[摘要] """金沙江干流穿越地形地貌極為復(fù)雜和新構(gòu)造運(yùn)動(dòng)強(qiáng)烈的青藏高原東南緣,流域內(nèi)發(fā)育了大量的巨型滑坡,使得該地區(qū)的滑坡災(zāi)害十分嚴(yán)重。因此,深入研究金沙江干流滑坡的成因機(jī)制對(duì)于該區(qū)域的防災(zāi)減災(zāi)具有重要意義。本研究通過(guò)搜集前人研究資料和遙感影像分析,對(duì)金沙江干流巨型滑坡的形成機(jī)制進(jìn)行了深入探討。研究發(fā)現(xiàn),金沙江干流巨型滑坡的形成受多種因素的綜合影響。首先,地形坡度是影響滑坡形成的重要因素,坡度在25°~40°范圍內(nèi)發(fā)生滑坡的概率更高。其次,活動(dòng)斷裂在滑坡形成過(guò)程中起到重要作用,斷裂帶活動(dòng)會(huì)導(dǎo)致巖石變形和破碎,從而增加滑坡發(fā)生的可能性。此外,地層巖性也是影響滑坡的重要因素,它影響著巖土體的物理力學(xué)特性和岸坡的應(yīng)力分布特征,導(dǎo)致區(qū)域穩(wěn)定性的差異,增加了滑坡發(fā)生的可能。在這些因素中,活動(dòng)斷裂及強(qiáng)震活動(dòng)在巨型滑坡的形成過(guò)程中起到了更為重要的作用。他們可能導(dǎo)致滑坡進(jìn)一步發(fā)展,甚至引發(fā)流域堵江、潰壩、洪水等連鎖災(zāi)害。
[關(guān)鍵詞] 金沙江干流; 活動(dòng)斷裂; 巨型滑坡; 青藏高原東南緣; 防災(zāi)減災(zāi)
[DOI] 10.19987/j.dzkxjz.2023-159
基金項(xiàng)目:"國(guó)家自然科學(xué)基金項(xiàng)目云南聯(lián)合基金重點(diǎn)支持項(xiàng)目(U2002211),國(guó)家科技基礎(chǔ)資源調(diào)查專項(xiàng)課題(2021FY100104)和中國(guó)地質(zhì)調(diào)查項(xiàng)目(DD20221644)聯(lián)合資助。
0 "引言
金沙江是穿過(guò)青藏高原東南緣規(guī)模最大的一條河流,河流的深切作用造就了其干流區(qū)域平均嶺谷高差達(dá)1500 m以上、地形劇烈起伏且深切峽谷發(fā)育的地貌特征,作為區(qū)域性斷層帶與深切河谷的交切疊加部位,是內(nèi)外動(dòng)力耦合作用的典型區(qū)域[1],沿金沙江干流地殼運(yùn)動(dòng)強(qiáng)烈,活動(dòng)斷裂帶發(fā)育,多次發(fā)生6級(jí)以上強(qiáng)震,頻發(fā)的歷史地震加劇了巖土體結(jié)構(gòu)裂化和強(qiáng)度弱化,導(dǎo)致地震滑坡—堵江事件頻發(fā)[2-3](圖1a,圖1b),如約1.8 kaBP金沙江上游巴塘河段特米古滑坡在地震觸發(fā)下發(fā)生大規(guī)?;瑒?dòng),滑坡體積約為3.5×107"m3,破壞了農(nóng)田和村莊,失蹤、死亡人數(shù)高達(dá)數(shù)千人[4](圖1c);1786年6月1日在四川省瀘定縣得妥鄉(xiāng)金光村發(fā)生了摩崗嶺滑坡,體積約2.4×107"m3的巨大的滑坡體在M7?磨西大地震的引發(fā)下,滑入金沙江后堵塞形成堰塞湖,并于10日后潰決,約10萬(wàn)人死亡或失蹤[5](圖1d);2018年10月11日和11月3日,西藏自治區(qū)江達(dá)縣波羅鄉(xiāng)白格村金沙江右岸附近相繼發(fā)生了2次大規(guī)模的巖體滑坡堵江事件,2次滑坡方量共計(jì)約1.3×107"m3,潰壩洪水對(duì)下游村莊、農(nóng)田、公路等造成嚴(yán)重破壞,并存在再次滑坡-堵江的風(fēng)險(xiǎn)[6-7](圖1e)。這些滑坡事件具有規(guī)模巨大和高風(fēng)險(xiǎn)的特點(diǎn),可能引發(fā)堵江和潰壩的災(zāi)害鏈[8]。需要對(duì)這些巨型滑坡的發(fā)育特征及其成因機(jī)理展開研究,為區(qū)域防災(zāi)減災(zāi)工作提供依據(jù)。綜合區(qū)域活斷層作用等因素誘發(fā)重大地質(zhì)災(zāi)害鏈過(guò)程及其災(zāi)害效應(yīng)方面的研究現(xiàn)狀與發(fā)展動(dòng)態(tài)可知[9-12],現(xiàn)有研究通常傾向于認(rèn)為區(qū)域上同時(shí)出現(xiàn)的大規(guī)模滑坡是地震引發(fā)的[13-14],將活斷層帶附近的巨型滑坡或高速遠(yuǎn)程滑坡直接視為地震滑坡[15]。然而,這種觀點(diǎn)未能完全解釋巨型古滑坡的成因,因此古滑坡的地震成因判別一直是古地震滑坡研究的難點(diǎn)[16]。
本文在搜集整理前人數(shù)據(jù)資料和遙感影像解譯基礎(chǔ)上,開展了金沙江干流巨型滑坡發(fā)育特征與形成機(jī)理的研究,整理了金沙江干流沿岸前人研究較多的17個(gè)巨型滑坡體。通過(guò)對(duì)強(qiáng)震等因素誘發(fā)巨型滑坡及堵江事件的時(shí)空發(fā)育規(guī)律等方面的精細(xì)化、定量化研究,實(shí)現(xiàn)對(duì)巨型滑坡-堵江災(zāi)害鏈的時(shí)空過(guò)程恢復(fù),剖析其時(shí)空發(fā)育特征,進(jìn)而揭示金沙江干流與大型斷裂帶交匯處地質(zhì)災(zāi)害的發(fā)生規(guī)律,為構(gòu)建巨型災(zāi)害鏈成災(zāi)模式和機(jī)理提供關(guān)鍵地質(zhì)依據(jù)與數(shù)據(jù)支撐,并為區(qū)域重大工程的規(guī)劃建設(shè)和防災(zāi)減災(zāi)提供重要的參考價(jià)值以及基礎(chǔ)理論指導(dǎo)。
1 "地質(zhì)背景
金沙江流域位于中國(guó)西南部,發(fā)源自青藏高原東南邊緣的唐古拉山脈。金沙江自西向東、向南流經(jīng)約2308 km,從(34°45′42.80″N,90°54′14.52″E)流經(jīng)至(25°57′47.78″N,104°38′23.64″E),包括自發(fā)源地至石鼓的上游段、石鼓至攀枝花的中游段以及攀枝花至宜昌的下游段,最終匯入長(zhǎng)江。作為長(zhǎng)江上游河段,金沙江擁有約5100 m的天然落差[17],理論上可利用的水能資源約為1.12億kW[18]。由于位于印度板塊和歐亞板塊碰撞帶地區(qū),金沙江流域是典型的造山帶地區(qū),山嶺高聳、峽谷險(xiǎn)峻,平均海拔超過(guò)2000 m(圖2),此處地形復(fù)雜、地貌多樣,其中流域上游段落差達(dá)2500 m,平均坡降為3.5%;下游段落差為640 m,平均坡降為1.5%。上述特征使得金沙江流域成為地球科學(xué)研究的重要區(qū)域。
在滑坡區(qū),出露的巖層主要包括第四紀(jì)碎屑沉積(Q4del)、第四紀(jì)殘積碎屑土(Q4el)、第四紀(jì)沖積礫石(Q4al+pl)以及二疊系-三疊系崗?fù)械貙又械镊晗闶?石英片巖(PT1g)等。這些巖石類型在強(qiáng)度、抗風(fēng)化程度和易受侵蝕程度方面各不相同,導(dǎo)致斜坡的不穩(wěn)定。
研究區(qū)域內(nèi)存在多條活動(dòng)斷層,主要包括鮮水河—小江斷裂帶、甘孜—玉樹斷裂帶、德欽—中甸斷裂帶和理塘斷裂帶等。其中鮮水河—小江斷裂帶位于藏東塊體與揚(yáng)子板塊的邊界,是整個(gè)區(qū)域的重要斷裂帶。甘孜—玉樹斷裂帶和理塘斷裂帶也表現(xiàn)出較高的活躍性。與此同時(shí),遠(yuǎn)在金沙江干流上游的德欽—中甸斷裂帶則是滇西北地區(qū)的主要斷裂帶。這些斷層系統(tǒng)的運(yùn)動(dòng)和應(yīng)力積累導(dǎo)致邊坡的不穩(wěn)定性,并增加了山體滑坡的風(fēng)險(xiǎn)。此外,該地區(qū)地處地震活躍帶,在活斷層作用下歷史地震頻發(fā)。
2 "數(shù)據(jù)來(lái)源及研究方法
在收集和整理前人文獻(xiàn)資料的基礎(chǔ)上,本文總結(jié)了17個(gè)代表性巨型滑坡案例,并對(duì)金沙江干流滑坡進(jìn)行了基于Google Earth影像的遙感解譯。同時(shí),利用ArcGIS10.7空間分析工具結(jié)合核密度分析法和克里金空間插值法,將研究區(qū)的坡度數(shù)據(jù)轉(zhuǎn)化為柵格圖像數(shù)據(jù)(圖3)。本研究使用的高程、坡度等數(shù)據(jù)均來(lái)自ASTER GDEM 30M的數(shù)字高程模型(DEM)數(shù)據(jù)[19];活動(dòng)斷層數(shù)據(jù)取自吳中海等人在2018年編輯的1∶500萬(wàn)《中國(guó)及毗臨海區(qū)活動(dòng)斷裂分布圖》矢量數(shù)據(jù)[20];地震數(shù)據(jù)則來(lái)自中國(guó)地震臺(tái)網(wǎng),包含公元780年以來(lái)的5級(jí)以上歷史地震數(shù)據(jù);地層數(shù)據(jù)采用了1∶50萬(wàn)比例尺的數(shù)字地質(zhì)圖作為數(shù)據(jù)來(lái)源;水系和流域數(shù)據(jù)采集自中國(guó)科學(xué)院資源環(huán)境科學(xué)數(shù)據(jù)中心。
3 "結(jié)果分析
金沙江流域干流頻繁發(fā)生地質(zhì)災(zāi)害,其中巨型滑坡以其特有的形態(tài)特征和巨大的規(guī)模給該地區(qū)造成了嚴(yán)重的自然災(zāi)害。巨型滑坡指的是地表或地下的大規(guī)模土石滑動(dòng)的地質(zhì)現(xiàn)象,通常規(guī)模巨大,可能涉及數(shù)百至上千萬(wàn)立方米的巖土體積[21]。沿金沙江流域干流地質(zhì)災(zāi)害頻發(fā)、巨型滑坡多發(fā)。本文主要根據(jù)表1中分類標(biāo)準(zhǔn)對(duì)滑坡規(guī)模進(jìn)行了劃分[22]。
3.1 "成因機(jī)制分析
金沙江干流地質(zhì)災(zāi)害的分布特征一直備受工程地質(zhì)和地質(zhì)災(zāi)害領(lǐng)域的關(guān)注?;碌某梢驈?fù)雜多樣,其中既包括內(nèi)動(dòng)力地質(zhì)作用成因,也包括外動(dòng)力地質(zhì)作用成因。依據(jù)對(duì)研究區(qū)地質(zhì)資料的分析和野外實(shí)地勘察,認(rèn)為影響金沙江干流巨型堵江滑坡發(fā)生的因素主要有地形坡度、活動(dòng)斷裂、地層巖性等。
3.1.1 "地形坡度
本文基于ArcGIS表面分析工具,生成了金沙江干流17個(gè)巨型滑坡的坡度,地形坡度的統(tǒng)計(jì)分析結(jié)果及其與滑坡數(shù)量統(tǒng)計(jì)圖如圖3、圖4所示。
根據(jù)統(tǒng)計(jì)結(jié)果顯示,發(fā)生滑坡的山體的平均坡度介于0°~83.7°之間。其中,坡度在25°~40°之間的山體滑坡事件最為集中,約占滑坡總數(shù)的58.8%,這意味著在該坡度范圍內(nèi)的山體更容易發(fā)生滑坡。相反,坡度低于10°和高于60°的地區(qū)所發(fā)生的災(zāi)害數(shù)量只占總數(shù)的5.9%。過(guò)低的坡度滑坡動(dòng)力不足不利于斜坡物質(zhì)滑動(dòng)。同時(shí),王盈等[23]在對(duì)藏東南地區(qū)地質(zhì)災(zāi)害的地形坡度影響分析中發(fā)現(xiàn)山體坡度過(guò)高不利于物質(zhì)堆積,這與我們發(fā)現(xiàn)的坡度集中在25°~40°范圍內(nèi)的結(jié)果相一致。
