【摘要】 家族性高膽固醇血癥是一種遺傳性脂質(zhì)代謝疾病,其主要特征是患者低密度脂蛋白膽固醇明顯升高,進而增加罹患動脈粥樣硬化性心血管疾病的風險,對個體、家庭和社會帶來嚴重影響。分子生物技術的發(fā)展對家族性高膽固醇血癥患者篩查、診斷和治療均至關重要。本文系統(tǒng)總結(jié)了基因檢測技術,特別是第二代基因檢測技術的發(fā)展提高了家族性高膽固醇血癥篩查的效率和診斷的準確性,但同時也引入了許多意義不明的突變。與藥物治療不同,轉(zhuǎn)基因技術或基因編輯技術可糾正家族性高膽固醇血癥患者體內(nèi)的分子缺陷,有望在分子層面根治此病。但相關臨床研究結(jié)果顯示這些治療方式存在肝損傷等不良反應,并且仍需長期隨訪明確其療效。因此,本文綜述了基因檢測和基因治療等分子生物技術在家族性高膽固醇血癥診療中的最新進展,旨在為后續(xù)該病的診斷和治療相關研究提供新的視角。
【關鍵詞】 高膽固醇血癥;基因檢測;遺傳篩查;基因編輯
【中圖分類號】 R 589.2 【文獻標識碼】 A DOI:10.12114/j.issn.1007-9572.2024.0126
Advances in Molecular Biotechnology for Diagnosing and Treating Familial Hypercholesterolemia
ZHANG Shuo,ZHANG Long,ZHANG Yan,LI Jianping*
Department of Cardiology,Peking University First Hospital,Beijing 100000,China
*Corresponding author:LI Jianping,Chief physician/Professor/Doctoral supervisor;E-mail:lijianping03455@pkufh.com
【Abstract】 Familial hypercholesterolemia(FH)is an inherited disorder of lipid metabolism characterized by significant elevation of low-density lipoprotein cholesterol,increasing the risk of atherosclerotic cardiovascular disease and causing serious consequences for FH patients and the whole society. The development of molecular biotechnology is crucial for screening,diagnosing,and treating patients with FH. This paper systematically summarizes how the development of genetic testing technologies,particularly next-generation sequencing,has improved the accuracy of diagnosis and efficiency of genetic screening for FH,while also introducing many variations of unknown significance. In contrast to pharmacotherapy,transgenic technology and gene editing technology offer the potential to rectify the molecular aberration within the patient's physiological system,holding promise for eradicating FH at the molecular level. However,preliminary results have shown that patients could suffer from side-effects,such as liver damage,and long-term follow-up is needed to clarify the efficacy of these technologies. Therefore,this article reviews the latest advances in molecular biotechnology,including genetic testing technology and gene therapy technology,in the diagnosis and treatment of FH,aiming to provide new perspectives for FH related research.
【Key words】 Hypercholesterolemia;Genetic testing;Genetic screening;Gene editing
家族性高膽固醇血癥(familial hypercholesterolemia,F(xiàn)H)是一種遺傳性脂質(zhì)代謝疾病,其特征是患者血漿中低密度脂蛋白膽固醇(low-density lipoprotein cholesterol,LDL-C)水平異常升高,進而使患者罹患動脈粥樣硬化性心血管疾?。╝therosclerotic cardiovascular disease,ASCVD)的風險明顯增加。因篩查地區(qū)及診斷方式不同,我國FH患病率為1/526~1/212[1-2],估計總體有超過550萬例患者。但我國FH診斷率和治療率均不足1%,導致多數(shù)患者錯失最佳治療時機[3-5]。因此早期發(fā)現(xiàn)并治療FH對患者個人、家庭,以及社會意義重大。
