亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        結(jié)合門(mén)控循環(huán)單元的軸承故障聲發(fā)射信息表征機(jī)制與定位

        2024-12-31 00:00:00沈田劉宗陽(yáng)李豪林京柳小勤湯林江
        振動(dòng)工程學(xué)報(bào) 2024年8期
        關(guān)鍵詞:故障診斷

        摘要: 大型重載軸承工況特殊,在低速條件下,沖擊持續(xù)時(shí)間拉長(zhǎng),系統(tǒng)響應(yīng)幅度降低,故障信息更容易被噪聲所掩蓋。聲發(fā)射技術(shù)具有對(duì)微弱損傷敏感的特性,被廣泛應(yīng)用于結(jié)構(gòu)健康監(jiān)測(cè)和設(shè)備狀態(tài)檢測(cè)。利用聲發(fā)射技術(shù)中的空間定位方法,能夠?qū)Υ笮偷退僦剌d軸承進(jìn)行故障定位,效果依賴于信號(hào)準(zhǔn)確到達(dá)時(shí)間。門(mén)控循環(huán)單元(GRU)網(wǎng)絡(luò)能夠考慮序列數(shù)據(jù)的內(nèi)部相關(guān)性,提取時(shí)序特征,在信號(hào)處理中具有一定優(yōu)勢(shì)。赤池信息準(zhǔn)則(AIC)利用統(tǒng)計(jì)學(xué)特征,能識(shí)別兩個(gè)不同隨機(jī)過(guò)程。本文提出一種基于GRU和AIC的聲發(fā)射信號(hào)到達(dá)時(shí)間拾取方法,利用斷鉛與試驗(yàn)數(shù)據(jù),與傳統(tǒng)AIC、閾值判別、長(zhǎng)/短時(shí)窗均值比等方法進(jìn)行比較與分析,證明所提出方法能準(zhǔn)確拾取聲發(fā)射信號(hào)到達(dá)時(shí)間,在大型低速重載軸承故障定位方面具有較大應(yīng)用潛力。

        關(guān)鍵詞: 故障診斷;"軸承;"聲發(fā)射;"初至拾取;"赤池信息準(zhǔn)則;"門(mén)控循環(huán)單元

        中圖分類號(hào): TH165+.3;"TH133.3 """文獻(xiàn)標(biāo)志碼: A """文章編號(hào): 1004-4523(2024)08-1442-09

        DOI:10.16385/j.cnki.issn.1004-4523.2024.08.018

        引""言

        大型低速重載旋轉(zhuǎn)機(jī)械作為機(jī)電設(shè)備的重要組成部分,被廣泛應(yīng)用于國(guó)民經(jīng)濟(jì)生產(chǎn),但其服役環(huán)境嚴(yán)苛,載荷波動(dòng)較大,易發(fā)生損傷。而一旦其發(fā)生故障,輕則造成生產(chǎn)停止與經(jīng)濟(jì)損失,重則造成人員傷亡,因此進(jìn)行狀態(tài)監(jiān)測(cè)與故障檢測(cè)十分必要。作為旋轉(zhuǎn)機(jī)械的關(guān)鍵部件,滾動(dòng)軸承的健康狀態(tài)直接關(guān)系到設(shè)備整體運(yùn)行情況。在軸承故障初期進(jìn)行識(shí)別有助于預(yù)防性維修,減少生產(chǎn)損失1。從監(jiān)測(cè)信號(hào)中提取出故障特征,早期準(zhǔn)確地捕捉故障信息十分重要。

        目前,對(duì)滾動(dòng)軸承進(jìn)行故障診斷常利用振動(dòng)信號(hào),其能夠提供有關(guān)軸承工作狀態(tài)的豐富信息2。但大型低速重載軸承工況特殊,高接觸應(yīng)力會(huì)導(dǎo)致局部壓痕塑性變形、滾動(dòng)體和滾道表面產(chǎn)生剝落坑,發(fā)生局部疲勞失效,甚至裂紋和斷裂,故障機(jī)理復(fù)雜3;轉(zhuǎn)速波動(dòng)大、結(jié)構(gòu)體積大帶來(lái)制造安裝誤差大,信號(hào)信噪比低;特有的間歇性回轉(zhuǎn)運(yùn)動(dòng)方式導(dǎo)致信號(hào)頻率的結(jié)構(gòu)更為復(fù)雜。這些特點(diǎn)使得基于振動(dòng)頻率的分析方法較難得到應(yīng)用。