3.1.2 "活動(dòng)斷裂
研究區(qū)位于印度洋板塊與歐亞板塊的擠壓-俯沖帶,以及側(cè)面擠壓-剪切帶。與此同時(shí),太平洋板塊和菲律賓板塊對(duì)中國(guó)大陸南部施加推力,導(dǎo)致該地區(qū)的現(xiàn)代構(gòu)造應(yīng)力場(chǎng)和構(gòu)造活動(dòng)異常復(fù)雜,頻繁發(fā)生地震事件。例如,1786年發(fā)生的摩崗嶺滑坡直接由磨西地震觸發(fā),堵塞大渡河并持續(xù)了10天后潰決[24-26]?;寤率堑卣饻笮突碌牡湫屠樱l(fā)生在麗江大地震8個(gè)月后[27-29]。
斷裂活動(dòng)對(duì)巨型滑坡的形成起著至關(guān)重要的控制作用。它通過(guò)改變地形地貌和巖體結(jié)構(gòu),影響斜坡的應(yīng)力場(chǎng)穩(wěn)定性,從而誘發(fā)滑坡災(zāi)害,并為滑坡災(zāi)害提供物質(zhì)來(lái)源[30]。斷裂活動(dòng)被認(rèn)為是巨型滑坡災(zāi)害鏈的根源,也是多期次大規(guī)模古滑坡的主要成因。巨型滑坡的形成與斷層構(gòu)造面的力學(xué)和強(qiáng)度密不可分,其運(yùn)動(dòng)和應(yīng)力分布直接影響地層巖石的穩(wěn)定性,從而影響附近斜坡的穩(wěn)定性,增加滑坡發(fā)生的風(fēng)險(xiǎn)。此外,斷層活動(dòng)還受到地殼抬升、地震以及其他內(nèi)部動(dòng)力的間接或直接影響,進(jìn)一步影響巨型滑坡的形成和發(fā)展。為了研究斷層構(gòu)造對(duì)金沙江干流巨型滑坡的影響,筆者利用吳中海等[20]在2018年發(fā)表的活動(dòng)斷層數(shù)據(jù)和中國(guó)地震臺(tái)網(wǎng)自公元780年至今的地震數(shù)據(jù)繪制了金沙江干流的5級(jí)以上地震震中分布圖(圖5)。同時(shí),對(duì)金沙江干流巨型滑坡與附近區(qū)域性大型斷層之間的距離進(jìn)行了統(tǒng)計(jì)分析。這可以幫助我們更深入地理解斷層構(gòu)造對(duì)滑坡的影響程度,具體結(jié)果見表2。該研究對(duì)于我們預(yù)測(cè)和防范未來(lái)可能發(fā)生的地質(zhì)災(zāi)害具有重要意義。通過(guò)進(jìn)一步研究斷層運(yùn)動(dòng)對(duì)該地區(qū)地質(zhì)災(zāi)害的影響,可以提高防災(zāi)減災(zāi)的能力,并減少地震和滑坡災(zāi)害造成的損失。
根據(jù)統(tǒng)計(jì)分析結(jié)果(表2),活斷層作用下地震觸發(fā)的滑坡為該區(qū)域巨型滑坡災(zāi)害的主要成因,占總數(shù)的64.7%。此外,在對(duì)滑坡規(guī)模與斷裂帶距離的統(tǒng)計(jì)(圖6)中,約有17.6%的巨型滑坡發(fā)生在斷裂帶之上,而超過(guò)76%的巨型滑坡則發(fā)生在距離斷裂帶5 km范圍內(nèi)。這表明巨型滑坡災(zāi)害與地質(zhì)構(gòu)造密切相關(guān),其主要原因是該區(qū)域存在許多區(qū)域性斷層,其中一些斷層處于活動(dòng)狀態(tài)。地質(zhì)構(gòu)造的強(qiáng)烈活動(dòng)加劇巖體破碎的同時(shí),形成許多次生軟弱面,削弱巖石的力學(xué)特性,并促進(jìn)風(fēng)化作用,加劇該處松散碎屑物的形成和邊坡的不穩(wěn)定,導(dǎo)致該地區(qū)滑坡災(zāi)害的發(fā)生。金沙江干流地處青藏高原東南緣,地質(zhì)構(gòu)造單元之間的相對(duì)運(yùn)動(dòng)差異大,斷裂性質(zhì)多變。這種復(fù)雜構(gòu)造分布和強(qiáng)烈的構(gòu)造活動(dòng)為巨型滑坡災(zāi)害的發(fā)生提供了重要的形成條件,同時(shí)也導(dǎo)致該地區(qū)地震頻繁發(fā)生。
活斷層作用下頻繁的地震活動(dòng)會(huì)破壞邊坡的應(yīng)力平衡,降低邊坡的穩(wěn)定性,最終導(dǎo)致邊坡失穩(wěn)破壞,形成大量滑坡。此外,活躍的構(gòu)造運(yùn)動(dòng)或頻繁的地面震動(dòng)也會(huì)導(dǎo)致巖土體松動(dòng),進(jìn)一步降低邊坡的穩(wěn)定性,在受到降水等誘發(fā)因素影響下,邊坡極有可能發(fā)生失穩(wěn)滑坡。
3.1.3 "地層巖性
地層的巖性和結(jié)構(gòu)為滑坡的發(fā)展提供了有利的地質(zhì)條件,是滑坡發(fā)生的關(guān)鍵因素。不同的巖性對(duì)滑坡發(fā)生有不同的影響。具體來(lái)說(shuō),不同巖性單元在物理力學(xué)特性方面有所不同,包括類型、強(qiáng)度、風(fēng)化程度、耐久性、密度和滲透性[48]。地層巖性是滑坡災(zāi)害發(fā)生的組成物質(zhì)基礎(chǔ),其組成和性質(zhì)對(duì)災(zāi)害的發(fā)生具有十分重要的作用。
根據(jù)《工程巖石分類標(biāo)準(zhǔn)》(GB/T 50218—2014)以及杜國(guó)梁"[49]在研究中得出的結(jié)果,結(jié)合對(duì)1∶50萬(wàn)比例尺地質(zhì)圖的地層巖性分析,我們對(duì)研究區(qū)的巖性進(jìn)行了劃分,將其分為4個(gè)地質(zhì)巖性分組,分別是堅(jiān)硬巖類、較堅(jiān)硬巖類、軟弱巖類和松散土類。具體的巖性劃分見表3。由于較軟巖類和軟巖類抗風(fēng)化能力較弱,我們將原有的較軟巖和軟巖合并為軟弱巖類;極軟巖類多為全風(fēng)化,不易區(qū)分,同時(shí),考慮到研究區(qū)谷底有較大面積的第四系覆蓋物,因此將其歸為松散土類。研究區(qū)的地質(zhì)巖性與滑坡關(guān)系的統(tǒng)計(jì)見圖7。在統(tǒng)計(jì)過(guò)程中,發(fā)現(xiàn)金沙江干流的巨型滑坡大多發(fā)生在巖質(zhì)斜坡,主要包括灰?guī)r、砂巖、黑云母石英片巖、大理巖、花崗巖、閃長(zhǎng)巖等。這些巖層多發(fā)育有斷層和褶皺,在動(dòng)力作用的影響下容易沿軟弱巖層滑動(dòng)。同時(shí),金沙江干流以較堅(jiān)硬的巖性為主,但巖石多為高度蝕變且?guī)r體破碎。我們認(rèn)為金沙江干流巖體雖然巖性堅(jiān)硬,但卻頻繁發(fā)生滑坡,是由于該地處于印度板塊、歐亞板塊的碰撞隆起區(qū),構(gòu)造復(fù)雜,斷裂發(fā)育,導(dǎo)致巖石破碎,利于滑坡的發(fā)生。
綜上所述,地形坡度、活動(dòng)斷裂、地層巖性等因素在巨型滑坡的發(fā)展中起著關(guān)鍵的控制作用。在青藏高原東南緣,斷裂的發(fā)育程度高,活動(dòng)性強(qiáng),地層巖性復(fù)雜,山勢(shì)陡峭,河流系統(tǒng)發(fā)達(dá)。此外,人類工程活動(dòng)的不斷增加也推動(dòng)了金沙江兩岸滑坡的發(fā)生。在這些影響因素的作用下,該處巨型滑坡災(zāi)害呈現(xiàn)出一定的規(guī)律性。通常,高山峽谷、河流切割強(qiáng)烈的地區(qū)、以灰?guī)r、玄武巖等堅(jiān)硬巖類為主的地區(qū)、以綠片巖、片麻巖為主的較堅(jiān)硬巖類分布的地區(qū)、以及斷裂帶分布區(qū)和活動(dòng)構(gòu)造強(qiáng)烈地區(qū)以及人類活動(dòng)頻繁的地區(qū),更容易發(fā)生滑坡。
3.2 "滑坡時(shí)空分布
3.2.1 "時(shí)間分布特征
金沙河流域的滑坡分布范圍廣、活動(dòng)斷裂發(fā)育,滑坡由多期次地震觸發(fā)。本文通過(guò)收集大量歷史文獻(xiàn)資料,確定流域內(nèi)滑坡的發(fā)生時(shí)間,研究區(qū)巨型滑坡的形成時(shí)間及相應(yīng)地質(zhì)年代見表4。
根據(jù)整理的數(shù)據(jù),金沙江干流17處巨型堵江滑坡的形成時(shí)間跨度,從晚更新世以前至2018年。根據(jù)時(shí)代進(jìn)行分類,大部分巨型滑坡形成于全新世,其中金沙江上游的巨型滑坡分布于各個(gè)時(shí)間段,這可能與上游的地形地貌有關(guān),而金沙江中游和下游的滑坡多發(fā)生于更新世-全新世時(shí)期。根據(jù)搜集到的巨型滑坡及其發(fā)生時(shí)間做統(tǒng)計(jì)圖(圖8),顯示近一萬(wàn)年內(nèi)巨型滑坡數(shù)量明顯較多。
3.2.2 "空間分布特征
以研究區(qū)2022年谷歌影像為底圖,結(jié)合大量文獻(xiàn)資料及遙感影像,對(duì)金沙江干流的滑坡災(zāi)害進(jìn)行了統(tǒng)計(jì)和分析。利用ArcGIS軟件提取了干流巨型滑坡災(zāi)害的點(diǎn)密度,并生成研究區(qū)巨型滑坡災(zāi)害核密度分布圖(圖9),以揭示金沙江干流滑坡災(zāi)害的分布特征和空間分布規(guī)律。從圖中可以明顯看出,研究區(qū)巨型滑坡呈現(xiàn)出“小范圍聚集”的整體空間分布特征,形成了兩個(gè)相對(duì)集中的滑坡分布區(qū)。
通過(guò)對(duì)金沙江干流巨型滑坡進(jìn)行分河段統(tǒng)計(jì),發(fā)現(xiàn)滑坡分布不均,生成的核密度分布圖也呈現(xiàn)出同樣的特點(diǎn)。同時(shí),密度圖顯示,巨型滑坡多分布在金沙江干流的上游,且滑坡數(shù)量較多、密度較大,約占統(tǒng)計(jì)滑坡數(shù)量的70.6%。根據(jù)DEM圖顯示,金沙江上游高程相對(duì)較高,平均在2500 m以上,而金沙江下游河床較寬,水流相對(duì)較弱,且高程多在1300 m左右。因此,推測(cè)由于金沙江上游地形起伏較大,滑坡在此段更為集中。
4 "討論
4.1 "巨型古滑坡成因機(jī)制分析
