摘要: 針對(duì)一類安裝基座存在不確定隨機(jī)振動(dòng)的機(jī)械臂系統(tǒng),提出了一種基于變冪次對(duì)數(shù)趨近律的快速魯棒控制策略?;贓uler?Lagrange方程建立了系統(tǒng)的不確定動(dòng)力學(xué)模型,并將模型中的基座振動(dòng)項(xiàng)提取出來看作機(jī)械臂所受的不確定外部擾動(dòng)力。提出了一種全新的變冪次對(duì)數(shù)函數(shù)趨近律,既能實(shí)現(xiàn)系統(tǒng)狀態(tài)在遠(yuǎn)離滑模面時(shí)的快速趨近,又能保證在接近滑模面后的抖振能夠被有效抑制。在此基礎(chǔ)之上,結(jié)合一種快速終端滑模面設(shè)計(jì)了系統(tǒng)的快速魯棒控制器,進(jìn)一步提高了系統(tǒng)狀態(tài)的收斂速度。基于Lyapunov穩(wěn)定性理論證明了所設(shè)計(jì)控制器的有限時(shí)間收斂特性。搭建了實(shí)驗(yàn)平臺(tái),通過實(shí)驗(yàn)進(jìn)一步驗(yàn)證所設(shè)計(jì)控制器的有效性。
關(guān)鍵詞: 振動(dòng)基機(jī)械臂;"滑模控制;"有限時(shí)間控制;"趨近律
中圖分類號(hào): TP241;"TB535 """文獻(xiàn)標(biāo)志碼: A """文章編號(hào): 1004-4523(2024)08-1290-09
DOI:10.16385/j.cnki.issn.1004-4523.2024.08.003
引""言
振動(dòng)基機(jī)械臂是一類安裝基座存在不確定隨機(jī)振動(dòng)的機(jī)械系統(tǒng)[1]。許多機(jī)械臂可歸為這一范疇,如坦克彈藥傳輸機(jī)械臂,其安裝基座,即車體,在坦克行進(jìn)中會(huì)受不平路面激勵(lì)產(chǎn)生劇烈振動(dòng)[2]。此類機(jī)械臂還包括太空漂浮機(jī)械臂、船舶起重機(jī)械臂、水下作業(yè)機(jī)械臂等[3?5]。安裝基座的不確定隨機(jī)振動(dòng)給機(jī)械臂本體帶來了強(qiáng)烈的非線性擾動(dòng)影響,進(jìn)而給其控制帶來很大的挑戰(zhàn)。如何抑制基座振動(dòng)的影響,實(shí)現(xiàn)機(jī)械臂本體的快速、魯棒控制,是振動(dòng)基機(jī)械臂領(lǐng)域的研究熱點(diǎn)和難點(diǎn)。
振動(dòng)基機(jī)械臂的魯棒控制已經(jīng)吸引了許多學(xué)者的研究。如Toda[6]針對(duì)海洋平臺(tái)作業(yè)機(jī)械臂,提出了一種基于H∞控制和PD控制的魯棒跟蹤控制策略。褚明等[7]基于粒子群優(yōu)化算法,實(shí)現(xiàn)了太空漂浮機(jī)械臂的魯棒鎮(zhèn)定控制。婁軍強(qiáng)等[8]針對(duì)空間柔性基座機(jī)械臂,提出一種基于模糊自適應(yīng)的控制器。此外,滑模控制作為一種強(qiáng)魯棒控制策略,因?qū)Ρ豢貙?duì)象模型依賴更少,也被廣泛應(yīng)用于振動(dòng)基機(jī)械臂控制領(lǐng)域。如孫友剛等[9]針對(duì)海上浮式起重機(jī)械臂在風(fēng)浪干擾下的位置跟蹤問題,提出了一種二階滑模軌跡跟蹤控制器。Guayasamín等[10]基于Lyapunov理論和滑??刂疲瑢?shí)現(xiàn)了無人機(jī)機(jī)械臂的魯棒軌跡跟蹤控制。萬凱歌等[11]結(jié)合擴(kuò)展?fàn)顟B(tài)觀測(cè)器與滑??刂?,實(shí)現(xiàn)了三自由度空間機(jī)械臂軌跡跟蹤控制。但是上述研究并未考慮振動(dòng)基機(jī)械臂的快速控制問題,系統(tǒng)狀態(tài)只能無限趨近平衡點(diǎn),無法實(shí)現(xiàn)有限時(shí)間快速收斂。