        聲發(fā)射技術(shù)作為一種穩(wěn)定且靈敏的無(wú)損檢測(cè)技術(shù),具有更高效的故障檢測(cè)和識(shí)別能力4。此外,隨著缺陷尺寸增大,聲發(fā)射幅值水平增加比振動(dòng)信號(hào)顯著得多2,能夠提供缺陷尺寸信息5。將聲發(fā)射技術(shù)中的空間定位方法應(yīng)用于大型低速重載軸承,能夠解決振動(dòng)檢測(cè)技術(shù)的應(yīng)用困難,可以在無(wú)轉(zhuǎn)速條件下捕捉故障信息并找到確切位置。

        聲發(fā)射進(jìn)行源空間定位通常需要兩條先驗(yàn)信息:介質(zhì)中的波速結(jié)構(gòu)信息和到達(dá)時(shí)間拾取6。Baxter等7結(jié)合網(wǎng)格構(gòu)建與到達(dá)時(shí)間分析,在復(fù)雜的幾何結(jié)構(gòu)中無(wú)須波速等先驗(yàn)信息就能夠定位聲發(fā)射源。Kolá?等8利用貝葉斯優(yōu)化方法對(duì)神經(jīng)網(wǎng)絡(luò)結(jié)構(gòu)和參數(shù)進(jìn)行改進(jìn),識(shí)別信號(hào)起始點(diǎn),采用“反向定位方法”定位聲發(fā)射源。Gollob等9針對(duì)材料不連續(xù)問(wèn)題,基于異質(zhì)速度模型計(jì)算源位置。這些研究均證明了當(dāng)試驗(yàn)傳感器布局確定后,定位模型的準(zhǔn)確程度直接依賴于信號(hào)的準(zhǔn)確到達(dá)時(shí)間。

        拾取聲發(fā)射信號(hào)到達(dá)時(shí)間可以使用閾值方法:當(dāng)信號(hào)幅度超過(guò)選定值時(shí),認(rèn)為信號(hào)開(kāi)始10。在地震學(xué)中,長(zhǎng)/短時(shí)窗均值比法(Short Term Averaging/Long Term Averaging,STA/LTA)11、赤池信息準(zhǔn)則(Akaike Information Criterion,AIC)12、Hinkley判據(jù)13等方法在拾取信號(hào)到達(dá)時(shí)間的應(yīng)用中也十分廣泛。Bai等14基于連續(xù)小波變換系數(shù)進(jìn)行二值映射識(shí)別信號(hào)起始點(diǎn)。Madarshahian等15添加含先驗(yàn)知識(shí)的伯努利參數(shù),利用貝葉斯思想確定各算法的后驗(yàn)概率密度。但這些方法很容易受到背景噪聲的影響,噪聲過(guò)大時(shí),信號(hào)和噪聲區(qū)域邊界容易被模糊,導(dǎo)致聲發(fā)射事件到達(dá)時(shí)間拾取性能的波動(dòng)。產(chǎn)生機(jī)理不同和設(shè)備旋轉(zhuǎn)運(yùn)動(dòng)導(dǎo)致了大型低速重載軸承聲發(fā)射信號(hào)與地震P波相比較為復(fù)雜,噪聲水平高。適用于地震P波的到達(dá)時(shí)間拾取方法無(wú)法滿足軸承故障定位的需求,因此需要開(kāi)發(fā)更加精確的算法。

        隨著大數(shù)據(jù)時(shí)代的來(lái)臨,在海量數(shù)據(jù)中快速準(zhǔn)確地識(shí)別信號(hào)故障特征,是狀態(tài)監(jiān)測(cè)與故障診斷的一大目標(biāo)。近年來(lái),深度學(xué)習(xí)逐漸應(yīng)用于聲發(fā)射信號(hào)處理領(lǐng)域。Zhao等16以信號(hào)到達(dá)時(shí)間作為輸入,結(jié)合人工神經(jīng)網(wǎng)絡(luò)和支持向量機(jī)訓(xùn)練并輸出聲發(fā)射源位置。Pi?al?Moctezuma等17以短時(shí)能量和過(guò)零率為指標(biāo),開(kāi)發(fā)了一種結(jié)合語(yǔ)義分割思想的聲發(fā)射活動(dòng)檢測(cè)器。Shen18利用序列浮動(dòng)前向選擇優(yōu)化特征,并結(jié)合支持向量機(jī)進(jìn)行故障的模式分類。目前研究主要集中在指標(biāo)處理選取19、健康狀態(tài)分類20、損傷聚類分析21等,且對(duì)象幾乎均為靜結(jié)構(gòu)22?23,針對(duì)大型低速重載軸承故障定位的應(yīng)用非常少。而深度學(xué)習(xí)可以在訓(xùn)練中自動(dòng)適應(yīng)復(fù)雜數(shù)據(jù),更有效地學(xué)習(xí)變量之間的相關(guān)性,做出精準(zhǔn)判斷。同時(shí),模型訓(xùn)練好后處理數(shù)據(jù)速度快,應(yīng)用于在線監(jiān)測(cè)即時(shí)傳輸潛力巨大。