前人研究認(rèn)為,巨型古滑坡的發(fā)生受到多種因素的控制[45,49,58-59],沿金沙江干流的巨型古滑坡主要受到鄰近活動(dòng)斷裂的控制,如黃健等[60]和龍維等[61]調(diào)查了金沙江上游巴塘河段的特米古滑坡的成因機(jī)制,通過(guò)地震參數(shù)反分析方法,認(rèn)為該滑坡很可能是由全新世晚期雄松—蘇哇龍斷層的活動(dòng)引發(fā)的地震觸發(fā)的大型滑坡,導(dǎo)致了金沙江的堵塞。此外,通過(guò)李忠等[62]對(duì)金沙江下游白鶴灘水庫(kù)內(nèi)巧家古滑坡的成因機(jī)制進(jìn)行了調(diào)查研究,結(jié)合使用了EH4大地電磁探測(cè)方法和鉆探的方法,推測(cè)巧家巨型古滑坡可能是由于小江斷裂帶強(qiáng)烈的左旋走滑作用所導(dǎo)致,斷裂帶的運(yùn)動(dòng)引起了巧家東側(cè)山地的持續(xù)性構(gòu)造抬升,并在巨大地震活動(dòng)的觸發(fā)下形成了巨型滑坡。然而,在同等內(nèi)外動(dòng)力觸發(fā)條件下,存在持續(xù)形變的斜坡更容易失穩(wěn)滑動(dòng)[63],如2017年四川茂縣新磨村滑坡后壁巖土體存在長(zhǎng)期持續(xù)形變[64],2018年甘肅舟曲江頂崖滑坡體在幾十年內(nèi)均有持續(xù)形變[65-68],2018年金沙江白格滑坡更經(jīng)歷了50年以上的長(zhǎng)期形變過(guò)程[69-70]。同時(shí),降雨,特別是暴雨,是引發(fā)滑坡活動(dòng)的主要觸發(fā)因素之一。林孝松[58]研究發(fā)現(xiàn)區(qū)域性大范圍、持續(xù)時(shí)間較長(zhǎng)的雨季或暴雨天氣往往會(huì)導(dǎo)致大量滑坡的發(fā)生。據(jù)史料記載,公元1029年的明嘉靖二十一年,新灘一帶遭遇了長(zhǎng)時(shí)間暴雨,導(dǎo)致新灘北岸山體崩塌、江河堵塞達(dá)82年之久,嚴(yán)重影響當(dāng)?shù)鼐用裆?sup>[71];1975年8月8—10日,湖北秭歸縣遭遇暴雨,雨量達(dá)到300 mm,引發(fā)了大規(guī)模的滑坡,造成了嚴(yán)重的災(zāi)害,據(jù)統(tǒng)計(jì)達(dá)到876處[72];日本在1981年和1982年統(tǒng)計(jì)的198處滑坡中,有195處是由降雨引發(fā)的,占總數(shù)的98%[72-73]。除上述影響,潰決洪水也是巨型滑坡的重要影響因素。在金沙江流域,部分邊坡在內(nèi)外動(dòng)力作用下失去穩(wěn)定性,而上游已經(jīng)堵塞的堰塞壩隨著水位的持續(xù)上升,一旦潰壩,洪水將對(duì)下游邊坡產(chǎn)生巨大的沖擊,從而促使不穩(wěn)定的坡體發(fā)生滑動(dòng),進(jìn)而引發(fā)下游的滑坡事件[59]。因此,巨型古滑坡的發(fā)生是多種因素控制的,為了確定其主控因素,需要進(jìn)行精確的形成年代測(cè)定,并與鄰近活動(dòng)斷層的古地震和古氣候記錄進(jìn)行詳細(xì)對(duì)比研究。
近年來(lái),為了獲得古滑坡的形成年代,主要使用了一些長(zhǎng)時(shí)間尺度測(cè)年方法,如14C[74-75]、光釋光[76]和宇宙成因核素[77]等。此外,國(guó)內(nèi)外學(xué)者對(duì)東南緣活動(dòng)斷裂進(jìn)行了詳細(xì)的研究,但受限于第四系沉積物保存不完整和古地震記錄缺失的影響,古滑坡與活動(dòng)斷裂的對(duì)比存在困難。因此,對(duì)青藏高原東南緣活動(dòng)斷裂進(jìn)行深入的古地震研究至關(guān)重要。
4.2 "時(shí)空耦合關(guān)系
根據(jù)數(shù)據(jù)整理和圖表分析,我們發(fā)現(xiàn)巨型滑坡主要發(fā)生在全新世以來(lái)。近年來(lái)的研究指出[78-81],全新世期間金沙江流域可能經(jīng)歷了河流階地形成、河谷侵蝕等地質(zhì)過(guò)程,這可能導(dǎo)致流域河道持續(xù)下切,加劇地貌的高差,從而引發(fā)滑坡增多。此外,全新世以來(lái)金沙江流域的氣候變化以及經(jīng)濟(jì)快速發(fā)展和重建等人類活動(dòng)的影響,也可能是這一時(shí)期滑坡頻發(fā)的原因之一。古滑坡由于歷經(jīng)時(shí)間較長(zhǎng),受到了長(zhǎng)期的地質(zhì)作用,很多古滑坡沉積物難以保存完整,因此所統(tǒng)計(jì)的古滑坡多形成于全新世。
根據(jù)前文核密度分布圖(圖9),可以看到有2個(gè)主要的核密度集中區(qū),分別是沃達(dá)—奔子欄段和新馬鄉(xiāng)—巧家段。沃達(dá)—奔子欄段的巨型滑坡發(fā)育數(shù)量較多,主要受到巴塘斷裂、德欽—中甸斷裂、金沙江斷裂帶的明顯控制,同時(shí)西部發(fā)育的理塘斷裂也可能對(duì)該區(qū)域產(chǎn)生影響。上述斷裂帶分布在沃達(dá)—奔子欄段的北部、南部和中部,而理塘斷裂雖然相隔較遠(yuǎn),但也位于該河段的東側(cè)附近。推測(cè)這些斷裂帶的存在使巖體變得更加松散、破碎,節(jié)理、裂隙也更加發(fā)育,從而增加了該區(qū)域巨型滑坡的發(fā)生風(fēng)險(xiǎn)[82-84]。而金沙江干流下游段位于巧家附近的小型密度集中區(qū),該區(qū)域位于金沙江干流梯級(jí)水電站的第二個(gè)梯級(jí),地處川滇塊體與華南地塊的交界處,該區(qū)域的斷裂帶分布錯(cuò)綜復(fù)雜,小江斷裂、則木河斷裂、大涼山斷裂等多條大型斷裂在此交匯[85],推測(cè)該區(qū)域受到金沙江下游大型水電工程和斷裂帶影響(圖10)。金沙江流域下游自上而下依次建有烏東德水電站、白鶴灘水電站、溪洛渡水電站和向家壩水電站,4個(gè)水電站的開工時(shí)間依次為2017年、2013年、2005年和2006年,而文中統(tǒng)計(jì)的巧家段巨型滑坡的形成年代都在全新世早期,遠(yuǎn)早于該河段大型水電工程的建設(shè)時(shí)間,因此排除了大型水電工程對(duì)此段滑坡形成的影響。此外,該地區(qū)的斷裂帶活動(dòng)性較強(qiáng),包括長(zhǎng)約450 km的小江斷裂帶,是一條強(qiáng)烈破壞性地震帶,在近300年內(nèi)發(fā)生了4次7級(jí)以上地震和1次8級(jí)以上地震[86-87]。則木河斷裂帶北端與安寧河斷裂相連,南端與小江斷裂帶相交,歷史上也是中強(qiáng)震頻發(fā)地帶[88]。大涼山斷裂帶是一條新生構(gòu)造帶,歷史地震記錄顯示其活動(dòng)性相對(duì)較弱,但目前已積累了相當(dāng)?shù)牡卣鹉芰浚瑪嗔褞隙渭爸苓厖^(qū)域現(xiàn)在具有較高的地震活動(dòng)可能性[89-90]。
5 "主要結(jié)論和認(rèn)識(shí)
本文以金沙江干流搜集整理到的巨型滑坡為例,通過(guò)遙感影像分析方法,結(jié)合前人研究成果,綜合分析了其分布特征和影響因素,并得出以下主要結(jié)論:
(1)根據(jù)收集的資料和遙感影像解譯,共統(tǒng)計(jì)出金沙江干流前人研究較多且具有代表性的17個(gè)巨型滑坡災(zāi)害。這些滑坡的分布呈現(xiàn)明顯的區(qū)域性和分段集群性,主要分布在上游地區(qū),而在中下游地區(qū)較為稀疏,以上分布特征與研究區(qū)構(gòu)造背景密切相關(guān),主要受到活動(dòng)斷裂的影響。
(2)對(duì)滑坡發(fā)育與地形地貌、活動(dòng)斷裂之間的關(guān)系進(jìn)行統(tǒng)計(jì)分析后結(jié)果顯示,滑坡發(fā)育主要集中在坡度為25°~40°的區(qū)域。此外,隨滑坡與斷裂、震中之間的距離增大,滑坡災(zāi)害數(shù)量減少,巨型滑坡易發(fā)性降低。
(3)滑坡主要發(fā)生在高山峽谷地貌和河流切割作用強(qiáng)烈的地區(qū),主要分布在玄武巖、板巖、大理巖等堅(jiān)硬巖石和綠理巖、片麻巖等發(fā)生蝕變的較堅(jiān)硬巖石區(qū)。
(4)在本文提到的滑坡的影響因素中,活動(dòng)斷裂及強(qiáng)震活動(dòng)在巨型滑坡的形成過(guò)程中起到了更為重要的作用。
參考文獻(xiàn)
[1]張永雙,杜國(guó)梁,郭長(zhǎng)寶,等. 川藏交通廊道典型高位滑坡地質(zhì)力學(xué)模式[J]. 地質(zhì)學(xué)報(bào),2021,95(3):605-617 """Zhang Y S,Du G L,Guo C B,et al. Research on typical geomechanical model of high-position landslides on the Sichuan-Tibet traffic corridor[J]. Acta Geologica Sinica,2021,95(3):605-617
[2]王濤,劉甲美,栗澤桐,等. 中國(guó)地震滑坡危險(xiǎn)性評(píng)估及其對(duì)國(guó)土空間規(guī)劃的影響研究[J]. 中國(guó)地質(zhì),2021,48(1):21-39 """Wang T,Liu J M,Li Z T,et al. Seismic landslide hazard assessment of China and its impact on national territory spatial planning[J]. Geology in China,2021,48(1):21-39
[3]楊志華,吳瑞安,郭長(zhǎng)寶,等. 川西巴塘斷裂帶地質(zhì)災(zāi)害效應(yīng)與典型滑坡發(fā)育特征[J]. 中國(guó)地質(zhì),2022,49(2):355-368 """Yang Z H,Wu R A,Guo C B,et al. Geo-hazard effects and typical landslide characteristics of the Batang fault zone in the western Sichuan[J]. Geology in China,2022,49(2):355-368
[4]宿方睿,郭長(zhǎng)寶,張學(xué)科,等. 基于面向?qū)ο蠓诸惙ǖ拇ú罔F路沿線大型滑坡遙感解譯[J]. 現(xiàn)代地質(zhì),2017,31(5):930-942 """Su F R,Guo C B,Zhang X K,et al. Remote sensing interpretation of large landslides along Sichuan-Tibet railway based on object-oriented classification method[J]. Geoscience,2017,31(5):930-942
[5]吳俊峰. 大渡河流域重大地震滑坡發(fā)育特征與成因機(jī)理研究[D]. 成都:成都理工大學(xué),2013 """Wu J F. Research on development characteristics and genetic mechanism of the seismic landslides in Daduhe River[D]. Chengdu:Chengdu University of Technology,2013
[6]許強(qiáng),鄭光,李為樂(lè),等. 2018年10月和11月金沙江白格兩次滑坡?堰塞堵江事件分析研究[J]. 工程地質(zhì)學(xué)報(bào),2018,26(6):1534-1551 """Xu Q,Zheng G,Li W L,et al. Study on successive landslide damming events of Jinsha River in Baige Village on Octorber 11 and November 3,2018[J]. Journal of Engineering Geology,2018,26(6):1534-1551
[7]Ouyang C J,An H C,Zhou S,et al. Insights from the failure and dynamic characteristics of two sequential landslides at Baige village along the Jinsha River,China[J]. Landslides,2019,16(7):1397-1414