振動(dòng)基機(jī)械臂的快速控制尚未引起足夠的關(guān)注。而各類振動(dòng)基機(jī)械臂在實(shí)際作業(yè)時(shí)均需實(shí)現(xiàn)快速響應(yīng),如坦克彈藥傳輸機(jī)械臂,其裝填速度直接決定火炮射速的高低。終端滑??刂仆ㄟ^對(duì)滑模面再設(shè)計(jì),可實(shí)現(xiàn)振動(dòng)基機(jī)械臂的快速控制。如張建宇等[12]采用非奇異終端滑??刂?,實(shí)現(xiàn)了空間機(jī)械臂軌跡跟蹤誤差的快速收斂。姚來鵬等[13]基于固定時(shí)間干擾觀測(cè)器和終端滑??刂疲瑢?shí)現(xiàn)了坦克彈藥傳輸機(jī)械臂的快速魯棒控制。但是,上述滑??刂苾H考慮了系統(tǒng)狀態(tài)在滑動(dòng)階段的快速收斂,而通過對(duì)趨近律再設(shè)計(jì),可進(jìn)一步實(shí)現(xiàn)系統(tǒng)狀態(tài)在到達(dá)階段的快速收斂。如Mozayan等[14]通過在冪次趨近律中添加變?cè)鲆骓?xiàng),在一定程度上提高了系統(tǒng)狀態(tài)在到達(dá)階段的收斂速度。李慧潔等[15]設(shè)計(jì)了一種雙冪次趨近律的滑??刂品椒?,同樣實(shí)現(xiàn)了系統(tǒng)狀態(tài)的快速收斂。此外,Li等[16]針對(duì)二階非線性系統(tǒng),還提出了一種不受系統(tǒng)初始狀態(tài)影響的復(fù)合快速趨近律。但是,上述趨近律受滑模抖振問題影響,對(duì)收斂速度的提升較為有限。
1 模型描述
2 控制設(shè)計(jì)
2.1 快速終端滑模面
2.2 變冪次對(duì)數(shù)趨近律
滑??刂浦?,系統(tǒng)狀態(tài)在到達(dá)滑模面前(即趨近運(yùn)動(dòng))的收斂性質(zhì)由趨近律類型決定。如前文所述,傳統(tǒng)快速趨近律如同指數(shù)趨近律、冪次趨近律等無法調(diào)和趨近速度和抖振抑制性能二者之間的矛盾。為此,本文提出了一種全新的變冪次對(duì)數(shù)函數(shù)趨近律,該趨近律借助了對(duì)數(shù)函數(shù)在原點(diǎn)附近曲線更加平緩、遠(yuǎn)離定點(diǎn)時(shí)曲線更加陡峭的特點(diǎn),并在此基礎(chǔ)上增加了一個(gè)變冪次項(xiàng),該部分使系統(tǒng)狀態(tài)變量在遠(yuǎn)離滑模面時(shí)快速趨近,在接近滑模面時(shí)降低趨近速度。同時(shí)實(shí)現(xiàn)了系統(tǒng)狀態(tài)對(duì)滑模面的快速趨近和滑模抖振的有效抑制,使控制器具有更快的收斂速度和更好的抖振抑制性能。該趨近律表示為:
2.3 控制器設(shè)計(jì)
本文基于計(jì)算力矩法來設(shè)計(jì)振動(dòng)基機(jī)械臂系統(tǒng)控制器。首先采用計(jì)算力矩法將耦合的二連桿機(jī)械臂系統(tǒng)解耦為二自由度的線性誤差系統(tǒng),然后,分別以誤差系統(tǒng)的兩個(gè)自由度分量為對(duì)象,采用滑模面(6)和本文所提出的趨近律(17)進(jìn)行控制器設(shè)計(jì)。
3 實(shí)驗(yàn)分析
3.1 實(shí)驗(yàn)平臺(tái)
為了驗(yàn)證所設(shè)計(jì)控制器的有效性,搭建了如圖3所示的垂直振動(dòng)基座?二連桿機(jī)械臂系統(tǒng)實(shí)驗(yàn)平臺(tái)。該平臺(tái)的機(jī)械部分主要由機(jī)械臂桿1、機(jī)械臂桿2和振動(dòng)基座系統(tǒng)組成。其中,兩個(gè)機(jī)械臂桿分別由各自的直流電機(jī)和減速器系統(tǒng)驅(qū)動(dòng),機(jī)械臂間和機(jī)械臂與基座間的連接結(jié)構(gòu)均為轉(zhuǎn)動(dòng)鉸連接。機(jī)械臂電機(jī)選用瑞士Maxon公司的EC45型無刷直流電機(jī)(帶霍爾傳感器),其減速器為同公司的GP52C 型行星齒輪減速器,每個(gè)電機(jī)還配套了一個(gè)光電編碼器(HEDL5540型)和一個(gè)數(shù)字控制器(070/10 型"EPOS2)。
機(jī)械臂驅(qū)動(dòng)系統(tǒng)的控制回路為主從式結(jié)構(gòu),如圖4所示。上位機(jī)(PC)采用USB轉(zhuǎn)CAN的通訊協(xié)議,通過位置控制器、編碼器與兩電機(jī)進(jìn)行數(shù)據(jù)交換。
