亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        急性低溫和復溫對青田田魚鰓組織代謝的影響

        2024-12-27 00:00:00廖嘉儀熊梓彤李志力劉其根孫佳敏
        南方農業(yè)學報 2024年9期
        關鍵詞:代謝組學

        摘要:【目的】青田田魚在淺水環(huán)境中經常面臨急性低溫脅迫,探究青田田魚在急性低溫和復溫環(huán)境下的生理響應機制,為青田田魚科學越冬和耐低溫品種選育提供理論依據(jù)。【方法】通過液相色譜—質譜(LC-MS)非靶向代謝組學技術,提取9.0℃脅迫6 h(CO組)、升溫至28.0℃復溫恢復6 h(RE組)和28.0℃對照組(Con組)青田田魚鰓組織樣本代謝峰。預處理后的代謝組數(shù)據(jù)與數(shù)據(jù)庫匹配鑒定代謝物種類。通過主成分分析(PCA)和正交最小偏二乘判別分析(OPLS-DA)鑒定代謝組學數(shù)據(jù)的可靠性。根據(jù)Student’s test檢驗的P值(Plt;0.05)和OPLS-DA模型得到的變量權重值(VIPgt;1)篩選組間差異代謝物。對差異代謝物進行KEGG信號通路富集分析,并用Fisher精確檢驗分析篩選與急性低溫和復溫最相關的代謝通路。對重要代謝通路制作聚類熱圖,顯示組間差異和代謝物水平變化趨勢?!窘Y果】PCA和OPLS-DA分析結果顯示,組內樣本聚集,組間樣本分離,組間的代謝物水平存在顯著差異。OPLS-DA得分圖顯示各組Q2累計值均在0.5以上,R2Y累積值均接近1.0,模型具有較高的解釋度和可靠性;共鑒定到1222個代謝物,其中CO vs Con,RE vs CO和RE vs Con分別篩選鑒定出232、238和300種顯著差異代謝物(Plt;0.05)。各組間差異代謝物主要富集在花生四烯酸代謝、甘油磷脂代謝、類固醇激素生物合成和嘌呤代謝等代謝途徑;急性低溫脅迫下,皮質醇水平上調,而花生四烯酸及其代謝物和甘油磷脂代謝物下調。復溫后花生四烯酸、甘油磷脂代謝物和嘌呤代謝物相對Con組下調,皮質醇含量下調,?;撬岷可险{。【結論】急性低溫可導致青田田魚免疫、物質轉運和信號傳遞等功能異常。皮質醇的合成和代謝可能是青田田魚抵抗急性低溫脅迫的重要機制。復溫后青田田魚鰓組織損傷在短期內無法得到完全恢復。?;撬岷铣煽赡苁乔嗵锾雉~在復溫過程中的重要恢復機制。

        關鍵詞:青田田魚;急性低溫;復溫恢復;代謝組學;鰓組織

        中圖分類號:S961.4文獻標志碼:A文章編號:2095-1191(2024)09-2813-11

        Effects of acute cold stress and rewarming on the metabolismof gill tissue of Qingtian paddy field carp(Cyprinuscarpio var.qingtianensis)

        LIAO Jia-yi1,2,3,XIONG Zi-tong1,2,3,LI Zhi-li1,2,3,LIU Qi-gen1,2,3*,SUN Jia-min1,2,3

        (1Center for Research on Environmental Ecology and Fish Nutrition,Ministry of Agriculture and Rural Affairs(ShanghaiOcean University),Shanghai 201306,China;2Key Laboratory of Integrated Rice-fish Farming,Ministry of Agricultureand Rural Affairs(Shanghai Ocean University),Shanghai 201306,China;3Shanghai Aquaculture EngineeringTechnology Research Center(Shanghai Ocean University),Shanghai 201306,China)