DNA測序在FH篩查和診斷中扮演著關鍵角色,其大致經(jīng)歷了3個階段:第一個階段也是第一例FH分子診斷,是通過Southern 印記雜交技術尋找限制片段長度多態(tài)性實現(xiàn)的。由于患者的低密度脂蛋白受體(low-density lipoprotein receptor,LDLR)基因中存在特定變異,導致在使用限制性酶切時可能產(chǎn)生不同長度的片段,不同片段之間的組合可以確定個體的基因型。之后通過驗證基因型在家系中多名患病親屬間是否存在共分離現(xiàn)象可幫助判斷該變異與FH之間的致病性關聯(lián)[6]。但這種方法僅能針對部分FH患者中較為常見的已知雜合變異位點,且陽性率有限,不適用于篩查未知變異。第二階段為聚合酶鏈式反應(polymerase chain reaction,PCR)時期,包括可檢出LDLR基因中大片段缺失的多重連接依賴性探針擴增、早期用于分辨是否存在FH相關單堿基改變的單鏈構(gòu)象多態(tài)性分析、變性高效液相色譜分析,以及后來發(fā)展出可快速、經(jīng)濟地檢出已知FH致病變異的多重擴增阻滯突變系統(tǒng)PCR。隨著基因檢測技術的不斷成熟,應用雙脫氧(Sanger)測序技術直接對LDLR基因所有外顯子區(qū)域、載脂蛋白B(apoprotein B,ApoB)基因及前蛋白轉(zhuǎn)換酶枯草溶菌素9(proprotein convertase subtilin/kexin type 9,PCSK9)基因的部分熱點突變進行測序,并結(jié)合多重連接依賴性探針擴增檢測大片段缺失逐漸成為主要的診斷方法。此后,越來越多的國家開始建立起DNA檢測實驗室,促進了測序技術的快速發(fā)展,并最終進入可同時對大規(guī)模堿基、大量樣本進行檢測的高通量測序時代,也就是稱為二代測序(next-generation sequencing,NGS)的第三階段[7-10]。這些技術可同時檢測多名患者全外顯子甚至是全基因組的突變情況,極大地提高了基因診斷的效能,同時還揭示了多種未知突變,為FH遺傳數(shù)據(jù)庫的建立提供基礎。
隨著對血脂代謝通路了解的不斷深入,多種針對不同靶點的降脂藥物不斷出現(xiàn)并應用于臨床。對于不攜帶突變基因的高膽固醇血癥患者,臨床上仍以他汀類藥物作為治療基石,但常需與其他藥物聯(lián)用以達到指南推薦的血脂目標[11-12]。對于雜合子型FH(heterozygous familial hypercholesterolemia,HeFH)患者,目前臨床常需聯(lián)合針對PCSK9靶點的藥物進一步控制患者體內(nèi)LDL-C水平,進而降低ASCVD發(fā)生風險[13-14]。但對于LDLR蛋白功能完全喪失的純合子型FH(homozygous familial hypercholesterolemia,HoFH)患者,通常需要在聯(lián)合藥物降脂治療的基礎上定期進行脂蛋白分離,嚴重影響患者的預后。目前正在開發(fā)的轉(zhuǎn)基因技術和基因編輯技術有望糾正FH患者的分子缺陷,為HoFH患者脫離脂蛋白分離帶來希望。因此本文綜述了在分子生物技術發(fā)展的背景下FH的篩查、基因診斷,以及治療的最新進展。期望為后續(xù)FH診療相關研究提供思路。
1 本文文獻檢索策略
計算機檢索PubMed、Web of Science等數(shù)據(jù)庫,檢索時間設置為建庫至2024年4月。檢索的關鍵詞包括“Familial Hypercholesterolemia”及相關主題詞“genetic testing”“screening”“Next-Generation Sequencing”“CRISPR/Cas9”“gene editing”“atherosclerosis”“coronary heart disease”。納入標準:符合遺傳性血脂異常中以LDL-C升高為主的Ⅱ型高膽固醇血癥(即HeFH和HoFH),除外其他遺傳性血脂異常疾病如家族性異常β-脂蛋白血癥、家族性脂蛋白脂酶缺乏癥、丹吉爾病、家族性卵磷脂膽固醇?;D(zhuǎn)移酶(LCAT)缺乏癥等。同時包含篩查、基因診斷以及治療等主題相關的文獻。排除標準:與本文無關、無法獲得全文、內(nèi)容存疑的文獻。共納入?yún)⒖嘉墨I69篇。
2 FH基因篩查
FH的早期識別關鍵在于篩查。目前存在多種篩查方式,如普遍篩查、系統(tǒng)篩查、靶向篩查、機會篩查等。其中級聯(lián)篩查主要針對已確診FH患者的直系親屬,可高效識別潛在患者,在所有篩查方式中最為重要[15]。鑒于兒童時期,特別是HoFH患兒更易被發(fā)現(xiàn),因此有學者提出了“兒童-父母篩查”法[16]:在嬰兒12個月接種疫苗時檢測血脂,若發(fā)現(xiàn)異常,再使用NGS技術確認是否存在FH變異。若存在陽性結(jié)果則進行父母及一級親屬的篩查。英國的一項試點項目已證明此方法經(jīng)濟高效,但仍需官方進一步批準[17]。FH基因篩查可分為靶向基因檢測(如基因芯片)和全基因組檢測(如NGS技術)。靶向基因檢測的優(yōu)點是成本低、速度快,但僅能檢測確定的基因突變。全基因組檢測雖然成本高[18],但能更有效地發(fā)現(xiàn)少見基因的突變,如PCSK9基因、低密度脂蛋白受體銜接蛋白1(LDL receptor adaptor protein 1,LDLRAP1)基因。研究顯示,對同一批可疑FH患者進行篩查,采用全外顯子基因檢測技術可發(fā)現(xiàn)約27%的患者存在基因突變;而使用靶向基因檢測僅能發(fā)現(xiàn)8%的患者存在突變,漏診率較高[19]。BENEDEK等[18]發(fā)現(xiàn)瑞典FH人群中存在特定的高頻突變基因,其中LDLR基因突變占所有突變的96%,以(c.2311+1_2312-1)(2514)del(FH Helsinki)和c.259Tgt;G突變?yōu)橹?。