[8]李雪,郭長(zhǎng)寶,楊志華,等. 金沙江斷裂帶雄巴巨型古滑坡發(fā)育特征與形成機(jī)理[J]. 現(xiàn)代地質(zhì),2021,35(1):47-55 """Li X,Guo C B,Yang Z H,et al. Development characteristics and formation mechanism of the Xiongba giant ancient landslide in the Jinshajiang tectonic zone[J]. Geoscience,2021,35(1):47-55
[9]Dai Z L,Wang F W,Cheng Q G,et al. A giant historical landslide on the eastern margin of the Tibetan Plateau[J]. Bulletin of Engineering Geology and the Environment,2019,78(3):2055-2068
[10]Wang Y F,Cheng Q G,Shi A W,et al. Characteristics and transport mechanism of the Nyixoi Chongco rock avalanche on the Tibetan Plateau,China[J]. Geomorphology,2019,343:92-105
[11]Zeng Q L,Zhang L Q,Davies T,et al. Morphology and inner structure of Luanshibao rock avalanche in Litang,China and its implications for long-runout mechanisms[J]. Engineering Geology,2019,260:105216
[12]Zeng Q L,Yuan G X,McSaveney M,et al. Timing and seismic origin of Nixu rock avalanche in southern Tibet and its implications on Nimu active fault[J]. Engineering Geology,2020,268:105522
[13]Fan X M,Xu Q,Scaringi G,et al. Failure mechanism and kinematics of the deadly June 24th 2017 Xinmo landslide,Maoxian,Sichuan,China[J]. Landslides,2017,14(6):2129-2146
[14]Fan X M,Scaringi G,Korup O,et al. Earthquake-induced chains of geologic hazards:Patterns,mechanisms,and impacts[J]. Reviews of Geophysics,2019,57(2):421-503
[15]Francis O R,Hales T C,Hobley D E J,et al. The impact of earthquakes on orogen-scale exhumation[J]. Earth Surface Dynamics,2020,8(3):579-593
[16]Tian Y,Xu C,Ma S,et al. Inventory and spatial distribution of landslides triggered by the 8th August 2017 MW6.5 Jiuzhaigou earthquake,China[J]. Journal of Earth Science,2019,30(1):206-217
[17]邢麗,沈珍. 基于時(shí)序InSAR的金沙江流域滑坡隱患早期識(shí)別研究[J]. 長(zhǎng)江信息通信,2023,36(8):38-40 """Xing L,Shen Z. Study on landslide identification and deformation characteristics based on time series InsAR:A case study for the region from the Gongjue section of Jinsha River Basin[J]. Changjiang Information amp; Communications,2023,36(8):38-40
[18]張丹,梁瀚續(xù),何小聰,等. 基于CMIP6的金沙江流域徑流及水文干旱預(yù)估[J]. 水資源保護(hù),2023,39(6):53-62 """Zhang D,Liang H X,He X C,et al. Estimation of runoff and hydrological drought in the Jinsha River Basin based on CMIP6[J]. Water Resources Protection,2023,39(6):53-62
[19]O’Callaghan J F,Mark D M. The extraction of drainage networks from digital elevation data[J]. Computer Vision,Graphics,and Image Processing,1984,28(3):323-344
[20]吳中海,周春景. 中國(guó)及毗鄰海區(qū)活動(dòng)斷裂分布圖(1∶ lt;styled-content style-type=\"number\"gt; "5000000 lt;/styled-contentgt;)說(shuō)明書(中英文版)[M]. 北京:地質(zhì)出版社,2018 """Wu Z H,Zhou C J. Description of active faults in China and its adjacent sea area (1∶ lt;styled-content style-type=\"number\"gt; "5000000 lt;/styled-contentgt;)[M]. Beijing:Geological Press,2018
[21]薛德敏. 西南地區(qū)典型巨型滑坡形成與復(fù)活機(jī)制研究[D]. 成都:成都理工大學(xué),2011 """Xue D M. Research on the formation mechanism amp; revival mechanism of typical giant landslides in Southwest China[D]. Chengdu:Chengdu University of Technology,2011
[22]鐘永輝. 論我國(guó)地質(zhì)災(zāi)害的現(xiàn)狀及主要類型[J]. 科技資訊,2009(2):233 """Zhong Y H. On the current situation and main types of geological disasters in China[J]. Science amp; Technology Information,2009(2):233
[23]王盈,金家梁,袁仁茂. 藏東南地區(qū)地質(zhì)災(zāi)害空間分布及影響因素分析[J]. 地震研究,2019,42(3):428-437 """Wang Y,Jin J L,Yuan R M. Analysis on spatial distribution and influencing factors of geological disasters in southeast Tibet[J]. Journal of Seismological Research,2019,42(3):428-437
[24]王秀菊. 兩家人水電站滑石板順層巖質(zhì)邊坡滑坡機(jī)理數(shù)值模擬[J]. 南水北調(diào)與水利科技,2016,14(6):141-147,44 """Wang X J. Numerical analysis on landslide mechanism of a talc sheet rock slope at Liangjiaren hydropower station[J]. South-to-North Water Transfers and Water Science amp; Technology,2016,14(6):141-147,44
[25]曾慶利,張西娟,楊志法. 云南虎跳峽“滑石板”巖質(zhì)滑坡的基本特征與成因[J]. 自然災(zāi)害學(xué)報(bào),2007,16(3):1-6 """Zeng Q L,Zhang X J,Yang Z F. Principal characteristics and formation mechanism of plate type rock landslide in Hutiao-Gorge,Yunnan[J]. Journal of Natural Disasters,2007,16(3):1-6
[26]劉景儒,吳樹仁,張永雙,等. 金沙江下虎跳滑石板滑坡破壞機(jī)理及穩(wěn)定性分析[J]. 工程地質(zhì)學(xué)報(bào),2007,15(2):193-199 """Liu J R,Wu S R,Zhang Y S,et al. Mechanism and stability of Huashiban landslide on the down Tiger-Leap-Goege along Jinsha River[J]. Journal of Engineering Geology,2007,15(2):193-199
[27]李富,周洪福,宋志,等. 基于高密度電阻率法綜合反演研究:以摩崗嶺滑坡體勘察為例[J]. 水文地質(zhì)工程地質(zhì),2017,44(2):110-116 """Li F,Zhou H F,Song Z,et al. Based on the high density resistivity method comprehensive inversion research:Take the case of the investigation of the landslide in Mogangling[J]. Hydrogeology amp; Engineering Geology,2017,44(2):110-116
[28]周洪福,韋玉婷,王運(yùn)生,等. 1786年磨西地震觸發(fā)的摩崗嶺滑坡演化過(guò)程與成因機(jī)理[J]. 成都理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2017,44(6):649-658 """Zhou H F,Wei Y T,Wang Y S,et al. Discussion on the formation evolution and genetic mechanism of Mogangling landslide triggered by Moxi earthquake,Sichuan,China[J]. Journal of Chengdu University of Technology (Science amp; Technology Edition),2017,44(6):649-658