        綜上所述,針對(duì)聲發(fā)射信號(hào)軸承故障定位問(wèn)題,本文提出了一種基于門(mén)控循環(huán)單元(Gate Recurrent Unit,GRU)和AIC的聲發(fā)射信號(hào)到達(dá)時(shí)間拾取方法。該方法考慮了信號(hào)內(nèi)部的時(shí)序性,提高信號(hào)到達(dá)時(shí)間的拾取準(zhǔn)確度,不依賴轉(zhuǎn)速信息,能為大型低速重載軸承狀態(tài)監(jiān)測(cè)和定量診斷提供準(zhǔn)確信息。同時(shí),基于斷鉛與臺(tái)架試驗(yàn)數(shù)據(jù)對(duì)所提出的方法進(jìn)行了驗(yàn)證與分析,并與常見(jiàn)方法進(jìn)行了比較,證明了其準(zhǔn)確性與運(yùn)算潛力。

        1 方法背景

        1.1 門(mén)控循環(huán)單元

        1.2 赤池信息準(zhǔn)則

        2 軸承故障定位試驗(yàn)描述

        2.1 斷鉛拾取到達(dá)點(diǎn)試驗(yàn)

        為驗(yàn)證所提出算法的可行性與準(zhǔn)確性,采用靜止?fàn)顟B(tài)下的圓柱滾子推力軸承(SKF81110TN)進(jìn)行斷鉛試驗(yàn),軸徑為50 mm,外徑為70 mm。聲發(fā)射信號(hào)采集系統(tǒng)由信號(hào)采集板卡(北京軟島時(shí)代DS5?8A,4通道)、前置放大器(美國(guó)MISTRAS,2/4/6)和壓電換能器(尺寸Ф8 mm×0.4 mm)組成。沿周向分別在0°,120°,240°位置均勻布置3片壓電換能器,其布置形式如圖6所示。根據(jù)滾道幾何條件,至少需要布置3片壓電換能器才可完成定位,為了便于計(jì)算本試驗(yàn)采用均布方式。

        使用設(shè)置好傳感器與采集系統(tǒng)后,用鉛筆芯在軸承外圈進(jìn)行手動(dòng)斷裂,應(yīng)力波傳播并被轉(zhuǎn)化成電信號(hào),經(jīng)過(guò)前置放大器作為待處理聲發(fā)射信號(hào),其中前置放大器增益設(shè)為"40 dB,A/D采樣頻率為6 MHz。

        斷鉛位置如圖6中紅色“+”所示,分別在40°位置進(jìn)行90次、80°位置進(jìn)行60次試驗(yàn),得到并分割出150個(gè)聲發(fā)射信號(hào)。對(duì)數(shù)據(jù)樣本進(jìn)行標(biāo)注,隨機(jī)選取90組數(shù)據(jù)作為訓(xùn)練集進(jìn)行GRU網(wǎng)絡(luò)訓(xùn)練,60組數(shù)據(jù)作為測(cè)試集,進(jìn)行后續(xù)拾取到達(dá)點(diǎn)的計(jì)算。

        2.2 軸承損傷臺(tái)架定位試驗(yàn)

        本節(jié)給出了GRU?AIC算法關(guān)于軸承損傷定位的實(shí)際應(yīng)用。進(jìn)行軸承損傷臺(tái)架試驗(yàn)30?32,所用推力球軸承(HRB?51126)直徑為150 mm,在座圈120°位置處置入線切割寬度2 mm的凹槽模擬軸承故障,試驗(yàn)裝置如圖7所示。