因此建議對可疑FH患者首先進行特定的靶向基因檢測,再根據(jù)需要采用NGS進一步明確診斷。相比之下,ZHANG等[20]對我國疑似FH患者基因突變的調(diào)查結(jié)果提示我國患者人群中無特定的高頻突變基因,其中LDLR基因突變占37%,ATP結(jié)合盒蛋白G超家族成員5/8基因突變各占7%,脂蛋白脂肪酶與脂肪酶C基因突變各占3%,雙基因突變占7%。因此不建議我國采用靶向基因檢測進行FH篩查。同時,BELLOWS等[21]對美國FH篩查的研究提示單獨使用基因檢測時,每1 000人篩查出約3.7例患者;單獨使用DLCN(Dutch Lipid Clinic Network)診斷標準時,每1 000人篩查出約3.8例患者。但將DLCN診斷標準與基因檢測相結(jié)合時,每1 000人篩查出6.6例患者,極大提高了篩查效率。因此根據(jù)我國FH流行病學特點,建議使用NGS結(jié)合相關臨床診斷標準進行FH篩查,以提高成本效益。同時可在試點地區(qū)開展“兒童-父母篩查”法檢驗其在我國的社會和經(jīng)濟價值。
3 FH基因診斷
3.1 基因檢測用于確診FH
有研究顯示,LDLR、ApoB、PCSK9、載脂蛋白E(apolipoprotein E,ApoE)和LDLRAP1基因的致病性突變是FH的主要病因(表1)[22-27]。LDLR基因突變主要為單堿基突變,廣泛分布在第2~14外顯子,其中以第4外顯子最多見,可能與其編碼LDLR關鍵蛋白結(jié)構(gòu)域有關[28-31]。LDLR基因重排約占FH變異的10%,可歸為拷貝數(shù)變異[32]。LDLR基因的某些內(nèi)含子變異,例如c.2140+103Ggt;T[33]和c.2141-218Ggt;A[34]也可能影響基因剪接或轉(zhuǎn)錄,進而導致FH的發(fā)生。ApoB基因突變多集中在第26號外顯子,尤其是3500號密碼子附近[35]。目前已發(fā)現(xiàn)超過1 100個變異,其中90%是堿基置換、8%是缺失、2%是插入[36]。近期發(fā)現(xiàn)ApoB基因的第3、第22和第29號外顯子的某些變異,如p.(Arg50Trp)[37]、p.(Arg3527Gln)[38]和p.(Arg3527Trp)[39],可能引起ApoB與LDLR結(jié)合障礙,進而導致LDL-C水平升高[40]。PCSK9基因突變在FH中占比較少,以單核苷酸變異為主[41]。ClinVar數(shù)據(jù)庫記錄了約1 000種突變,其中僅15種被認為是致病或可能致?。?2]。這與PCSK9基因突變的類型較為復雜,難以判斷其致病性有關。ApoE基因的某些突變與FH的表型有關,如p.(Arg163Cys)[41] 和p.(Leu167del)[43]。在臨床疑似的FH的患者也發(fā)現(xiàn)了其他ApoE基因突變,但因缺乏功能學分析和家系研究,目前尚無法明確分類[44]。LDLRAP1基因突變導致的FH為常染色體隱性致病,目前記錄約100種變異,其中34種被認為致病,多數(shù)為插入或缺失[45]。與其他致病基因相比,LDLRAP1突變攜帶者的ASCVD事件發(fā)生率較低,且發(fā)病年齡更晚[46]。
3.2 意義不明突變
隨著全球越來越多的國家建立FH分子診斷實驗室并發(fā)展商業(yè)檢測服務,識別出的變異數(shù)量顯著增加[7]。然而,僅在FH患者中發(fā)現(xiàn)突變并不能確認其致病性。2015年,美國醫(yī)學遺傳學與基因組學學會發(fā)布了一項基因突變分類指南[47],根據(jù)多種數(shù)據(jù)類型(如人群數(shù)據(jù)、軟件預測、功能數(shù)據(jù)、共分離數(shù)據(jù)等),將突變分為良性、可能良性、意義不明、可能致病和致病五類。英國臨床基因組學協(xié)會根據(jù)美國醫(yī)學遺傳學與基因組學學會指南,將大部分LDLR基因變異分類為致病,少數(shù)仍視為意義不明。ClinGen(clinical genome resource)下屬的FH變異解讀專家組針對LDLR基因發(fā)布了特定解讀規(guī)則[31],明確了LDLR蛋白中半胱氨酸殘基和功能域的重要性以及變異致病性的評估標準,如變異在健康和患者群體中的攜帶比例、家系共分離的證據(jù)等。這套解讀標準有助于實驗室統(tǒng)一判斷新變異體的致病性。此外,目前還有多種生物信息學分析方法可基于NGS的結(jié)果預測拷貝數(shù)目變異是否致病,簡化了FH基因序列分析流程[48]。
3.3 基因檢測發(fā)現(xiàn)獲益的突變
近期BJORNSSON等[49]在冰島的家系中發(fā)現(xiàn)了一種增強LDLR基因功能的突變。該突變是LDLR基因3'非編碼區(qū)尾端2.5 kb堿基的缺失,導致失去了一個抑制LDLR基因表達的microRNA靶點。這種突變使攜帶者的LDLR蛋白水平比非攜帶者高出1.79倍,從而使LDL-C水平降低了約74%。MENG等[50]在我國維吾爾族人群中發(fā)現(xiàn)了2種PCSK9基因功能缺失突變E144K和C378W。這2種突變可抑制PCSK9蛋白的自裂解或內(nèi)質(zhì)網(wǎng)的釋放,有效降低PCSK9蛋白的表達。因此對未經(jīng)藥物干預的血脂水平極低的患者進行基因檢測并進行功能學研究可以更加深入了解蛋白功能,提供對血脂干預的新靶點,對臨床具有重要的意義。
4 FH基因治療