[29]張御陽(yáng). 強(qiáng)震觸發(fā)摩崗嶺滑坡成因機(jī)制及運(yùn)動(dòng)特性研究[D]. 成都:成都理工大學(xué),2013 """Zhang Y Y. The genetic mechanism and motion characteristics research on Mogangling landslide induced by the violent earthquake[D]. Chengdu:Chengdu University of Technology,2013
[30]夏金梧,朱萌. 金沙江主斷裂帶中段構(gòu)造特征與活動(dòng)性研究[J]. 人民長(zhǎng)江,2020,51(5):131-137,159 """Xia J W,Zhu M. Study on tectonic characteristics and activity of middle section of Jinshajiang main fault zone[J]. Yangtze River,2020,51(5):131-137,159
[31]聞學(xué)澤,徐錫偉,鄭榮章,等. 甘孜—玉樹斷裂的平均滑動(dòng)速率與近代大地震破裂[J]. 中國(guó)科學(xué)(D輯),2003,33(增刊1):199-208 """Wen X Z,Xu X W,Zheng R Z,et al. Mean sliding rate of the Ganz-Yushu rupture and rupture of recent major earthquakes[J]. Science in China (Series D),2003,33(S1):199-208
[32]周榮軍,聞學(xué)澤,蔡長(zhǎng)星,等. 甘孜—玉樹斷裂帶的近代地震與未來(lái)地震趨勢(shì)估計(jì)[J]. 地震地質(zhì),1997,19(2):115-124 """Zhou R J,Wen X Z,Cai C X,et al. Recent earthquakes and assessment of seismic tendency on the Ganzi-Yushu fault zone[J]. Seismology and Geology,1997,19(2):115-124
[33]金繼軍. 金沙江斷裂帶雄巴巨型古滑坡發(fā)育特征與穩(wěn)定性研究[D]. 北京:中國(guó)地質(zhì)科學(xué)院,2021 """Jin J J. Study on the development characteristics and stability of the Xiongba giant ancient landslide in the Jinshajiang fault zone[D]. Beijing:Chinese Academy of Geological Sciences,2021
[34]朱賽楠,殷躍平,王猛,等. 金沙江結(jié)合帶高位遠(yuǎn)程滑坡失穩(wěn)機(jī)理及減災(zāi)對(duì)策研究:以金沙江色拉滑坡為例[J]. 巖土工程學(xué)報(bào),2021,43(4):688-697 """Zhu S N,Yin Y P,Wang M,et al. Instability mechanism and disaster mitigation measures of long-distance landslide at high location in Jinsha River junction zone:Case study of Sela landslide in Jinsha River,Tibet[J]. Chinese Journal of Geotechnical Engineering,2021,43(4):688-697
[35]吳瑞安,張永雙,郭長(zhǎng)寶,等. 金沙江上游特米古滑坡堰塞湖形成與潰決時(shí)間討論[J]. 地質(zhì)論評(píng),2022,68(2):586-592 """Wu R A,Zhang Y S,Guo C B,et al. Discussion on formation and outburst time of Temi paleo-landslide dammed lake in the upper Jinsha River[J]. Geological Review,2022,68(2):586-592
[36]陳劍,崔之久,陳瑞琛,等. 金沙江上游特米古滑坡堰塞湖成因與演化[J]. 地學(xué)前緣,2021,28(2):85-93 """Chen J,Cui Z J,Chen R C,et al. The origin and evolution of the Temi paleolandslide-dammed lake in the upper Jinsha River[J]. Earth Science Frontiers,2021,28(2):85-93
[37]席亞南. 蘇哇龍滑坡宇生核素10Be暴露測(cè)年研究[D]. 南京:南京師范大學(xué),2020 """Xi Y N. Exposure dating of 10Be nuclides in the Suwalong landslide[D]. Nanjing:Nanjing Normal University,2020
[38]Chen J,Dai F C,Lü T Y,et al. Holocene landslide-dammed lake deposits in the upper Jinsha River,SE Tibetan Plateau and their ages[J]. Quaternary International,2013,298:107-113
[39]鄧建輝,李化,戴福初,等. 金沙江上游超大古堰塞湖及其相關(guān)問(wèn)題[J]. 工程科學(xué)與技術(shù),2022,54(6):75-84 """Deng J H,Li H,Dai F C,et al. A gigantic paleo-dammed lake in the upper reaches of Jinsha River and its relevant issues[J]. Advanced Engineering Sciences,2022,54(6):75-84
[40]孫曉慧. 快速隆升金沙江上游典型河段滑坡敏感性與風(fēng)險(xiǎn)性區(qū)劃研究:以徐龍—奔子欄河段為例[D]. 長(zhǎng)春:吉林大學(xué),2020 """Sun X H. Study on landslide susceptibility and risk mapping along the rapidly uplifting section of the upper Jinsha River:A case of Xulong to Benzilan reach[D]. Changchun:Jilin University,2020
[41]翟士杰. 基于離散元的灑茂頂古滑坡動(dòng)力學(xué)分析[D]. 長(zhǎng)春:吉林大學(xué),2020 """Zhai S J. The dynamic analysis of the ancient landslide using the discrete element model in Samaoding[D]. Changchun:Jilin University,2020
[42]韓旭東. 晚更新世曲龍滑坡堵江事件分析及堵江運(yùn)動(dòng)特征數(shù)值模擬研究[D]. 長(zhǎng)春:吉林大學(xué),2018 """Han X D. Comprehensive analysis and numerical simulation for Qulong landslide dam event in the Late Pleistocene[D]. Changchun:Jilin University,2018
[43]張家明,徐則民,李乾坤,等. 永勝金沙江寨子村古滑坡的新發(fā)現(xiàn)及地質(zhì)構(gòu)造約束[J]. 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版),2012,42(增刊3):206-213 """Zhang J M,Xu Z M,Li Q K,et al. New findings of ancient landslide and geological tectonic constraints along the Jinsha River near Zhaizicun,Yongsheng,Yunnan,China[J]. Journal of Jilin University (Earth Science Edition),2012,42(S3):206-213
[44]李會(huì)中,王團(tuán)樂(lè),段偉鋒,等. 金坪子滑坡形成機(jī)制分析與河段河谷地貌演化地質(zhì)研究[J]. 長(zhǎng)江科學(xué)院院報(bào),2006,23(4):17-22 """Li H Z,Wang T L,Duan W F,et al. Geological study on mechanism of Jinpingzi landslide and evolution of landform of Jinsha River[J]. Journal of Yangtze River Scientific Research Institute,2006,23(4):17-22
[45]張超. 金沙江殺威臺(tái)子古地震滑坡成因動(dòng)力學(xué)機(jī)理研究[D]. 成都:成都理工大學(xué),2016 """Zhang C. The study of kinetic mechanism of Shawei paleoseismic landslide located by the Jinsha River[D]. Chengdu:Chengdu University of Technology,2016
[46]張信寶,Higgitt D,劉維明,等. 金沙江下游金塘古滑坡堰塞湖階地[J]. 山地學(xué)報(bào),2013,31(1):127 """Zhang X B,Higgitt D,Liu W M,et al. Terraces of ancient giant Jintang landslide-dammed lake in Jinsha River[J]. Mountain Research,2013,31(1):127
[47]劉莉,張麗萍,李萍,等. 金沙江巧家巨型古滑坡發(fā)育特征及其形成條件[J]. 人民長(zhǎng)江,2022,53(1):118-125 """Liu L,Zhang L P,Li P,et al. Development characteristics and forming conditions of Qiaojia giant ancient landslide in Jinsha River[J]. Yangtze River,2022,53(1):118-125