基座系統(tǒng)通過電機(jī)驅(qū)動(dòng)曲柄搖桿機(jī)構(gòu)來實(shí)現(xiàn)其在垂直方向的振動(dòng)。電機(jī)選用盛達(dá)機(jī)械的DS?400.110/S555S型直流減速電機(jī),該電機(jī)最高轉(zhuǎn)動(dòng)頻率為2 Hz。在本實(shí)驗(yàn)中,基座垂直振動(dòng)位移通過激光位移傳感器測(cè)量,位移隨時(shí)間的變化曲線如圖5所示。
實(shí)驗(yàn)物理樣機(jī)的控制框架,是基于驅(qū)動(dòng)系統(tǒng)自帶的三環(huán)控制回路(電流環(huán)?速度環(huán)?位置環(huán))進(jìn)行的開發(fā),其具體原理如圖6所示。其中,電流環(huán)仍采用原有的PI控制策略,其控制參數(shù)由系統(tǒng)自整定產(chǎn)生。速度?位置環(huán)采用本文所提出的基于變冪次對(duì)數(shù)趨近律的滑模控制策略。電流環(huán)與速度?位置環(huán)之間通過電機(jī)轉(zhuǎn)矩常數(shù)連接。此外,控制程序是基于LabVIEW環(huán)境編譯的。
最后,基于上述實(shí)驗(yàn)平臺(tái)開展了實(shí)驗(yàn)研究。本研究共完成了三組實(shí)驗(yàn),如表1所示。在組一中,并未考慮基座振動(dòng)。此組實(shí)驗(yàn)的目的是初步比較,凸顯本文所設(shè)計(jì)控制器相較傳統(tǒng)滑??刂破鞯膬?yōu)勢(shì)。故選取了如下式所示的傳統(tǒng)滑模控制作為對(duì)照:
在此組實(shí)驗(yàn)中,還發(fā)現(xiàn)并解決了復(fù)雜滑模控制程序的響應(yīng)延時(shí)問題。在組二中,驗(yàn)證了所設(shè)計(jì)控制器對(duì)于基座振動(dòng)帶來不確定擾動(dòng)的魯棒性。同樣,該組也進(jìn)行了傳統(tǒng)滑??刂破鞯膶?duì)照實(shí)驗(yàn)。在組三中,進(jìn)一步驗(yàn)證了所設(shè)計(jì)控制器對(duì)于基座振動(dòng)及負(fù)載不確定的魯棒性。負(fù)載不確定通過在機(jī)械臂桿2上添加質(zhì)量塊來實(shí)現(xiàn)。
3.2 實(shí)驗(yàn)結(jié)果與分析
組一的機(jī)械臂響應(yīng)結(jié)果如圖7所示,其中圖7(a),(b)為機(jī)械臂1與機(jī)械臂2的角位移跟蹤曲線,圖7(c),(d)為兩個(gè)機(jī)械臂的角速度曲線,圖7(e),(f)為兩個(gè)機(jī)械臂的電流曲線,圖7(g),(h)為兩個(gè)機(jī)械臂的角位移跟蹤誤差曲線。實(shí)驗(yàn)過程中快速魯棒控制器對(duì)系統(tǒng)的控制出現(xiàn)了響應(yīng)延時(shí)現(xiàn)象。如圖7 (a)和(b)所示,控制程序在啟動(dòng)時(shí)存在2.52 s的響應(yīng)延時(shí),不符合實(shí)驗(yàn)預(yù)期。經(jīng)過分析排查,是由于控制程序中的冪次運(yùn)算延長(zhǎng)了LabVIEW程序的響應(yīng)時(shí)間。為了解決該問題,在原有控制程序基礎(chǔ)上做出了改進(jìn),將LabVIEW所提供的冪函數(shù)模塊替代控制程序中部分冪函數(shù)計(jì)算,有效消除了控制程序的啟動(dòng)延時(shí)。
由圖7(a),(b)可知,本文所設(shè)計(jì)的快速魯棒控制器具有良好的軌跡跟蹤控制效果。機(jī)械臂1和機(jī)械臂2分別經(jīng)過1.285和1.179 s實(shí)現(xiàn)了有效軌跡跟蹤,根據(jù)圖7(g),(h)所示的跟蹤誤差,兩個(gè)機(jī)械臂的軌跡跟蹤誤差都在0.01 rad以內(nèi),跟蹤效果良好。而普通滑??刂破骺刂频臋C(jī)械臂在趨近期望軌跡時(shí)趨近速度明顯降低,跟蹤軌跡與期望軌跡存在最大0.124 rad的穩(wěn)態(tài)誤差。根據(jù)圖7(c),(d)",(e)",(f)顯示,快速魯棒控制器對(duì)機(jī)械臂關(guān)節(jié)角速度控制和電流響應(yīng)跟蹤的穩(wěn)定性較好,機(jī)械臂未出現(xiàn)強(qiáng)烈抖振,軌跡跟蹤過程平穩(wěn)。
