài)學(xué)報(bào),2014,25(7):1863-1869.
GAO Lushuang,ZHAO Xiuhai,WANG Xiaoming,ZHANG Chunyu. Sexual differences in climatic response of dioecious Populus davidiana tree[J]. Chinese Journal of Applied Ecology,2014,25(7):1863-1869.
[40] LI C Y,YANG Y Q,JUNTTILA O,PALVA E T. Sexual differences in cold acclimation and freezing tolerance development in sea buckthorn (Hippophae rhamnoides L.) ecotypes[J]. Plant Science,2005,168(5):1365-1370.
[41] KHUKHUNAISHVILI R G,DZHOKHADZE D I. Electrophoretic study of the proteins from Actinidia leaves and sex identification[J]. Prikladnaia Biokhimiia i Mikrobiologiia,2006,42(1):117-120.
[42] 晁無疾,張銅會. 獼猴桃雌雄株間同工酶差異研究[J]. 中國果樹,1987(2):42-44.
CHAO Wuji,ZHANG Tonghui. Study on isozyme differences between male and female plants of Actinidia[J]. China Fruits,1987(2):42-44.
[43] 王妹清,趙英琪,劉建朝,杜香莉. 獼猴桃雌雄植株過氧化物酶同工酶的研究[J]. 經(jīng)濟(jì)林研究,1989,7(2):30-33.
WANG Meiqing,ZHAO Yingqi,LIU Jianchao,DU Xiangli. Electrophoretic study of peroxidase isoenzymes in male and female plants of Actinidia[J]. Economic Forest Researches,1989,7(2):30-33.
[44] SHIRKOT P,SHARMA D R,MOHAPATRA T. Molecular identification of sex in Actinidia deliciosa var. deliciosa by RAPD markers[J]. Scientia Horticulturae,2002,94(1/2):33-39.
[45] 呂正鑫,劉青,廖光聯(lián),黃春輝,賈東峰,徐小彪. 性別分子標(biāo)記在毛花獼猴桃中的通用性驗(yàn)證[J]. 江西農(nóng)業(yè)大學(xué)學(xué)報(bào),2021,43(2):261-269.
Lü Zhengxin,LIU Qing,LIAO Guanglian,HUANG Chunhui,JIA Dongfeng,XU Xiaobiao. General validation of kiwifruit sex molecular markers in Actinidia eriantha Benth.[J]. Acta Agriculturae Universitatis Jiangxiensis,2021,43(2):261-269.