        Abstract:【Objective】Qingtian paddy field carp(Cyprinus carpio var.Qingtianensis,PF carp)was frequently ex‐posed to the stress of acute cold stress in ambient temperatures in shallow water environments.The study aimed to investi‐gate the physiological response mechanism of PF carp in acute cold stress andrewarming,which could provide basis for scientific overwintering of PF carp and breeding of low-temperature-tolerant varieties.【Method】The metabolic peaks in gill tissue of PF carp were extracted by liquid chromatography-mass spectrometry(LC-MS)non-targeted metabolomics in the 9.0℃cold stress for 6 h(CO group)and subsequent rewarming recovery to 28.0℃for 6 h(RE group)and the28.0℃control group(Con group).The pre-processed metabolomics data were matched with the database to identify the metabolites.The reliability of metabolomics data was identified by principal component analysis(PCA)and orthogonalleast-squares discriminant analysis(OPLS-DA).The differential metabolites between groups were screened according tothe P value of Student’s test(Plt;0.05)and the variable weight value of OPLS-DA model(VIPgt;1).The KEGG signal pathway enrichment analysis of differential metabolites was performed.The metabolic pathways mostly associated with acute cold stress andrewarming were screened by Fisher test.Cluster heat maps were made for important metabolic path‐ways to show the differences between groups and the changing trend of metabolite content.【Result】The PCA and OPLS-DA analysis showed that samples were aggregated within group,and were separated between groups.There were signifi‐cant differences in metabolite levels between groups.The OPLS-DA score chart showed that the cumulative Q2 values of all groups were above 0.5,and the cumulative R2Y values were close to 1.0.The model had high interpretability andreliability.A total of 1222 metabolites were identified,among which 232,238,300 significantly different metabolites were screened and identified respectively in CO vs Con,RE vs CO and RE vs Con(Plt;0.05).Differential metabolism between groups were mainly enriched in metabolic pathways such as arachidonic acid metabolism,glycerophospholipid metabolism,steroid hormone biosynthesis and purine metabolism.Specifically,under acute cold stress,cortisol levels was up-regulated,but arachidonic acid and its metabolites,glycerophospholipid metabolites were down-regulated.Afterrewarming,the metabolism of arachidonic acid and glycerophospholipid,purine metabolism were down-regulated com‐pared with Con group,while the content of cortisol was down-regulated and the content of taurine was up-regulated.【Conclusion】Acute cold stress can lead to immunosuppression,abnormalities in substance transport and signal transmis‐sion in PF carp.Cortisol synthesis and metabolism are important mechanisms for resistance to acute cold stress.Gill tissue damage can not be fully recovered in the short term after rewarming.Taurine synthesis may be an important recovery mechanism of PF carp after rewarming.

        Key words:Qingtian paddy field carp(Cyprinus carpio var.qingtianensis);acute cold stress;rewarming recovery;metabolomics;gill tissue

        Foundation items:National Natural Science Foundation of China(32172995);Ability Building Project of Shanghai Committee of Science and Technology(22010502100);Shanghai Pujiang Talent Project(22PJ1404500)