        軸承軸向加載2.5 kN,轉(zhuǎn)速為600 r/min。當(dāng)滾動(dòng)體運(yùn)動(dòng)至故障位置時(shí),會(huì)引起沖擊,產(chǎn)生聲發(fā)射信號(hào)。試驗(yàn)示意圖如圖8所示,傳感器布置與斷鉛試驗(yàn)相同,信號(hào)采集使用PAC PCI?2聲發(fā)射系統(tǒng),采樣頻率為2 MHz。

        采集60次故障脈沖信號(hào),3個(gè)傳感器共接收180個(gè)聲發(fā)射信號(hào),由于滾道寬度較小,可簡(jiǎn)化傳動(dòng)路徑為一節(jié)圓,假設(shè)波速恒定,可以利用時(shí)差法進(jìn)行線性定位。

        3 斷鉛拾取到達(dá)點(diǎn)試驗(yàn)結(jié)果與分析

        本節(jié)應(yīng)用所提出的GRU?AIC方法處理斷鉛信號(hào),與應(yīng)用于地震波初至拾取的閾值判別方法10、STA/LTA方法11、AIC方法12進(jìn)行對(duì)比,驗(yàn)證GRU?AIC方法的準(zhǔn)確度和穩(wěn)定性;與結(jié)合CNN的AIC方法27對(duì)比,驗(yàn)證GRU?AIC處理時(shí)序數(shù)據(jù)的優(yōu)勢(shì)。

        閾值判別法將聲發(fā)射信號(hào)中最先超過(guò)閾值的點(diǎn)判定為聲發(fā)射信號(hào)的到達(dá)時(shí)間,極容易受到噪聲的干擾產(chǎn)生誤判,在動(dòng)設(shè)備診斷中發(fā)射信號(hào)的到達(dá)時(shí)間也會(huì)被信號(hào)傳輸路徑差異所影響。對(duì)比中為了提高該方法對(duì)數(shù)據(jù)的適應(yīng)性,將閾值設(shè)定為信號(hào)整體平均值與噪聲平均值的和:

        五種方法對(duì)比,GRU?AIC方法的平均值最接近0,標(biāo)準(zhǔn)差最小。閾值法與STA/LTA方法誤差分布較為分散,且值較大。真實(shí)值為手動(dòng)選取的真實(shí)到達(dá)點(diǎn),但事件到達(dá)前的噪聲中存在單個(gè)點(diǎn)的突變,為了規(guī)避這一問(wèn)題限制了閾值的選擇范圍,導(dǎo)致了基于閾值的判斷方法存在或多或少的滯后性,拾取點(diǎn)普遍比實(shí)際點(diǎn)靠后。

        剔除AIC方法的較大誤判點(diǎn),發(fā)現(xiàn)剩余誤差分布雖然較為集中,但平均值與真實(shí)值之間存在一定偏差,整體拾取點(diǎn)比實(shí)際點(diǎn)靠前,這可能是因?yàn)槲⑿_動(dòng)干擾了統(tǒng)計(jì)學(xué)判斷標(biāo)準(zhǔn)。而GRU?AIC方法通過(guò)添加神經(jīng)網(wǎng)絡(luò)前處理減弱了這一因素的影響。此外,CNN?AIC表現(xiàn)為誤差小但分散的特征,這一方面證明了神經(jīng)網(wǎng)絡(luò)的潛力,另一方面也體現(xiàn)了CNN網(wǎng)絡(luò)對(duì)于時(shí)序信息的學(xué)習(xí)能力明顯低于GRU網(wǎng)絡(luò)。

        斷鉛信號(hào)為靜止條件下采集,因此在高采樣率前提下誤差點(diǎn)數(shù)仍然很小,當(dāng)軸承在實(shí)際工況下工作時(shí),噪聲會(huì)增多,誤差也會(huì)有所增大。同時(shí),實(shí)際試驗(yàn)中的噪聲將會(huì)更大程度地干擾原始AIC對(duì)到達(dá)時(shí)間的選取,拉開(kāi)其他方法與GRU?AIC方法處理結(jié)果的差距。

        4 軸承損傷臺(tái)架定位試驗(yàn)結(jié)果與分析

        基于2.2節(jié)的試驗(yàn)數(shù)據(jù),給出本文提出算法的實(shí)際應(yīng)用:從聲發(fā)射信號(hào)中拾取信號(hào)到達(dá)時(shí)間,進(jìn)而實(shí)現(xiàn)無(wú)轉(zhuǎn)速信息下的滾動(dòng)軸承外圈故障定位。