基因治療是利用特定的工具糾正患者體內(nèi)的遺傳分子缺陷,恢復正常的生理功能。因此理論上基因治療有望在分子層面根治FH,具有廣闊的應用前景。當前主要包括2種基因治療手段:一種是以腺相關病毒(adeno-associated virus,AAV)載體的轉(zhuǎn)基因技術,目前已獲美國食品藥品監(jiān)督管理局批準用于治療遺傳性視網(wǎng)膜營養(yǎng)不良和脊髓性肌萎縮癥等疾?。?1-52]AAV-8介導的基因治療在LDLR基因敲除小鼠的臨床前研究中顯示,該方法可在小鼠體內(nèi)重新產(chǎn)生LDLR蛋白并降低LDL-C水平,進而逆轉(zhuǎn)動脈斑塊的進展[53-54]。但針對HoFH患者AAV-8介導的基因治療Ⅰ/Ⅱ期臨床試驗(NCT02651675)并未顯示患者體內(nèi)LDL-C水平顯著下降,并且觀察到受試者的轉(zhuǎn)氨酶呈劑量依賴性升高,考慮與T細胞對病毒載體的自身免疫有關[55-56]。另一種手段是利用CRISPR/Cas(Clustered Regularly Interspaced Short Palindromic Repeats/CRISPR-associated systems)技術精確編輯生物體內(nèi)DNA序列的基因編輯技術,目前該技術已應用于治療淀粉樣變性和鐮刀型地中海貧血[57-58]。目前使用CRISPR/Cas技術開發(fā)的針對不同膽固醇代謝靶點的基因治療方式正在進行臨床前研究[59-62]。據(jù)最新的非靈長類動物實驗結(jié)果,使用脂質(zhì)納米顆粒(lipid nanoparticles,LNPs)傳遞的CRISPR能破壞實驗動物PCSK9基因的表達,使其血液中的 PCSK9 蛋白水平降低83%,LDL-C水平降低69%,療效可持續(xù)至給藥后476 d。觀察到的主要不良反應為一過性肝酶升高,但肝臟病理解剖未見特殊改變,提示該方法具有臨床應用的可能性[63]。目前相關的人體Ⅰ期臨床試驗(NCT05398029)已經(jīng)啟動。針對膽固醇代謝靶點的疫苗研究正處于早期階段。其預期效果類似于單克隆抗體,但能在體內(nèi)持續(xù)產(chǎn)生抗體,可達到更持久的效果。2種針對PCSK9蛋白的疫苗已進行Ⅰ期安全性檢測,其中1種候選疫苗(AT04A)在90周時顯示LDL-C水平可降低7.2%,其較常見的全身治療相關不良事件包括疲勞、頭痛和肌痛[64]。血管生成素樣蛋白3蛋白(angiopoietin like 3,ANGPTL3)可抑制脂蛋白脂肪酶和內(nèi)皮脂肪酶,進而參與脂質(zhì)代謝的調(diào)節(jié)[65]。因其調(diào)節(jié)血脂不依賴于LDLR蛋白,故理論上可用于FH患者的治療。目前已有利用抑制ANGPTL3的全人源單克隆抗體Evinacumab治療HoFH及HeFH的臨床試驗證明該藥物具有明確的降脂效果和良好的安全性[66-68]。針對ANGPTL3的疫苗同樣正處于臨床前開發(fā)階段,并且在FH小鼠模型中初步證明存在減輕ASCVD的療效[69]。但仍需更多的研究證明其安全性和有效性。
5 總結(jié)與展望
FH作為一種較為常見的遺傳性脂質(zhì)代謝紊亂疾病,其診療的進步與分子生物技術的不斷演進密切相關。分子生物技術在FH診療中的多方面發(fā)揮著關鍵作用,主要包括(1)篩查優(yōu)化:在早期發(fā)現(xiàn)FH方面,目前各國廣泛采用級聯(lián)篩查這一手段。最近提出的“兒童-父母篩查”法結(jié)合了普查與反向篩查兩種優(yōu)點,不僅有助于早期發(fā)現(xiàn)FH患兒,還能追溯潛在攜帶FH致病突變基因的父母,在理論和初步實踐中均呈現(xiàn)出良好的經(jīng)濟效益。同時根據(jù)不同國情,選擇適宜的基因篩查方式至關重要。我國疑似FH患者基因突變種類繁多,采用固定基因芯片篩查可能導致漏診率升高,并且基因檢測聯(lián)合DLCN等臨床標準可顯著提高篩查的效率。因此倡導我國使用NGS聯(lián)合DLCN等臨床標準進行FH篩查。(2)基因檢測優(yōu)化:隨著NGS技術的不斷進步,疑似FH患者的確診率持續(xù)升高。對于最新發(fā)現(xiàn)意義不明的突變,國際上已發(fā)布相關基因突變解讀指南,有助于對其進行分類,同時有望利用生物信息分析方法簡化其分析流程。對血脂降低的患者進行基因檢測可發(fā)現(xiàn)潛在降脂治療新靶點,對臨床診療也具有重要意義。(3)基因治療:采用基因編輯或轉(zhuǎn)基因技術治療FH的可行性已經(jīng)在動物實驗中得到驗證。數(shù)個Ⅰ/Ⅱ期臨床試驗正在進行,旨在驗證在人體中的療效及安全性,為根治FH帶來新的希望。
目前的研究尚存在一些不足。首先,“兒童-父母篩查”法尚未獲得倫理和政府批準,需要在更多地區(qū)的人群中進行驗證以明確其篩查效能。其次,由于NGS技術普及時間較短、成本偏高,目前大多數(shù)研究仍采用Sanger測序方法檢測部分靶基因片段,因此存在漏診的可能,導致對FH患病率的低估。隨著NGS技術的推廣及成本的下降,后續(xù)研究可以采用全外顯子檢測甚至全基因組檢測以提高研究的準確性。最后,對于FH的基因治療,目前利用腺相關病毒載體或CRISPR/Cas基因編輯技術進行的基因治療在臨床前研究中取得了一定的成果,但初步結(jié)果提示其存在肝損傷等不良反應,仍需要長期隨訪以明確治療相關不良反應、降脂療效和對患者的預后價值。
作者貢獻:張碩負責文章的構(gòu)思、研究資料的收集與整理、論文撰寫;張龍負責論文修訂、文章的質(zhì)量控制及審校;張巖、李建平負責研究命題的提出、設計、文章質(zhì)量的審校、對文章整體負責、監(jiān)督管理。
本文無利益沖突。
張碩:https://orcid.org/0009-0004-0192-3867
參考文獻
AIHAITI X,CHEN S F,LI J X,et al. Prevalence of familial hypercholesterolemia and its association with coronary artery disease:a Chinese cohort study[J]. Chronic Dis Transl Med,2023,9(2):134-142. DOI:10.1002/cdt3.69.