        0引言

        【研究意義】寒潮等極端氣溫給中國、以色列和歐洲等水產養(yǎng)殖業(yè)發(fā)達國家和地區(qū)造成了重大經濟損失(Sui et al.,1964;Ibarz etal.,2010),溫度快速波動對魚類的影響已成為當今研究熱點。青田田魚(Cyprinus carpio var.qingtianensis)是一種經過1200多年稻田環(huán)境馴化的地方魚類。青田稻魚共生系統(tǒng)在2005年被聯(lián)合國糧食及農業(yè)組織指定為首批全球重要農業(yè)文化遺產系統(tǒng)(GIAHS)之一,受到國內外學者的廣泛關注(Ren etal.,2018;Qi et al.,2020)。青田田魚能適應急性高溫環(huán)境(Chenget al.,2024),但長期的熱生活史可能導致其體內熱適應的產熱平衡無法適應急性低溫環(huán)境(P?rtner,2002)。國家地表水質自動監(jiān)測實時數(shù)據(jù)顯示,浙江省青田縣冬季河水極端溫度達10℃以下,而青田田魚生活在淺水環(huán)境的稻田,冬季溫度變化更為劇烈,探究青田田魚對急性低溫和復溫的調控機制,對魚類科學越冬和耐低溫品種選育具有重要意義。【前人研究進展】溫度是影響魚類生存、生長和繁殖等生命活動的重要環(huán)境因素,溫度的急劇變動會導致魚類產生應激反應,進而影響其代謝和免疫功能(Velmurugan et al.,2019)。研究表明,水溫急劇變化會導致魚類產生脅迫損傷(Goos and Constenet,2002;Engelsma et al.,2003)和免疫抑制(Abram etal.,2017);冷脅迫能誘導魚類細胞凋亡和促炎因子相關基因表達水平上調,進而造成細胞損傷(Cheng et al.,2018);低溫暴露能誘導淡水石首魚(Aplodinotusgrunniens)肝臟、腸道、頭腎和尾腎發(fā)生炎癥反應和細胞凋亡(Chen et al.,2022);低溫脅迫會造成軍曹魚幼魚出現(xiàn)氧化損傷,并誘導細胞凋亡水平升高和鰓組織損傷加?。ɡ钤サ龋?023)。經過長期演化,魚類已進化出多種適應機制以使其能在超出適宜生長溫度范圍的條件下維持機體生理穩(wěn)態(tài)(Wendelaar,1997;Barton,2002)。研究發(fā)現(xiàn),溫度脅迫可導致魚類體內的脂質代謝物發(fā)生顯著變化,低溫脅迫下七彩神仙魚(Sym-physodonaequifasciatus)鰓組織通過促進甘油磷脂代謝和鞘脂代謝等代謝途徑來調節(jié)抗氧化機制(Wen et al.,2018);軍曹魚(Rachycentron canadum)體內甘油三酯含量隨低溫脅迫時間的增加呈持續(xù)降低趨勢(蔡潤佳,2021)。在鯉(Cyprinus carpio)(Shi‐kata et al.,1995)和尖吻鱸(Lates calcarifer)(Alhaz‐zaa et al.,2013)中也發(fā)現(xiàn),魚體脂肪酸不飽和度會隨溫度的降低而升高。皮質醇與魚類應激反應密切相關,是魚類主要的應激激素(Bureau et al.,2008)。羅非魚(Oreochromis niloticus)在溫度脅迫下會短期內上調體內皮質醇水平(He etal.,2015)。魚類還能通過動員體內糖原、脂肪和蛋白質等能量物質來調節(jié)代謝率以應對逆境所需的能量(Barrento et al.,2011)。白斑狗魚(Esox lucius)會通過消耗機體儲存的脂肪來提高脂肪代謝率,以抵御越冬期低溫的影響(Schwalme,1994);金鱸(Percaflavescens)在越冬期間會降低機體代謝強度(Feiner etal.,2016);急性冷脅迫下許氏平鲉(Sebastes schlegelii)體內脂肪酸水平上調可能與機體能量調節(jié)有關(Song et al.,2019)?!颈狙芯壳腥朦c】鰓是魚類感知環(huán)境變化的器官之一,參與機體攝氧、呼吸、滲透調節(jié)、酸堿調節(jié)、氮排泄代謝和維持穩(wěn)態(tài)等生理活動(Chen et al.,2023)。鰓與周圍環(huán)境存在直接且持續(xù)的接觸,是研究魚類生理機制的重要器官(Cappelloetal.,2016)。代謝產物是細胞應對環(huán)境變化的直觀體現(xiàn)(Fiehn,2002)。隨著生物信息學的快速發(fā)展,代謝組學技術已成為分析生物系統(tǒng)中小分子代謝產物的有效手段,能有效檢測響應環(huán)境壓力源的代謝產物的波動,已廣泛應用于魚類相關的研究中(Young and Alfaro,2018)。因此,采用代謝組學技術探究青田田魚鰓組織代謝產物的變化,能為揭示青田田魚急性低溫脅迫和復溫恢復的調節(jié)機制提供參考?!緮M解決的關鍵問題】青田田魚在淺水環(huán)境中經常面臨急性低溫脅迫,探究青田田魚在急性低溫和復溫環(huán)境下的生理響應機制,為青田田魚科學越冬和耐低溫品種選育提供理論依據(jù)。

        1材料與方法

        1.1試驗動物

        供試青田田魚采集自浙江省青田縣,平均體質量87.92±6.70 g,平均體長14.25±0.50 cm。試驗于青田田魚研究中心開展。18尾健康青田田魚隨機放入3個養(yǎng)殖桶中暫養(yǎng)一周,每日投喂一次專用配合飼料,溶解氧7 mg/L左右,水溫(28.0±0.5)℃。動物試驗由上海海洋大學實驗動物倫理委員會批準,批準號SHOU-DW-2018-026。