        第3節(jié)使用斷鉛數(shù)據(jù)訓(xùn)練的網(wǎng)絡(luò)模型依然可以應(yīng)用于實(shí)際臺(tái)架試驗(yàn)中,用定位結(jié)果與真實(shí)值的差來(lái)衡量并評(píng)價(jià)所提出算法的準(zhǔn)確度。此外,由于實(shí)際信號(hào)相比斷鉛信號(hào)存在較多的噪聲,通過(guò)滑動(dòng)取標(biāo)準(zhǔn)差作為預(yù)處理。利用第3節(jié)四種算法進(jìn)行對(duì)比,證明GRU?AIC方法拾取到達(dá)時(shí)間在滾動(dòng)軸承故障定位的應(yīng)用潛力。

        理想狀態(tài)下,對(duì)于同一故障位置的不同樣本,3個(gè)傳感器信號(hào)到達(dá)時(shí)間差應(yīng)相同,散點(diǎn)表現(xiàn)為一條直線。由于本例中故障位置在120°,故理想狀態(tài)下S1與S2信號(hào)到達(dá)時(shí)間差和S3與S2信號(hào)到達(dá)時(shí)間差互為相反數(shù),而S1與S3信號(hào)到達(dá)時(shí)間差為0。繪制圖11,以該關(guān)系為標(biāo)準(zhǔn),可以粗略地評(píng)估五種方法的處理效果。

        根據(jù)圖11可以看出,當(dāng)軸承在低速工況下運(yùn)動(dòng),噪聲增加,閾值法和STA/LTA法對(duì)于信號(hào)的處理效果較差,幾乎無(wú)法明顯區(qū)分3個(gè)時(shí)間差。AIC方法整體效果較好,但存在多個(gè)混淆點(diǎn),易干擾后續(xù)計(jì)算。CNN?AIC處理得到的結(jié)果存在明顯誤判點(diǎn),分析原因認(rèn)為是卷積過(guò)程中降低了數(shù)據(jù)精度,造成錯(cuò)判。經(jīng)過(guò)GRU?AIC方法處理后的直線特征更加明顯,突變點(diǎn)少。

        根據(jù)式(10)計(jì)算閾值法、STA/LTA,AIC,CNN?AIC和GRU?AIC五種方法對(duì)應(yīng)的故障位置角度,如圖12所示。

        可以觀察到,閾值法和STA/LTA方法作為手動(dòng)選擇閾值的方法,在噪聲增加時(shí)識(shí)別能力下降,結(jié)果分散程度大,基本無(wú)法識(shí)別出故障位置。AIC,CNN?AIC和GRU?AIC三種方法識(shí)別結(jié)果落在真實(shí)值120°位置點(diǎn)數(shù)較多,但AIC和CNN?AIC方法得到的結(jié)果中均存在誤判較大的樣本,整體定位表現(xiàn)也不如GRU?AIC方法集中。

        分別計(jì)算五種方法對(duì)應(yīng)識(shí)別結(jié)果的標(biāo)準(zhǔn)差,并以120°真實(shí)值為中心計(jì)算標(biāo)準(zhǔn)差,進(jìn)而得到位置角度標(biāo)準(zhǔn)差如表3所示??梢钥闯?,GRU?AIC方法的兩項(xiàng)標(biāo)準(zhǔn)差均低于其他方法,其識(shí)別結(jié)果更為集中,數(shù)據(jù)的集中程度是衡量定位算法能力的重要標(biāo)準(zhǔn)。

        為了同時(shí)表示數(shù)據(jù)的集中程度和誤差大小,繪制誤差分布提琴圖如圖13所示,其中樣本均值用黑色線條標(biāo)出??梢钥闯?,閾值法和STA/LTA方法均存在誤判較大樣本,誤差分布過(guò)于分散。AIC和CNN?AIC方法相較GRU?AIC方法仍不夠集中,且AIC方法在-20°位置處存在另一個(gè)明顯峰值,容易對(duì)故障位置判斷產(chǎn)生較大干擾。整體而言,GRU?AIC方法能夠進(jìn)行樣本集中位置的判斷,基本完成對(duì)故障位置的定位。