[48]崔圣華,裴向軍,黃潤(rùn)秋,等. 汶川地震黃洞子溝右岸大型滑坡地質(zhì)構(gòu)造特征及成因[J]. 工程地質(zhì)學(xué)報(bào),2019,27(2):437-450 """Cui S H,Pei X J,Huang R Q,et al. Geological features and causes of the Wenchuan earthquake triggered large landslides on right bank of Huangdongzi gully[J]. Journal of Engineering Geology,2019,27(2):437-450
[49]杜國(guó)梁. 喜馬拉雅東構(gòu)造結(jié)地區(qū)滑坡發(fā)育特征及危險(xiǎn)性評(píng)價(jià)[D]. 北京:中國(guó)地質(zhì)科學(xué)院,2017 """Du G L. Development characteristics and hazard assessment of landslide in the eastern Himalayan syntaxis region of Tibetan Plateau[D]. Beijing:Chinese Academy of Geological Sciences,2017
[50]魏丹妮. 基于InSAR的金沙江流域沃達(dá)村滑坡變形演化特征[D]. 廊坊:防災(zāi)科技學(xué)院,2022 """Wei D N. Deformation evolution characteristics of the Woda village landslide in the Jinsha River Basin using InSAR technique[D]. Langfang:Institute of Disaster Prevention,2022
[51]高壯. 金沙江上游高山峽谷區(qū)InSAR典型滑坡監(jiān)測(cè)應(yīng)用研究[D]. 西安:長(zhǎng)安大學(xué),2022 """Gao Z. Monitoring and application of InSAR typical landslides in high mountain valley area of the upper Jinsha River[D]. Xi’an:Chang’an University,2022
[52]崔偉迪. 金沙江上游雪隆囊古堰塞湖沉積物的光釋光年代研究[D]. 北京:中國(guó)地質(zhì)大學(xué)(北京),2019 """Cui W D. Optically stimulated luminescence geochronology of sediments in Xuelongnang palaeo-dammed lake,upper reaches of Jinsha River valley[D]. Beijing:China University of Geosciences (Beijing),2019
[53]李永超. 金沙江上游蘇洼龍河段早期滑坡堵江事件識(shí)別及演化研究[D]. 長(zhǎng)春:吉林大學(xué),2021 """Li Y C. Identification and evolution of the paleo-landslide dam events in the Suwalong reach of the upper Jinsha River[D]. Changchun:Jilin University,2021
[54]崔杰,王蘭生,徐進(jìn),等. 金沙江中游滑坡堵江事件及古滑坡體穩(wěn)定性分析[J]. 工程地質(zhì)學(xué)報(bào),2008,16(1):6-10 """Cui J,Wang L S,Xu J,et al. Stability analysis of old landslide for a possible ancient landslide event blocking middle of Jinsha River[J]. Journal of Engineering Geology,2008,16(1):6-10
[55]易樹健,李渝生,黃超,等. 金沙江殺威臺(tái)子滑坡成因動(dòng)力學(xué)特性研究[J]. 防災(zāi)減災(zāi)工程學(xué)報(bào),2018,38(2):297-304 """Yi S J,Li Y S,Huang C,et al. The genetic dynamics characteristics of the Jinsha River Shaweitaizi landslide[J]. Journal of Disaster Prevention and Mitigation Engineering,2018,38(2):297-304
[56]李乾坤. 金沙江寨子村滑坡及其堰塞湖沉積[D]. 昆明:昆明理工大學(xué),2012 """Li Q K. The Zhaizicun landslide in Jinsha River and its deposits of landslide-dammed lake[D]. Kunming:Kunming University of Science and Technology,2012
[57]蘇懷,明慶忠,潘保田,等. 金沙江河谷-水系發(fā)育的年代學(xué)框架分析與探討[J]. 山地學(xué)報(bào),2013,31(6):685-692 """Su H,Ming Q Z,Pan B T,et al. The analysis and discussions on the chronological frame of Jinshajiang River valley-drainage[J]. Journal of Mountain Science,2013,31(6):685-692
[58]林孝松. 滑坡與降雨研究[J]. 地質(zhì)災(zāi)害與環(huán)境保護(hù),2001,12(3):1-7 """Lin X S. The study of landslide related to rainfall[J]. Journal of Geological Hazards and Environment Preservation,2001,12(3):1-7
[59]韓坤立,韓愛果,劉漢超. 岷江上游小海子壩潰決洪水危險(xiǎn)性評(píng)價(jià)[J]. 地質(zhì)災(zāi)害與環(huán)境保護(hù),1999,10(1):47-51 """Han K L,Han A G,Liu H C. Evaluation on hazard of burst flood of Xiaohaizi Dam[J]. Journal of Geological Hazards and Environment Preservation,1999,10(1):47-51
[60]黃健,賀子城,黃祥,等. 基于地貌特征的滑坡堰塞壩形成敏感性研究[J]. 地質(zhì)科技通報(bào),2021,40(5):253-262 """Huang J,He Z C,Huang X,et al. Formation sensitivity of landslide dam based on geomorphic characteristics[J]. Bulletin of Geological Science and Technology,2021,40(5):253-262
[61]龍維,陳劍,王鵬飛,等. 金沙江上游特米大型古滑坡的成因及古地震參數(shù)反分析[J]. 地震研究,2015,38(4):568-575 """Long W,Chen J,Wang P F,et al. Formation mechanism and back analysis of paleoseismic parameters of the Temi large-scale ancient landslide in the upper Jinsha River[J]. Journal of Seismological Research,2015,38(4):568-575
[62]李忠,吳中海,汪金明,等. 利用EH4音頻大地電磁測(cè)深儀探測(cè)巧家巨型古滑坡及其結(jié)構(gòu)面特征[J]. 地質(zhì)力學(xué)學(xué)報(bào),2021,27(2):317-325 """Li Z,Wu Z H,Wang J M,et al. Using EH4 audio-magnetotelluric sounder to detect the gigantic Qiaojia paleo-landslide and its structural characteristics[J]. Journal of Geomechanics,2021,27(2):317-325
[63]楊志華,吳瑞安,郭長(zhǎng)寶,等. 融合斜坡形變特征的復(fù)雜山區(qū)區(qū)域滑坡評(píng)價(jià)研究現(xiàn)狀與展望[J/OL]. 中國(guó)地質(zhì),2023(2023-10-20). http://geochina.cgs.gov.cn/geochina/geochina/article/abstract/20230630002 """Yang Z H,Wu R A,Guo C B,et al. Research status and prospect of regional landslide assessment integrating slope deformation characteristics in the complex mountainous area[J/OL]. Geology in China,2023(2023-10-20). http://geochina.cgs.gov.cn/geochina/geochina/article/abstract/20230630002
[64]郭朋瑜,閆興田,吉鋒,等. 四川茂縣新磨村滑坡啟動(dòng)機(jī)制物理模擬試驗(yàn)研究[J]. 工程地質(zhì)學(xué)報(bào),2023,31(1):154-164 """Guo P Y,Yan X T,Ji F,et al. Physical simulation test of initiation mechanism for Xinmocun landslide in Maoxian,Sichuan[J]. Journal of Engineering Geology,2023,31(1):154-164
[65]楊校輝,強(qiáng)遠(yuǎn)文,王宏睿,等. 甘肅舟曲滑坡成因機(jī)制與發(fā)育分布規(guī)律[J/OL]. 現(xiàn)代地質(zhì),2023(2023-03-01).https://doi.org/10.19657/j.geoscience.1000-8527.2023.018 """Yang X H,Qiang Y W,Wang H R,et al. The formation mechanism and development distribution law of landslide in Zhouqu County,Gansu Province[J/OL]. Geoscience,2023(2023-03-01). https://doi.org/10.19657/j.geoscience.1000-8527.2023.018