ZHOU Y C,LUO G,ZHANG A,et al. Genetic identification of familial hypercholesterolemia within whole genome sequences in 6820 newborns[J]. Clin Genet,2024,105(3):308-312. DOI:10.1111/cge.14453.
AMERIZADEH A,JAVANMARD S H,SARRAFZADEGAN N,et al. Familial hypercholesterolemia(FH)registry worldwide:a systematic review[J]. Curr Probl Cardiol,2022,47(10):100999. DOI:10.1016/j.cpcardiol.2021.100999.
CHEN P P,CHEN X,ZHANG S Y. Current status of familial hypercholesterolemia in China:a need for patient FH registry systems[J]. Front Physiol,2019,10:280. DOI:10.3389/fphys.2019.00280.
SHI Z M,YUAN B J,ZHAO D,et al. Familial hypercholesterolemia in China:prevalence and evidence of underdetection and undertreatment in a community population[J]. Int J Cardiol,2014,174(3):834-836. DOI:10.1016/j.ijcard.2014.04.165.
FUTEMA M,TAYLOR-BEADLING A,WILLIAMS M,et al. Genetic testing for familial hypercholesterolemia-past,present,and future[J]. J Lipid Res,2021,62:100139. DOI:10.1016/j.jlr.2021.100139.
TAYLOR A,WANG D,PATEL K,et al. Mutation detection rate and spectrum in familial hypercholesterolaemia patients in the UK pilot cascade project[J]. Clin Genet,2010,77(6):572-580. DOI:10.1111/j.1399-0004.2009.01356.x.
BODAMER O A,BERCOVICH D,SCHLABACH M,et al. Use of denaturing HPLC to provide efficient detection of mutations causing familial hypercholesterolemia[J]. Clin Chem,2002,48(11):1913-1918.
JENSEN H K,JENSEN L G,HANSEN P S,et al. High sensitivity of the single-strand conformation polymorphism method for detecting sequence variations in the low-density lipoprotein receptor gene validated by DNA sequencing[J]. Clin Chem,1996,42(8 Pt 1):1140-1146.
TAYLOR A,TABRAH S,WANG D,et al. Multiplex ARMS analysis to detect 13 common mutations in familial hypercholesterolaemia[J]. Clin Genet,2007,71(6):561-568. DOI:10.1111/j.1399-0004.2007.00807.x.
CUCHEL M,RAAL F J,HEGELE R A,et al. 2023 Update on European Atherosclerosis Society Consensus Statement on Homozygous Familial Hypercholesterolaemia:new treatments and clinical guidance[J]. Eur Heart J,2023,44(25):2277-2291. DOI:10.1093/eurheartj/ehad197.
IYEN B,AKYEA R K,WENG S,et al. Statin treatment and LDL-cholesterol treatment goal attainment among individuals with familial hypercholesterolaemia in primary care[J]. Open Heart,2021,8(2):e001817. DOI:10.1136/openhrt-2021-001817.
WATTS G F,GIDDING S S,HEGELE R A,et al. International Atherosclerosis Society guidance for implementing best practice in the care of familial hypercholesterolaemia[J]. Nat Rev Cardiol,2023,20(12):845-869. DOI:10.1038/s41569-023-00892-0.