        5 結(jié)""論

        本文提出了一種結(jié)合GRU與AIC的聲發(fā)射信號(hào)到達(dá)時(shí)間拾取方法,通過(guò)理論與對(duì)比試驗(yàn)證明了該方法具有較大優(yōu)勢(shì),并能應(yīng)用于無(wú)轉(zhuǎn)速信息下的軸承故障定位。本文的主要結(jié)論如下:

        (1)所提出的方法能夠有效地考慮信號(hào)時(shí)序性,從復(fù)雜信號(hào)中學(xué)習(xí)信號(hào)到達(dá)時(shí)刻的特征,增大了信號(hào)區(qū)域與噪聲區(qū)域邊界差異,提高了拾取結(jié)果的準(zhǔn)確度。

        (2)所提出的方法可以通過(guò)GRU網(wǎng)絡(luò)的處理,一定程度上避免AIC過(guò)程中窗長(zhǎng)選擇的問(wèn)題,拾取結(jié)果更加穩(wěn)定。

        (3)拾取聲發(fā)射到達(dá)時(shí)間后,結(jié)合不同試驗(yàn)條件下傳感器布局及傳播路徑,能夠?qū)崿F(xiàn)對(duì)勻速甚至變轉(zhuǎn)速的滾動(dòng)軸承故障定位。試驗(yàn)證明了與其他算法相比,GRU?AIC方法在軸承故障定位的優(yōu)勢(shì)與潛力。

        參考文獻(xiàn):

        [1] Li N P,"Lei Y G,"Lin J,"et al. An improved exponential model for predicting remaining useful life of rolling element bearings[J]. IEEE Transactions on Industrial Electronics,"2015,"62(12):"7762-7773.

        [2] Nirwan N W,"Ramani H B. Condition monitoring and fault detection in roller bearing used in rolling mill by acoustic emission and vibration analysis[J]. Materials Today:"Proceedings,"2022,"51(1):"344-354.

        [3] Liu Z P,"Zhang L. A review of failure modes,"condition monitoring and fault diagnosis methods for large-scale wind turbine bearings[J]. Measurement,"2020,"149:"107002.

        [4] Al-Ghamd A M,"Mba D. A comparative experimental study on the use of acoustic emission and vibration analysis for bearing defect identification and estimation of defect size[J]. Mechanical Systems and Signal Processing,"2006,"20(7):"1537-1571.

        [5] 李德發(fā),"齊紅元,"侯東明,"等. 動(dòng)車組軸箱軸承狀態(tài)的聲發(fā)射檢測(cè)機(jī)理研究[J]. 機(jī)械工程學(xué)報(bào),"2021,"57(12):153-160.

        LI Defa,"QI Hongyuan,"HOU Dongming,"et al. Research on acoustic emission detection mechanism of axle box bearing state of EMU[J]. Journal of Mechanical Engineering,"2021,"57(12):153-160.

        [6] Pu Y Y,"Chen J,"Jiang D Y,"et al. Improved method for acoustic emission source location in rocks without prior information[J]. Rock Mechanics and Rock Engineering,"2022,"55(8):"5123-5137.

        [7] Baxter M G,"Pullin R,"Holford K M,"et al. Delta T source location for acoustic emission[J]. Mechanical Systems and Signal Processing,"2007,"21(3):"1512-1520.

        [8] Kolá? P,"Petru?álek M. A two-step algorithm for acoustic emission event discrimination based on recurrent neural networks[J]. Computers amp; Geosciences,"2022,"163:"105119.

        [9] Gollob S,"Kocur G K,"Schumacher T,"et al. A novel multi-segment path analysis based on a heterogeneous velocity model for the localization of acoustic emission sources in complex propagation media[J]. Ultrasonics,"2017,"74:"48-61.

        [10] Sedlak P,"Hirose Y,"Enoki M. Acoustic emission localization in thin multi-layer plates using first-arrival determination[J]. Mechanical Systems and Signal Processing,"2013,"36:"636-649.

        [11] Allen R. Automatic phase pickers:"Their present use and future prospects[J]. Bulletin of the Seismological Society of America,"1982,"72(6):"S225-S242.

        [12] Sleeman R,"Van Eck T. Robust automatic P-phase picking:"an on-line implementation in the analysis of broadband seismogram recordings[J]. Physics of the Earth and Planetary Interiors,"1999,"113(1-4):"265-275.

        [13] Hinkley D V. Inference about the change-point from cumulative sum tests[J]. Biometrika,"1971,"58(3):"509-523.