[66]張衛(wèi)雄,丁保艷,張文綸,等. 舟曲江頂崖大型滑坡成因及破壞機(jī)制分析[J]. 防災(zāi)減災(zāi)工程學(xué)報(bào),2022,42(4):714-722 """Zhang W X,Ding B Y,Zhang W L,et al. Analysis on the cause and failure mechanism of the Jiangdingya large landslide in Zhouqu,Gansu Province[J]. Journal of Disaster Prevention and Mitigation Engineering,2022,42(4):714-722
[67]郭長(zhǎng)寶,張永雙,劉定濤,等. 基于離心機(jī)模型試驗(yàn)的甘肅江頂崖古滑坡復(fù)活機(jī)理研究[J]. 工程地質(zhì)學(xué)報(bào),2022,30(1):164-176 """Guo C B,Zhang Y S,Liu D T,et al. Centrifuge model test of reactivation mechanism of Jiangdingya ancient landslide in Gansu Province[J]. Journal of Engineering Geology,2022,30(1):164-176
[68]韓旭東,付杰,李嚴(yán)嚴(yán),等. 舟曲江頂崖滑坡的早期判識(shí)及風(fēng)險(xiǎn)評(píng)估研究[J]. 水文地質(zhì)工程地質(zhì),2021,48(6):180-186 """Han X D,F(xiàn)u J,Li Y Y,et al. A study of the early identification and risk assessment of the Jiangdingya landslide in Zhouqu County[J]. Hydrogeology amp; Engineering Geology,2021,48(6):180-186
[69]唐岳灝,姜清輝. 金沙江白格滑坡殘留體穩(wěn)定性及堵江風(fēng)險(xiǎn)分析[J]. 水利水電快報(bào),2023,44(5):38-44 """Tang Y H,Jiang Q H. Stability and risk assessment of the residual body landslide and river blockage in Baige,Jinsha River[J]. Express Water Resources amp; Hydropower Information,2023,44(5):38-44
[70]楊連偉. 金沙江白格滑坡失穩(wěn)機(jī)理及影響因素分析[J]. 人民長(zhǎng)江,2023,54(1):119-125,176 """Yang L W. Analysis on instability mechanism and influencing factors of Baige landslide on Jinsha River[J]. Yangtze River,2023,54(1):119-125,176
[71]云南省地質(zhì)礦產(chǎn)局. 云南省區(qū)域地質(zhì)志[M]. 北京:地質(zhì)出版社,1990 """Yunnan Provincial Bureau of Geology and Mineral Resources. Regional geology of Yunnan Province[M]. Beijing:Geological Press,1990
[72]馬思遠(yuǎn). 地震降雨多場(chǎng)景下觸發(fā)滑坡分布規(guī)律和危險(xiǎn)性概率評(píng)估研究[D]. 北京:中國(guó)地震局地質(zhì)研究所,2022 """Ma S Y. The distribution characteristics and hazard assessment of landslide under various earthquake and rainfall scenarios[D]. Beijing:Institute of Geology,China Earthquake Administrator,2022
[73]孫晨,汪方,周月華,等. CWRF模式對(duì)長(zhǎng)江流域極端降水氣候事件的模擬能力評(píng)估[J]. 氣候變化研究進(jìn)展,2022,18(1):44-57 """Sun C,Wang F,Zhou Y H,et al. An assessment on extreme precipitation events in Yangtze River Basin as simulated by CWRF regional climate mode[J]. Climate Change Research,2022,18(1):44-57
[74]韓建恩,邵兆剛,張雪鋒,等. 青藏高原南部瑪不錯(cuò)湖面變化及其對(duì)氣候環(huán)境的指示[J]. 現(xiàn)代地質(zhì),2024,38(2):477-486 """Han J E,Shao Z G,Zhang X F,et al. Lake level fluctuations and indications of climate changes of the Mabucuo Lake in the southern Tibetan Plateau[J]. Geoscience,2024,38(2):477-486
[75]常祖峰,羅林,劉昌偉,等. 云南濤源盆地古砂脈及其代表的古地震事件[J]. 北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,60(2):227-238 """Chang Z F,Luo L,Liu C W,et al. Paleo-sandblows and their represented paleoseismic events in the Taoyuan Basin, Yunnan Province[J]. Acta Scientiarum Naturalium Universitatis Pekinensis,2024,60(2):227-238
[76]李江濤,吳中海,姚海濤,等. 滇西北大具盆地新發(fā)現(xiàn)第四紀(jì)江邊斷裂及其活動(dòng)特征[J/OL]. 地質(zhì)通報(bào),2023(2023-11-06). http://kns.cnki.net/kcms/detail/11.4648.P.20231106.0850.002.html """Li J T,Wu Z H,Yao H T,et al. A newly discovered Quaternary Jiangbian fault and its activity characteristics in the Daju Basin,northwestern of Yunnan[J/OL]. Geological Bulletin of China,2023(2023-11-06). http://kns.cnki.net/kcms/detail/11.4648.P.20231106.0850.002.html
[77]劉靜,張金玉,葛玉魁,等. 構(gòu)造地貌學(xué):構(gòu)造-氣候-地表過(guò)程相互作用的交叉研究[J]. 科學(xué)通報(bào),2018,63(30):3070-3088 """Liu J,Zhang J Y,Ge Y K,et al. Tectonic geomorphology:An interdisciplinary study of the interaction among tectonic climatic and surface processes[J]. Chinese Science Bulletin,2018,63(30):3070-3088
[78]李海龍,張?jiān)罉? 滑坡型堰塞湖形成與保留條件分析:基于文獻(xiàn)總結(jié)和青藏高原東緣南北向深切河谷研究[J]. 第四紀(jì)研究,2015,35(1):71-87 """Li H L,Zhang Y Q. Analysis of the controlling factors of landslide damming and dam failure:An analysis based on literature review and the study on the meridional river system of eastern Tibetan Plateau[J]. Quaternary Sciences,2015,35(1):71-87
[79]張金玉,劉靜,王偉,等. 活動(dòng)造山帶地區(qū)河流階地與下切速率及其時(shí)空分布樣式[J]. 第四紀(jì)研究,2018,38(1):204-219 """Zhang J Y,Liu J,Wang W,et al. Fluvial terraces and river incision rates in active orogen and their spatial and temporal pattern[J]. Quaternary Sciences,2018,38(1):204-219
[80]許強(qiáng),陳偉,張倬元. 對(duì)我國(guó)西南地區(qū)河谷深厚覆蓋層成因機(jī)理的新認(rèn)識(shí)[J]. 地球科學(xué)進(jìn)展,2008,23(5):448-456 """Xu Q,Chen W,Zhang Z Y. New views on forming mechanism of deep overburden on river bed in southwest of China[J]. Advances in Earth Science,2008,23(5):448-456
[81]胡剛,張勇,孔祥淮,等. 全新世中國(guó)大河三角洲沉積演化模式轉(zhuǎn)化及其對(duì)人類活動(dòng)的響應(yīng)[J]. 海洋地質(zhì)與第四紀(jì)地質(zhì),2021,41(5):77-89 """Hu G,Zhang Y,Kong X H,et al. Changes of evolution models of China’s large river deltas since Holocene and their responses to anthropogenic activities[J]. Marine Geology amp; Quaternary Geology,2021,41(5):77-89