組二的機(jī)械臂響應(yīng)結(jié)果如圖8所示,其中圖8(a),(b)為機(jī)械臂1與機(jī)械臂2的角位移跟蹤曲線,圖8(c),(d)為兩個(gè)機(jī)械臂的角速度曲線,圖8(e),(f)為兩個(gè)機(jī)械臂的電流曲線。由圖8(a),(b)可知,在增加垂直振動(dòng)干擾后,機(jī)械臂依然可實(shí)現(xiàn)有效的軌跡跟蹤,通過速度與電流曲線可知軌跡跟蹤的穩(wěn)定性表現(xiàn)良好,軌跡跟蹤過程平穩(wěn)。而普通滑??刂破鞯目刂菩Ч芑駝?dòng)影響,機(jī)械臂1的跟蹤軌跡在8.961和21.610 s出現(xiàn)了偏移期望軌跡的現(xiàn)象,整體軌跡跟蹤出現(xiàn)多處抖振。機(jī)械臂2跟蹤軌跡也出現(xiàn)了多處不同幅度的振蕩。通過普通滑??刂破鞯乃俣惹€和電流曲線可以看出,普通滑??刂破鞯乃俣雀櫯c電流跟蹤均產(chǎn)生了較大幅度的抖振,無法實(shí)現(xiàn)平穩(wěn)的軌跡跟蹤。
組三的機(jī)械臂響應(yīng)結(jié)果如圖9所示,其中圖9(a),(b)為機(jī)械臂1與機(jī)械臂2的角位移跟蹤曲線,圖9(c),(d)為兩個(gè)機(jī)械臂的角速度曲線,圖9(e),(f)為兩個(gè)機(jī)械臂的電流曲線。在添加負(fù)載后,由圖9(a),(b)顯示的角位移軌跡跟蹤結(jié)果可知,快速魯棒控制器控制的機(jī)械臂1在1.466 s實(shí)現(xiàn)了有效軌跡跟蹤,機(jī)械臂2在1.302 s實(shí)現(xiàn)了有效軌跡跟蹤。兩個(gè)機(jī)械臂的有效跟蹤時(shí)間分別增加了0.181和0.123 s,但是跟蹤速度和跟蹤電流依然表現(xiàn)出較為平穩(wěn)的效果,這表明了該控制器對(duì)于外界負(fù)載擾動(dòng)具有良好的魯棒性。同時(shí),三組試驗(yàn)結(jié)果均顯示機(jī)械臂1實(shí)現(xiàn)有效跟蹤的時(shí)間要略高于機(jī)械臂2,推測(cè)為實(shí)驗(yàn)過程中兩個(gè)機(jī)械臂實(shí)際負(fù)載不同的原因。由于實(shí)驗(yàn)臺(tái)結(jié)構(gòu)關(guān)系,機(jī)械臂1需要承載機(jī)械臂2與其驅(qū)動(dòng)電機(jī)的質(zhì)量,而機(jī)械臂2無需承載系統(tǒng)質(zhì)量,因此實(shí)驗(yàn)中機(jī)械臂1的實(shí)際負(fù)載大于機(jī)械臂2,導(dǎo)致機(jī)械臂1的有效軌跡跟蹤時(shí)間略長(zhǎng)。
4 結(jié)""論
(1)本文所設(shè)計(jì)的控制器具有較好的有限時(shí)間快速收斂特性。分別基于Lyapunov穩(wěn)定性理論和實(shí)驗(yàn)研究驗(yàn)證了該控制器的這一特性。
(2)本文所設(shè)計(jì)的控制器具有較強(qiáng)的魯棒性。在基座垂直振動(dòng)激勵(lì)影響下,其仍可以實(shí)現(xiàn)機(jī)械臂系統(tǒng)的精確平穩(wěn)軌跡跟蹤。
(3)"本文所設(shè)計(jì)的控制器在考慮負(fù)載不確定情況下,也能實(shí)現(xiàn)振動(dòng)基礎(chǔ)機(jī)械臂的有效軌跡跟蹤控制,響應(yīng)時(shí)間相較無負(fù)載情況略有增加,但是軌跡跟蹤效果保持良好。
參考文獻(xiàn):
[1] Sato M,"Toda M. Robust motion control of an oscillatory-base manipulator in a global coordinate system[J]. IEEE Transactions on Industrial Electronics,"2015,"62(2):"1163-1174.