WATTS G F,SULLIVAN D R,HARE D L,et al. Integrated guidance for enhancing the care of familial hypercholesterolaemia in Australia[J]. Heart Lung Circ,2021,30(3):324-349. DOI:10.1016/j.hlc.2020.09.943.
MACH F,BAIGENT C,CATAPANO A L,et al. 2019 ESC/EAS Guidelines for the management of dyslipidaemias:lipid modification to reduce cardiovascular risk[J]. Eur Heart J,2020,41(1):111-188. DOI:10.1093/eurheartj/ehz455.
WALD D S,BESTWICK J P,MORRIS J K,et al. Child-parent familial hypercholesterolemia screening in primary care[J].
N Engl J Med,2016,375(17):1628-1637. DOI:10.1056/NEJMoa1602777.
MCKAY A J,HOGAN H,HUMPHRIES S E,et al. Universal screening at age 1-2 years as an adjunct to cascade testing for familial hypercholesterolaemia in the UK:a cost-utility analysis[J]. Atherosclerosis,2018,275:434-443. DOI:10.1016/j.atherosclerosis.2018.05.047.
BENEDEK P,JIAO H,DUVEFELT K,et al. Founder effects facilitate the use of a genotyping-based approach to molecular diagnosis in Swedish patients with familial hypercholesterolaemia[J]. J Intern Med,2021,290(2):404-415. DOI:10.1111/joim.13287.
STURM A C,TRUTY R,CALLIS T E,et al. Limited-variant screening vs comprehensive genetic testing for familial hypercholesterolemia diagnosis[J]. JAMA Cardiol,2021,6(8):902-909. DOI:10.1001/jamacardio.2021.1301.
ZHANG Q W,CHANG G Y,TANG Y J,et al. Genotypic and phenotypic features of dyslipidemia in a sample of pediatric patients in China[J]. BMC Pediatr,2023,23(1):138. DOI:10.1186/s12887-023-03952-z.
BELLOWS B K,KHERA A V,ZHANG Y Y,et al. Estimated yield of screening for heterozygous familial hypercholesterolemia with and without genetic testing in US adults[J]. J Am Heart Assoc,2022,11(11):e025192. DOI:10.1161/JAHA.121.025192.
SRIVASTAVA R A K. A review of progress on targeting LDL receptor-dependent and-independent pathways for the treatment of hypercholesterolemia,a major risk factor of ASCVD[J]. Cells,2023,12(12):1648. DOI:10.3390/cells12121648.
RODRíGUEZ-JIMéNEZ C,DE LA PE?A G,SANGUINO J,et al. Identification and functional analysis of ApoB variants in a cohort of hypercholesterolemic patients[J]. Int J Mol Sci,2023,
24(8):7635. DOI:10.3390/ijms24087635.
ABIFADEL M,VARRET M,RABèS J P,et al. Mutations in PCSK9 cause autosomal dominant hypercholesterolemia[J]. Nat Genet,2003,34(2):154-156. DOI:10.1038/ng1161.
MARAIS A D. Apolipoprotein E in lipoprotein metabolism,health and cardiovascular disease[J]. Pathology,2019,51(2):165-176. DOI:10.1016/j.pathol.2018.11.002.
ISMAIL A B,BALC?O?LU ?,?ZCEM B,et al. ApoE gene variation's impact on cardiovascular health:a case-control study[J]. Biomedicines,2024,12(3):695. DOI:10.3390/biomedicines12030695.
GARCIA C K,WILUND K,ARCA M,et al. Autosomal recessive hypercholesterolemia caused by mutations in a putative LDL receptor adaptor protein[J]. Science,2001,292(5520):1394-1398. DOI:10.1126/science.1060458.
HOBBS H H,BROWN M S,GOLDSTEIN J L. Molecular genetics of the LDL receptor gene in familial hypercholesterolemia[J]. Hum Mutat,1992,1(6):445-466. DOI:10.1002/humu.1380010602.
GARCíA-GARCíA A B,REAL J T,PUIG O,et al. Molecular genetics of familial hypercholesterolemia in Spain:ten novel LDLR mutations and population analysis[J]. Hum Mutat,2001,
18(5):458-459. DOI:10.1002/humu.1218.
JEON H,BLACKLOW S C. Structure and physiologic function of the low-density lipoprotein receptor[J]. Annu Rev Biochem,2005,74:535-562. DOI:10.1146/annurev.biochem.74.082803.133354.
CHORA J R,IACOCCA M A,TICHY L,et al. The Clinical Genome Resource(ClinGen)Familial Hypercholesterolemia Variant Curation Expert Panel consensus guidelines for LDLR variant classification[J]. Genet Med,2022,24(2):293-306. DOI:10.1016/j.gim.2021.09.012.
BERBERICH A J,HEGELE R A. The role of genetic testing in dyslipidaemia[J]. Pathology,2019,51(2):184-192. DOI:10.1016/j.pathol.2018.10.014.
REESKAMP L F,HARTGERS M L,PETER J,et al. A deep intronic variant in LDLR in familial hypercholesterolemia[J]. Circ Genom Precis Med,2018,11(12):e002385. DOI:10.1161/CIRCGEN.118.002385.