[82]劉文,王猛,朱賽楠,等. 基于光學(xué)遙感技術(shù)的高山極高山區(qū)高位地質(zhì)災(zāi)害鏈?zhǔn)教卣鞣治觯阂越鹕辰嫌蔚湫投陆聻槔齕J]. 中國(guó)地質(zhì)災(zāi)害與防治學(xué)報(bào),2021,32(5):29-39 """Liu W,Wang M,Zhu S N,et al. An analysis on chain characteristics of highstand geological disasters in high mountains and extremely high mountains based on optical remote sensing technology:A case study of representative large landslides in upper reach of Jinsha River[J]. The Chinese Journal of Geological Hazard and Control,2021,32(5):29-39
[83]常玉巧,陳立春,張琦. 金沙江斷裂帶構(gòu)造地貌與斷裂活動(dòng)特征研究[J]. 國(guó)際地震動(dòng)態(tài),2019(8):142-143 """Chang Y Q,Chen L C,Zhang Q. Analysis of tectonic geomorphology and activity characteristics of the Jinsha river fault[J]. Recent Developments in World Seismology,2019(8):142-143
[84]徐曉雪,季靈運(yùn),蔣鋒云,等. 基于GPS和小震研究金沙江斷裂帶現(xiàn)今活動(dòng)特征[J]. 大地測(cè)量與地球動(dòng)力學(xué),2020,40(10):1062-1067 """Xu X X,Ji L Y,Jiang F Y,et al. Study on current activity features of Jinshajiang fault zone based on GPS and small earthquakes[J]. Journal of Geodesy and Geodynamics,2020,40(10):1062-1067
[85]李君,王勤彩,崔子健,等. 川滇菱形塊體東邊界及鄰區(qū)震源機(jī)制解與構(gòu)造應(yīng)力場(chǎng)空間分布特征[J]. 地震地質(zhì),2019,41(6):1395-1412 """Li J,Wang Q C,Cui Z J,et al. Characteristics of focal mechanisms and stress field in the eastern boundary of Sichuan-Yunnan block and its adjacent area[J]. Seismology and Geology,2019,41(6):1395-1412
[86]張欣,王運(yùn)生,梁瑞鋒. 基于GIS的小江斷裂中北段滑坡災(zāi)害危險(xiǎn)性評(píng)價(jià)[J]. 地質(zhì)與勘探,2018,54(3):623-633 """Zhang X,Wang Y S,Liang R F. Assessment of landslide hazard in the middle and northern Xiaojiang fault zone based on GIS[J]. Geology and Exploration,2018,54(3):623-633
[87]馮振,吳中海,曹佳文,等. 小江斷裂帶巧家段巨型古滑坡及其工程地質(zhì)特征[J]. 地球?qū)W報(bào),2019,40(4):629-636 """Feng Z,Wu Z H,Cao J W,et al. Engineering geological characteristics of gigantic pre-historic landslide along Qiaojia section of the Xiaojiang fault[J]. Acta Geoscientica Sinica,2019,40(4):629-636
[88]李姜一,周本剛,李鐵明,等. 安寧河—?jiǎng)t木河斷裂帶和大涼山斷裂帶孕震深度研究及其地震危險(xiǎn)性[J]. 地球物理學(xué)報(bào),2020,63(10):3669-3682 """Li J Y,Zhou B G,Li T M,et al. Seismogenic depths of the Anninghe-Zemuhe and Daliangshan fault zones and their seismic hazards[J]. Chinese Journal of Geophysics,2020,63(10):3669-3682
[89]馮嘉輝,陳立春,王虎,等. 大涼山斷裂帶北段石棉斷裂的古地震[J]. 地震地質(zhì),2021,43(1):53-71 """Feng J H,Chen L C,Wang H,et al. Paleoseismologic study on the Shimian fault in the northern section of the Daliangshan fault zone[J]. Seismology and Geology,2021,43(1):53-71
[90]伍純昊,崔鵬,李渝生,等. 青藏高原東緣活動(dòng)斷裂帶地殼巖體構(gòu)造損傷特征與模式討論[J]. 工程地質(zhì)學(xué)報(bào),2021,29(2):289-306 """Wu C H,Cui P,Li Y S,et al. Tectonic damage of crustal rock mass around active faults and its conceptual model at eastern margin of Tibetan Plateau[J]. Journal of Engineering Geology,2021,29(2):289-306
Development characteristics and formation mechanism of giant landslides on the main stream of the Jinsha River
Jiang Jiaqi1, 2, 3, Wu Zhonghai1, 3, *, Huang Xiaolong1, 4, Huang Feipeng1, 3, Wang Shifeng1, 3
1. Institute of Geomechanics, Chinese Academy of Geological Sciences, Beijing 100081, China
2. School of Earth Sciences, China University of Geosciences (Wuhan), Hubei Wuhan 430074, China
3. Key Laboratory of Active Tectonics and Geological Safety, Ministry of Natural Resources, Beijing 100081, China
4. Changjiang Survey, Planning, Design and Research Co., Ltd., Hubei Wuhan 430073, China
[Abstract] """"The main stream of the Jinsha River traverses the highly complex topography and intense neotectonic movement of the southeastern edge of the Qinghai-Tibet Plateau, where a large number of giant landslides have formed, resulting in severe landslide disasters in the region. Therefore, in-depth investigation into the formation mechanisms of these landslides along the main stream of the Jinsha River is of paramount significance for disaster prevention and mitigation in this area. This study conducts a comprehensive exploration of formation mechanisms of these giant landslides using a combination of literature review and remote sensing image analysis. The findings reveal that the formation of giant landslides along the main stream of the Jinsha River is influenced by multiple factors. Firstly, topographical slope plays a crucial role, with a higher probability of landslide occurrence in the range of 25° to 40°. Secondly, active faults significantly contribute to the landslide formation process, as fault zone activity can lead to rock deformation and fragmentation, thus increasing the likelihood of landslide occurrence. Furthermore, the lithology of rock strata is also a key factor influencing landslides, impacting the physical and mechanical properties of rock-soil mass and the stress distribution characteristics of the slope, resulting in regional stability differences and an increased potential for landslides. These factors can lead to further development of landslides, and even trigger chain disasters such as river blockage, dam breach, and flooding in the basin.
[Keywords] main stream of the Jinsha River; active faults; giant landslides; southeastern edge of the Qinghai-Tibet Plateau; disaster prevention and mitigation