        1.2試驗設計與樣品采集

        預試驗中,在(9.0±0.5)℃的急性冷應激下,青田田魚對外界刺激不敏感,無法從應激環(huán)境中逃脫,冷脅迫6h后不能平游,復溫至(28.0±0.5)℃后,青田田魚能恢復活力。試驗在養(yǎng)殖桶中進行,降溫策略為1 h內用冰塊將養(yǎng)殖桶內水溫從28.0℃降至(9.0±0.5)℃,急性低溫脅迫6 h后采集樣品,標記為CO。隨后在1 h內用加熱棒將養(yǎng)殖桶內水溫復溫至(28.0±0.5)℃,復溫6 h后采集復溫樣品,標記為RE。每個取樣時間點分別從3個養(yǎng)殖桶中隨機選取2尾魚,共6尾魚,盡快使用MS-222(300 mg/L)麻醉,于冰板上解剖取出鰓組織,立刻放入標記好的無菌凍存管中,液氮速凍5min后轉入-80℃超低溫冰箱儲存。試驗開始前采集對照組樣品,標記為Con。試驗過程中禁食,使用溫度探測器實時監(jiān)控水溫,冰塊和加熱棒控制水溫,溶解氧7 mg/L左右,水體pH 7.3~7.7。

        1.3代謝物提取與液相色譜—質譜聯(lián)用儀分析

        50 mg樣品和400μL含0.02 mg/mL內標(L-2-氯苯丙氨酸)的提取液(甲醇∶水=4∶1,v∶v)混合成樣品溶液;用冷凍組織研磨儀研磨6 min(-10℃,50 Hz),低溫超聲破碎30 min(5℃,40 kHz);樣品靜置30 min(-20℃),離心15 min(4℃,13000×g),取上清液進行液相色譜—質譜(LC-MS)分析。取等體積的所有樣品上清液,混合制備3個質控樣本(Quality control,QC),平均插入樣本隊列,用于評價系統(tǒng)的穩(wěn)定性和試驗數(shù)據(jù)的可靠性。用超高效液相色譜串聯(lián)傅里葉變換質譜儀UHPLC-Q Exactive HF-X(ThermoFisher Scientfic公司)進行分析;使用HSS T378柱(100.0 mm×2.1 mm,1.8μm)分離樣品;流動相A為水溶液∶乙腈(95∶5,v∶v,含0.1%甲酸),流動相B為乙腈:異丙醇:水(47.5∶47.5∶5,v∶v∶v,含0.1%甲酸);柱溫40℃,流速0.4082 mL/min;采用正負離子掃描模式(70~1050 m/z)采集質譜信號。

        1.4數(shù)據(jù)預處理和代謝物鑒定

        用代謝組學處理軟件Progenesis QI(WatersCor-poration,Milford,USA)對LC-MS原始數(shù)據(jù)進行基線過濾、峰識別、積分、保留時間校正和峰對齊等預處理。將MS和MSMS質譜信息與KEGG數(shù)據(jù)庫(https://www.kegg.jp/kegg/pathway.html)、Human Me-tabolome Database(HMDB)(https://www.hmdb.ca)和美吉自建庫進行匹配,鑒定代謝物。通過美吉云平臺(https://www.cloud.majorbio.com)對代謝物鑒定得到的數(shù)據(jù)矩陣進行預處理。本研究中的數(shù)據(jù)預處理和代謝物鑒定均由上海美吉醫(yī)藥科技有限公司完成。

        1.5差異代謝物篩選和KEGG信號通路富集分析

        預處理后的數(shù)據(jù)矩陣用于多維統(tǒng)計分析,包括主成分分析(PCA)和正交偏最小二乘判別分析(OPLS-DA),通過7次循環(huán)交互驗證來評估PCA和OPLS-PA模型的穩(wěn)定性。根據(jù)Student’s test檢驗得到的P值和OPLS-DA模型得到的變量權重(VIP)篩選差異代謝物(VIPgt;1,Plt;0.05);利用KEGG數(shù)據(jù)庫和Python進行差異代謝物信號通路富集分析并用Fisher精確檢驗分析得到與試驗處理最相關的代謝通路;使用Python對篩選出的差異代謝物進行聚類分析,并根據(jù)結果制作熱圖顯示組間差異和變化趨勢。

        2結果與分析

        2.1青田田魚鰓組織代謝物多元統(tǒng)計分析結果

        PCA得分圖顯示,QC聚集性較高,說明試驗設備運行穩(wěn)定、數(shù)據(jù)質量高、試驗方法可靠;組內樣本聚集,組間樣本分離,表明急性低溫脅迫和復溫下青田田魚代謝物水平有明顯變化(圖1)。為最大限度地區(qū)分3個組別,使用OPLS-DA測定Con組、CO組和RE組之間代謝物水平的差異。訓練集中LC-MS數(shù)據(jù)的分數(shù)散點圖顯示,組間區(qū)分明顯,組內聚類良好(圖2-A~圖2-F);OPLS-DA得分圖顯示,各組Q2累計值均在0.5以上,R2Y累計值均接近1.0(圖2-G~圖2-L),表明模型具有較高的解釋度和可靠性,可用于后續(xù)分析。