[2] Guo Y F,"Xi B C,"Huynh V T,"et al. Robust tracking control of MBT autoloaders with oscillatory chassis and compliant actuators[J]. Nonlinear Dynamics,"2020,"99(3):"2185-2200.
[3] Zhang Y L,"Gu Y X,"Liu T,et al. Dynamic behavior and parameter sensitivity of the free-floating base for space manipulator system considering joint flexibility and clearance[J]. Proceedings of the Institution of Mechanical Engineers,"Part C:"Journal of Mechanical Engineering Science,"2019,"233(3):nbsp;895-910.
[4] Chu Y G,"Li G Y,"Zhang H X. Incorporation of ship motion prediction into active heave compensation for offshore crane operation[C]// Proceedings of the 2020 15th IEEE Conference on Industrial Electronics and Applications(ICIEA). Kristiansand,"Norway,"2020:"1444-1449.
[5] Zhang J,"Li W,"Yu J C,"et al. Development of a virtual platform for telepresence control of an underwater manipulator mounted on a submersible vehicle[J]. IEEE Transactions on Industrial Electronics,"2017,"64(2):"1716-1727.
[6] Toda M. An H∞"control-based approach to robust control of mechanical systems with oscillatory bases[J]. IEEE Transactions on Robotics and Automation,"2004,20(2):283-296.
[7] 褚明,"董正宏,"任珊珊,"等. 星載串聯(lián)型柔性抓捕機(jī)構(gòu)的多級(jí)阻尼鎮(zhèn)定控制[J]. 振動(dòng)與沖擊,"2018,"37(5):"42-49.
Chu Ming,"Dong Zhenghong,"Ren Shanshan,"et al. Multi-stage damping stabilization control for a space-borne Series-wound flexible capturing mechanism[J]. Journal of Vibration and Shock,"2018,"37(5):"42-49.
[8] 婁軍強(qiáng),"魏燕定,"楊依領(lǐng),"等. 空間柔性機(jī)械臂彎扭耦合振動(dòng)的主動(dòng)控制研究[J]. 振動(dòng)工程學(xué)報(bào),"2014,"27(3):"400-407.
Lou Junqiang,"Wei Yanding,"Yang Yiling,"et al. Active control of bending-torsional-coupling vibration of space flexible manipulator[J]. Journal of Vibration Engineering,"2014,"27(3):"400-407.
[9] 孫友剛,"董達(dá)善,"強(qiáng)海燕,"等. 海上浮式集裝箱起重機(jī)的小車位置跟蹤和吊重消擺控制研究[J]. 振動(dòng)與沖擊,"2018,"37(11):"207-215.
Sun Yougang,"Dong Dashan,"Qiang Haiyan,"et al. Crab position tracking and lifting weight anti-sway control for an off-shore container crane on sea[J]. Journal of Vibration and Shock,"2018,"37(11):"207-215.
[10] Guayasamín A,"Leica P,"Herrera M,"et al. Trajectory tracking control for aerial manipulator based on Lyapunov and sliding mode control[C]// Proceedings of the 2018 International Conference on Information Systems and Computer Science (INCISCOS). Quito,"Ecuador,"2018:"36-41.