REESKAMP L F,BALVERS M,PETER J,et al. Intronic variant screening with targeted next-generation sequencing reveals first pseudoexon in LDLR in familial hypercholesterolemia[J]. Atherosclerosis,2021,321:14-20. DOI:10.1016/j.atherosclerosis.2021.02.003.
MISEREZ A R,KELLER U. Differences in the phenotypic characteristics of subjects with familial defective apolipoprotein B-100 and familial hypercholesterolemia[J]. Arterioscler Thromb Vasc Biol,1995,15(10):1719-1729. DOI:10.1161/01.atv.15.10.1719.
VRABLIK M,TICHY L,F(xiàn)REIBERGER T,et al. Genetics of familial hypercholesterolemia:new insights[J]. Front Genet,2020,11:574474. DOI:10.3389/fgene.2020.574474.
THOMAS E R A,ATANUR S S,NORSWORTHY P J,et al. Identification and biochemical analysis of a novel ApoB mutation that causes autosomal dominant hypercholesterolemia[J]. Mol Genet Genomic Med,2013,1(3):155-161. DOI:10.1002/mgg3.17.
HUMPHRIES S E,WHITTALL R A,HUBBART C S,et al. Genetic causes of familial hypercholesterolaemia in patients in the UK:relation to plasma lipid levels and coronary heart disease risk[J]. J Med Genet,2006,43(12):943-949. DOI:10.1136/jmg.2006.038356.
GAFFNEY D,REID J M,CAMERON I M,et al. Independent mutations at codon 3500 of the apolipoprotein B gene are associated with hyperlipidemia[J]. Arterioscler Thromb Vasc Biol,1995,15(8):1025-1029. DOI:10.1161/01.atv.15.8.1025.
ALVES A C,ETXEBARRIA A,SOUTAR A K,et al. Novel functional ApoB mutations outside LDL-binding region causing familial hypercholesterolaemia[J]. Hum Mol Genet,2014,
23(7):1817-1828. DOI:10.1093/hmg/DDT573.
KARCZEWSKI K J,F(xiàn)RANCIOLI L C,TIAO G,et al. The mutational constraint spectrum quantified from variation in 141,456 humans[J]. Nature,2020,581(7809):434-443. DOI:10.1038/s41586-020-2308-7.
LANDRUM M J,LEE J M,RILEY G R,et al. ClinVar:public archive of relationships among sequence variation and human phenotype[J]. Nucleic Acids Res,2014,42(Database issue):D980-985. DOI:10.1093/nar/gkt1113.
MARDUEL M,OUGUERRAM K,SERRE V,et al. Description of a large family with autosomal dominant hypercholesterolemia associated with the ApoE p.Leu167del mutation[J]. Hum Mutat,2013,34(1):83-87. DOI:10.1002/humu.22215.
WINTJENS R,BOZON D,BELABBAS K,et al. Global molecular analysis and ApoE mutations in a cohort of autosomal dominant hypercholesterolemia patients in France[J]. J Lipid Res,2016,57(3):482-491. DOI:10.1194/jlr.P055699.
FELLIN R,ARCA M,ZULIANI G,et al. The history of Autosomal Recessive Hypercholesterolemia(ARH). From clinical observations to gene identification[J]. Gene,2015,555(1):23-32. DOI:10.1016/j.gene.2014.09.020.
NAOUMOVA R P,NEUWIRTH C,LEE P,et al. Autosomal recessive hypercholesterolaemia:long-term follow up and response to treatment[J]. Atherosclerosis,2004,174(1):165-172. DOI:10.1016/j.atherosclerosis.2004.01.020.
RICHARDS S,AZIZ N,BALE S,et al. Standards and guidelines for the interpretation of sequence variants:a joint consensus recommendation of the American College of Medical Genetics and Genomics and the Association for Molecular Pathology[J]. Genet Med,2015,17(5):405-424. DOI:10.1038/gim.2015.30.
IACOCCA M A,WANG J,DRON J S,et al. Use of next-generation sequencing to detect LDLR gene copy number variation in familial hypercholesterolemia[J]. J Lipid Res,2017,58(11):2202-2209. DOI:10.1194/jlr.D079301.
BJORNSSON E,GUNNARSDOTTIR K,HALLDORSSON G H,et al. Lifelong Reduction in LDL(low-density lipoprotein) cholesterol due to a gain-of-function mutation in LDLR[J]. Circ Genom Precis Med,2021,14(1):e003029. DOI:10.1161/CIRCGEN.120.003029.
MENG F H,LIU S,XIAO J,et al. New loss-of-function mutations in PCSK9 reduce plasma LDL cholesterol[J]. Arterioscler Thromb Vasc Biol,2023,43(7):1219-1233. DOI:10.1161/ATVBAHA.122.318839.
RUSSELL S,BENNETT J,WELLMAN J A,et al. Efficacy and safety of voretigene neparvovec(AAV2-hRPE65v2) in patients with RPE65-mediated inherited retinal dystrophy:a randomised,controlled,open-label,phase 3 trial[J]. Lancet,2017,
390(10097):849-860. DOI:10.1016/S0140-6736(17)
31868-8.