        2.2急性低溫脅迫和復溫條件下青田田魚鰓組織代謝物鑒定結果

        LC-MS/MS分析在正離子模式和負離子模式下共采集到7950個代謝峰,其中正離子模式下采集到4386個代謝峰,負離子模式下采集到3564個代謝峰。KEGG數(shù)據(jù)庫、HMDB代謝公共數(shù)據(jù)庫和美吉自建庫共鑒定到1222個代謝物,注釋到HMDB公共數(shù)據(jù)庫的代謝物1125個,注釋到KEGG數(shù)據(jù)庫的代謝物662個。用火山圖可視化正負離子模式下各組代謝物含量的差異及其統(tǒng)計學意義。在CO vs Con篩選鑒定出232個顯著差異代謝物(rlt;0.05,下同),其中48個上調,184個下調(圖3-A);在RE vs CO篩選鑒定出238個顯著差異代謝物,其中104個上調,134個下調(圖3-B);在RE vs Con篩選鑒定出300個顯著差異代謝物,其中有58個上調,242個下調(圖3-C)。

        2.3青田田魚組間差異代謝物KEGG信號通路富集分析結果

        對青田田魚組間差異代謝物進行KEGG信號通路富集分析,結果顯示,CO vs Con差異代謝物富集了40條通路,顯著富集通路為花生四烯酸代謝(Ara-chidonic acid metabolism)、類固醇激素生物合成(Steroid hormone biosynthesis)、神經活性配體受體相互作用(Neuroactive ligand-receptor interaction)、精氨酸生物合成(Arginine biosynthesis)和丙氨酸、天冬氨酸、谷氨酸代謝(Alanine,aspartate and gluta-mate metabolism)及嘧啶代謝(Pyrimidine metabo-lism)信號通路(圖4-A);RE vs CO差異代謝物富集了63條通路,顯著富集通路為ABC轉運蛋白(ABCtransporters)、甘油磷脂代謝(Glycerophospholipid metabolism)、嘌呤代謝(Purine metabolism)、類固醇激素生物合成、神經活性配體受體相互作用、苯丙氨酸代謝(Phenylalanine metabolism)、氨酰tRNA生物合成(Aminoacyl-tRNA biosynthesis)、血管平滑肌收縮(Vascular smooth muscle contraction)、C型凝集素受體信號通路(C-type lectin receptor signaling path-way)、脂肪細胞因子信號通路(Adipocytokine signa-ling pathway)、黑素生成(Melanogenesis)和鞘脂代謝(Sphingolipid metabolism)信號通路(圖4-B);RE vs Con差異代謝物富集了46條通路,其中顯著富集通路為ABC轉運蛋白、花生四烯酸代謝、苯丙氨酸和酪氨酸及色氨酸生物合成(Phenylalanine,tyrosine and tryptophan biosynthesis)、苯丙氨酸代謝、嘌呤代謝、氨酰tRNA生物合成、類固醇激素生物合成和神經活性配體受體相互作用信號通路(圖4-C)。組間差異代謝物主要富集在花生四烯酸代謝、甘油磷脂代謝、類固醇激素生物合成、ABC轉運蛋白和嘌呤代謝信號通路,推測這些信號通路可能是青田田魚應對急性低溫脅迫的關鍵通路。

        2.4青田田魚組間差異代謝物聚類分析結果

        對各組間差異代謝物富集程度較高的4個信號通路(花生四烯酸代謝、ABC轉運蛋白、甘油磷脂代謝和類固醇激素生物合成信號通路)相關的65個代謝物(表1)進行聚類分析,并制作熱圖對其相對含量變化趨勢進行可視化。結果(圖5)顯示,子集1和子集3顯示部分甘油磷脂代謝物溶血磷脂酰膽堿、花生四烯酸及其代謝物前列腺素等含量在CO組和RE組均呈降低趨勢;磷脂酰膽堿和部分溶血磷脂酰膽堿聚類到子集4,其含量在CO組降低,RE組略有回升,但仍低于Con組平均水平;皮質醇、18-羥基皮質酮和硫酸脫氫表雄酮等類固醇激素聚類在子集2,其含量在CO組升高,在RE組降低;?;撬峋垲惖阶蛹?,其含量在RE組最高。