        [14] Bai F,"Gagar D,"Foote P,"et al. Comparison of alternatives to amplitude thresholding for onset detection of acoustic emission signals[J]. Mechanical Systems and Signal Processing,"2017,"84:"717-730.

        [15] Madarshahian R,"Ziehl P,"Caicedo J M. Acoustic emission Bayesian source location:"onset time challenge[J]. Mechanical Systems and Signal Processing,"2019,"123:"483-495.

        [16] Zhao Q,"Glaser S D. Relocating acoustic emission in rocks with unknown velocity structure with machine learning[J]. Rock Mechanics and Rock Engineering,"2020,"53(5):"2053-2061.

        [17] Pial-Moctezuma F,"Delgado-Prieto M,"Romeral-Martnez L. An acoustic emission activity detection method based on short-term waveform features:"application to metallic components under uniaxial tensile test[J]. Mechanical Systems and Signal Processing,"2020,"142:"106753.

        [18] Shen C H. Acoustic emission based grinding wheel wear monitoring:"signal processing and feature extraction[J]. Applied Acoustics,"2022,"196:"108863.

        [19] Motahari-Nezhad M,"Jafari S M. Bearing remaining useful life prediction under starved lubricating condition using time domain acoustic emission signal processing [J]. Expert Systems with Applications,"2021,"168:"114391.

        [20] Quy T B,"Kim J-M. Real-time leak detection for a gas pipeline using a k-NN classifier and hybrid AE features [J]. Sensors,"2021,"21(2):"367.

        [21] Xu D,"Liu P F,"Chen Z P,"et al. Achieving robust damage mode identification of adhesive composite joints for wind turbine blade using acoustic emission and machine learning[J]. Composite Structures,"2020,"236:"111840.

        [22] Singh T,"Sehgal S. Structural health monitoring of composite materials[J]. Archives of Computational Methods in Engineering:"State of the Art Reviews,"2022,"29(4):1997-2017.

        [23] Saeedifar M,"Zarouchas D. Damage characterization of laminated composites using acoustic emission:"a review [J]. Composites Part B:"Engineering,"2020,"195:"108039.

        [24] Sherstinsky A. Fundamentals of recurrent neural network (RNN)nbsp;and long short-term memory (LSTM)"network[J]. Physica D:"Nonlinear Phenomena,nbsp;2020,"404:"132306.

        [25] Schmidhuber J. Deep learning in neural networks:"an overview[J]. Neural Networks,"2015,"61:"85-117.

        [26] Fu R,"Zhang Z,"Li L. Using LSTM and GRU neural network methods for traffic flow prediction[C]//2016 31st Youth Academic Annual Conference of Chinese Association of Automation (YAC). Wuhan,"2016.

        [27] Li H D,"Yang Z S,"Yan W. An improved AIC onset-time picking method based on regression convolutional neural network[J]. Mechanical Systems and Signal Processing,"2022,"171:"108867.

        [28] Liu T,"Han C,"Wang Q L,"et al. A method of acoustic emission source location for engine fault based on time difference matrix[J]. Structural Health Monitoring,"2023,"22(1):"621?638.

        [29] Liu M Z,"Yang J X,"Cao Y P,"et al. A new method for arrival time determination of impact signal based on HHT and AIC[J]. Mechanical Systems and Signal Processing,"2017,"86:"177-187.

        [30] 柳小勤,"湯林江,"侯凱澤,"等. 基于聲發(fā)射的滾動(dòng)軸承損傷定位方法研究[J]. 振動(dòng)與沖擊,"2020,"39(15):176-182.

        LIU Xiaoqin,"TANG Linjiang,"HOU Kaize,"et al. Fault localization for rolling bearing based on AE[J]. Journal of Vibration and Shock,"2020,"39(15):176-182.

        [31] Tang L J,"Liu X Q,"Wu X,"et al. Defect localization on rolling element bearing stationary outer race with acoustic emission technology[J]. Applied Acoustics,"2021,"182:"108207.

        [32] Tang L J,"Liu X Q,"Wu X,"et al. An acoustic emission event filtering method for low-speed bearing outer race defect localization[J]. IEEE Sensors Journal,"2022,"22(16):"16293-16305.