MENDELL J R,AL-ZAIDY S,SHELL R,et al. Single-dose gene-replacement therapy for spinal muscular atrophy[J]. N Engl J Med,2017,377(18):1713-1722. DOI:10.1056/NEJMoa1706198.
KASSIM S H,LI H,VANDENBERGHE L H,et al. Gene therapy in a humanized mouse model of familial hypercholesterolemia leads to marked regression of atherosclerosis[J]. PLoS One,2010,
5(10):e13424. DOI:10.1371/journal.pone.0013424.
GREIG J A,LIMBERIS M P,BELL P,et al. Nonclinical pharmacology/toxicology study of AAV8.TBG.mLDLR and AAV8.TBG.hLDLR in a mouse model of homozygous familial hypercholesterolemia[J]. Hum Gene Ther Clin Dev,2017,
28(1):28-38. DOI:10.1089/humc.2017.007.
TROMP T R,CUCHEL M. New algorithms for treating homozygous familial hypercholesterolemia[J]. Curr Opin Lipidol,2022,
33(6):326-335. DOI:10.1097/MOL.0000000000000853.
GEORGE L A,SULLIVAN S K,GIERMASZ A,et al. Hemophilia B gene therapy with a high-specific-activity factor Ⅸ variant[J]. N Engl J Med,2017,377(23):2215-2227. DOI:10.1056/NEJMoa1708538.
GILLMORE J D,GANE E,TAUBEL J,et al. CRISPR-Cas9 in vivo gene editing for transthyretin amyloidosis[J]. N Engl J Med,2021,385(6):493-502. DOI:10.1056/NEJMoa2107454.
FRANGOUL H,ALTSHULER D,CAPPELLINI M D,et al. CRISPR-Cas9 gene editing for sickle cell disease and β-thalassemia[J]. N Engl J Med,2021,384(3):252-260. DOI:10.1056/NEJMoa2031054.
MUSUNURU K,CHADWICK A C,MIZOGUCHI T,et al. In vivo CRISPR base editing of PCSK9 durably lowers cholesterol in Primates[J]. Nature,2021,593(7859):429-434. DOI:10.1038/s41586-021-03534-y.
DOERFLER A M,PARK S H,ASSINI J M,et al. LPA disruption with AAV-CRISPR potently lowers plasma apo(a) in transgenic mouse model:a proof-of-concept study[J]. Mol Ther Methods Clin Dev,2022,27:337-351. DOI:10.1016/j.omtm.2022.10.009.
ZHA Y W,LU Y Y,ZHANG T,et al. CRISPR/Cas9-mediated knockout of ApoC3 stabilizes plasma lipids and inhibits atherosclerosis in rabbits[J]. Lipids Health Dis,2021,20(1):180. DOI:10.1186/s12944-021-01605-7.
MUSUNURU K. Moving toward genome-editing therapies for cardiovascular diseases[J]. J Clin Invest,2022,132(1):e148555. DOI:10.1172/JCI148555.
LEE R G,MAZZOLA A M,BRAUN M C,et al. Efficacy and safety of an investigational single-course CRISPR base-editing therapy targeting PCSK9 in nonhuman primate and mouse models[J]. Circulation,2023,147(3):242-253. DOI:10.1161/CIRCULATIONAHA.122.062132.
ZEITLINGER M,BAUER M,REINDL-SCHWAIGHOFER R,et al. A phaseⅠstudy assessing the safety,tolerability,immunogenicity,and low-density lipoprotein cholesterol-lowering activity of immunotherapeutics targeting PCSK9[J]. Eur J Clin Pharmacol,2021,77(10):1473-1484. DOI:10.1007/s00228-021-03149-2.
DEWEY F E,GUSAROVA V,DUNBAR R L,et al. Genetic and pharmacologic inactivation of ANGPTL3 and cardiovascular disease[J]. N Engl J Med,2017,377(3):211-221. DOI:10.1056/NEJMoa1612790.
KUEHN B M. Evinacumab approval adds a new option for homozygous familial hypercholesterolemia with a hefty price tag[J]. Circulation,2021,143(25):2494-2496. DOI:10.1161/CIRCULATIONAHA.121.055463.
STEFANUTTI C,CHAN D C,GIACOMO S D,et al. Long-term efficacy and safety of evinacumab in patients with homozygous familial hypercholesterolemia:real-world clinical experience[J]. Pharmaceuticals,2022,15(11):1389. DOI:10.3390/ph15111389.
ROSENSON R S,BURGESS L J,EBENBICHLER C F,et al. Evinacumab in patients with refractory hypercholesterolemia[J]. N Engl J Med,2020,383(24):2307-2319. DOI:10.1056/NEJMoa2031049.
FUKAMI H,MORINAGA J,NAKAGAMI H,et al. Vaccine targeting ANGPTL3 ameliorates dyslipidemia and associated diseases in mouse models of obese dyslipidemia and familial hypercholesterolemia[J]. Cell Rep Med,2021,2(11):100446. DOI:10.1016/j.xcrm.2021.100446.
(收稿日期:2024-03-20;修回日期:2024-05-20)
(本文編輯:趙躍翠)