[11] 萬凱歌,"吳愛國(guó),"董娜,"等. "3-DOF空間機(jī)械臂新型滑模軌跡跟蹤控制[J]. 中南大學(xué)學(xué)報(bào)(自然科學(xué)版),"2017,"48(12):"3248-3255.
Wan Kaige,"Wu Aiguo,"Dong Na,"et al. A novel sliding mode controller for trajectory tracking of 3 DOF spatial robot manipulators[J]. Journal of Central South University (Science and Technology),"2017,"48(12):"3248-3255.
[12] 張建宇,"高天宇,"于瀟雁,"等. 基于自適應(yīng)時(shí)延估計(jì)的空間機(jī)械臂連續(xù)非奇異終端滑??刂疲跩]. 機(jī)械工程學(xué)報(bào),"2021,"57(11):"177-183.
Zhang Jianyu,"Gao Tianyu,"Yu Xiaoyan,"et al. Continuous non-singular terminal sliding mode control of space robot based on adaptive time delay estimation[J]. Journal of Mechanical Engineering,"2021,"57(11):"177-183.
[13] 姚來鵬,"侯保林. 彈藥傳輸機(jī)械臂固定時(shí)間終端滑模控制[J]. 哈爾濱工業(yè)大學(xué)學(xué)報(bào),"2021,"53(1):"109-116.
Yao Laipeng,"Hou Baolin. Fixed-time terminal sliding mode control for ammunition transfer manipulator[J]. Journal of Harbin Institute of Technology,"2021,"53(1):"109-116.
[14] Mozayan S M,"Saad M,"Vahedi H,"et al. Sliding mode control of PMSG wind turbine based on enhanced exponential reaching law[J]. IEEE Transactions on Industrial Electronics,"2016,"63(10):"6148-6159.
[15] 李慧潔,"蔡遠(yuǎn)利. 基于雙冪次趨近律的滑??刂品椒ǎ跩]. 控制與決策,"2016,"31(3):"498-502.
Li Huijie,"Cai Yuanli. Sliding mode control with double power reaching law[J]. Control and Decision,"2016,"31(3):"498-502.
[16] Li H J,"Cai Y L. On SFTSM control with fixed-time convergence[J]. IET Control Theory and Applications,"2017,"11(6):"766-773.
[17] Yu S H,"Long X J. Finite-time consensus for second-order multi-agent systems with disturbances by integral sliding mode[J]. Automatica,"2015,"54:"158-165.
[18] 劉洋,"井元偉,"劉曉平,"等. 非線性系統(tǒng)有限時(shí)間控制研究綜述[J]. 控制理論與應(yīng)用,"2020,"37(1):"1-12.
Liu Yang,"Jing Yuanwei,"Liu Xiaoping,"et al. Survey on finite-time control of nonlinear systems[J]. Control Theory amp; Applications,"2020,"37(1):"1-12.
[19] Zuo Z Y,"Tie L. Distributed robust finite-time nonlinear consensus protocols for multi-agent systems[J]. International Journal of Systems Science,"2016,"47(6):"1366-1375.
Fast robust control of oscillatory base manipulators based on variable power log-reaching law
CHEN Hao GUO Yu-fei XU Sheng-yue WANG Zhi-gang HAO Zhi-qiang
(1. Key Laboratory of Metallurgical Equipment and Control Technology of Ministry of Education,Wuhan University of Science and Technology,"Wuhan 430081,"China;"2. Institute of Robotics and Intelligent Systems,Wuhan University of Science and Technology,"Wuhan 430081,"China)
Abstract: A fast robust control strategy based on variable power log-reaching law is proposed for a class of manipulator systems with uncertain random oscillations in the mounting base. The uncertain dynamic model of the system is established based on Euler-Lagrange equation,"and the oscillation term of the base in the model is regarded as the uncertain external disturbance force of the manipulator system. A new approach law of variable power logarithm function is proposed,"which can realize the rapid approach of the system state far away from the sliding mode surface,"and ensure the effective chattering suppression after approaching the sliding mode surface. On this basis,"combined with a fast terminal sliding surface,"a fast robust controller is designed,"which can further improve the state convergence rate of the system. The finite-time convergence of the controller is proved based on Lyapunov stability theory. An experimental platform is built to further verify the effectiveness of the controller.
Key words: oscillatory base manipulator;"sliding mode control;"finite time control;"reaching law
作者簡(jiǎn)介: 諶""豪(1998—),男,碩士研究生。"E-mail:huatchenhao@163.com。
通訊作者: 郭宇飛(1985—),男,博士,副教授。"E-mail:guoyufei_1985@163.com。