        Characterization mechanism and location of bearing fault acoustic emission information combined with gate recurrent unit

        SHEN Tian LIU Zong-yang LI Hao LIN Jing LIU Xiao-qin TANG Lin-jiang

        (1.School of Reliability and Systems Engineering,"Beihang University,"Beijing 100191,"China;2.Faculty of Mechanical and Electrical Engineering,"Kunming University of Science and Technology,"Kunming 650550,"China)

        Abstract: Large heavy-duty bearings have special working conditions. Under low speed conditions,"the impact duration is prolonged,"the system response amplitude is reduced,"and the fault information is easier to be covered by noise. Acoustic emission technology has been widely used in the field of structural health monitoring and equipment condition detection because of its sensitivity to weak damage. The spatial localization method in acoustic emission technology can be used to accurately locate faults of large bearing with low speed and heavy load. The localization effect depends on the accurate arrival time of signals. The identification and accurate separation of each acoustic emission event is a major challenge at present. Gate recurrent unit network (GRU)"can consider the internal in sequence data and extract temporal correlation features,"which has certain advantages in signal processing. Akaike information criterion (AIC)"can effectively identify two different stochastic processes. In this paper,"an acoustic emission signal time of arrival picking method based on GRU and AIC is proposed. The results based on the lead and test data show that the proposed method has great potential in determining the large,"heavy-duty,"low-speed bearings acoustic emission signal arrival time by comparing with the traditional AIC,"threshold discrimination and short term averaging/long term averaging.

        Key words: fault diagnosis;"bearing;"acoustic emission;"time of arrival picking;"Akaike information criterion;"gate recurrent unit

        作者簡(jiǎn)介: 沈""田(1999―),女,碩士研究生。電話:"(010)82317662;"E-mail:"shentian@buaa.edu.cn。

        通訊作者: 林""京(1971―),男,博士,教授。電話:"(010)82317662;"E-mail:"linjing@buaa.edu.cn。

        猜你喜歡
        故障診斷
        基于包絡(luò)解調(diào)原理的低轉(zhuǎn)速滾動(dòng)軸承故障診斷
        ILWT-EEMD數(shù)據(jù)處理的ELM滾動(dòng)軸承故障診斷
        凍干機(jī)常見(jiàn)故障診斷與維修
        基于EWT-SVDP的旋轉(zhuǎn)機(jī)械故障診斷
        數(shù)控機(jī)床電氣系統(tǒng)的故障診斷與維修
        電子制作(2018年10期)2018-08-04 03:24:46
        基于改進(jìn)的G-SVS LMS 與冗余提升小波的滾動(dòng)軸承故障診斷
        因果圖定性分析法及其在故障診斷中的應(yīng)用
        改進(jìn)的奇異值分解在軸承故障診斷中的應(yīng)用
        基于LCD和排列熵的滾動(dòng)軸承故障診斷
        基于KPCA和PSOSVM的異步電機(jī)故障診斷
        亚洲中文字幕第二十三页| 国产精品麻豆成人av电影艾秋 | 在线中文字幕乱码英文字幕正常| 亚洲av无码国产精品色午夜洪| 91精品视品在线播放| 久久久精品亚洲懂色av| 中国黄色一区二区三区四区| 日本一本之道高清不卡免费| 久久99国产乱子伦精品免费| 亚洲区精品久久一区二区三区女同| 91久久精品美女高潮喷白浆| 国产大屁股视频免费区| 无码av免费一区二区三区| 国产精品99久久国产小草| 日韩男女av中文字幕| 未满十八18禁止免费无码网站| 蜜臀av 国内精品久久久| 无码人妻一区二区三区免费手机| 午夜亚洲精品一区二区| 人妻熟妇乱又伦精品视频| 国产精品美女久久久久| 亚洲欧美在线视频| 亚洲精品综合中文字幕组合| 亚洲av首页在线| 亚洲精品无码久久毛片| 黄色网页在线观看一区二区三区| 亚洲高清一区二区三区在线播放| 玩50岁四川熟女大白屁股直播| 97色在线视频| 国产三级在线观看不卡| 日本欧美大码a在线观看| 亚洲熟女乱色一区二区三区| 亚洲欧美国产精品久久久| 亚洲国产精品久久久婷婷| 欧美人与禽2o2o性论交| 久久精品国产亚洲av瑜伽| 国产大片在线观看三级| 人妻久久久一区二区三区蜜臀 | 国产日本精品视频一区二区 | 人妻少妇精品视频一区二区三区| 最新国产成人综合在线观看|