        3討論

        臨界溫度是指使動物活動受到干擾,失去逃離潛在致命環(huán)境能力的溫度(Prodocimo and Freire,2001)。預試驗中,在(9.0±0.5)℃急性低溫脅迫下,試驗魚變得對外界刺激不敏感,無法從應激環(huán)境中逃脫,并在冷脅迫6 h后不能平游,選擇9.0℃作為急性低溫脅迫試驗溫度,探究急性低溫脅迫下青田田魚的生理調節(jié)機制,為魚類科學越冬和優(yōu)良品種選育提供參考依據(jù)。

        3.1急性低溫對青田田魚鰓組織皮質醇合成的影響

        皮質醇是類固醇激素生物合成的代表性代謝物,參與維持離子平衡,與應激反應密切相關,是魚類主要的應激激素(Bureau et al.,2008)。當水溫降至9.0℃時,青田田魚18-羥基皮質酮等皮質醇后體和皮質醇水平上調,17α,21-二羥基孕烯醇酮等皮質醇前體含量水平降低,表明9.0℃急性低溫脅迫導致青田田魚產生應激反應,且促進了皮質醇合成和代謝。皮質類固醇釋放所引起的主要代謝過程是通過糖酵解和糖異生來調動儲存的能量,以滿足動物體內的能量需求(Dennis and Norris,2015)。急性低溫脅迫促進CO組青田田魚鰓組織皮質醇合成和代謝可能是為了維持鰓組織細胞離子平衡和利用糖原代謝提供抵抗急性低溫脅迫所需的必要能量。研究表明,皮質醇水平具有物種特異性,多種魚類暴露于溫度應激時皮質醇水平會增加,如羅非魚(Oreo-chromis niloticus L.)在短期低溫脅迫下會上調其皮質醇水平(He etal.,2015),而虹鱒魚(Oncorhynchus mykiss)(LeBlanc et al.,2011;張旭,2023)和溪鱒(Salvelinus fontinalis)(Chadwick et al.,2015)在短期低溫脅迫下會下調其皮質醇水平。皮質醇在魚類急性低溫脅迫中的作用機制仍需進一步探究。

        3.2急性低溫對青田田魚鰓組織免疫的影響

        花生四烯酸和其他多不飽和脂肪酸的釋放觸發(fā)了一系列涉及環(huán)加氧酶和脂加氧酶的細胞過程,對前列腺素和血栓素等類二十烷的生物合成至關重要(Mommsen et al.,1999)。CO組青田田魚花生四烯酸、血栓素和前列腺素水平相比于Con組出現(xiàn)了顯著下調,可能是急性低溫刺激影響了魚體酶活性和合成,進而導致花生四烯酸代謝受抑制。低溫脅迫可影響脂質代謝等分子代謝過程,且魚類中不飽和脂肪酸的代謝對低溫脅迫非常敏感(Qian and Xue,2016)。低溫脅迫影響變溫動物中不飽和脂肪酸比例(Zehmer and Hazel,2005),多不飽和脂肪酸缺乏會引起異常的生化反應,進而影響魚類免疫、健康、生長發(fā)育和生存(Buczynskiet al.,2009)?;ㄉ南┧釋儆诙嗖伙柡椭舅?,在魚類應激反應相關基因表達中發(fā)揮主要作用(Xu etal.,2022),對魚類生長、繁殖、應激耐受性、免疫和骨骼發(fā)育等至關重要(Bureau et al.,2008)。本研究發(fā)現(xiàn)急性低溫脅迫下青田田魚花生四烯酸水平降低,表明急性低溫脅迫可能導致了青田田魚免疫抑制,降低了其應激耐受性,使其無法適應低溫環(huán)境。溶血磷脂酰膽堿是甘油磷脂代謝產物,與先天性免疫和適應性免疫有關(Kabarowski et al.,2002),急性低溫脅迫下溶血磷脂酰膽堿水平降低進一步說明急性低溫脅迫對青田田魚免疫存在影響。

        3.3急性低溫對青田田魚鰓組織細胞膜流動性的影響

        細胞膜磷脂富含花生四烯酸和其他多不飽和脂肪酸(Liu et al.,2022),甘油磷脂是細胞膜的重要成分,在維持細胞膜流動性及促進細胞膜能量和物質轉運等方面發(fā)揮重要作用(Farooqui et al.,2000)。磷脂酰膽堿在維持膜結構和細胞信號傳導過程中發(fā)揮重要作用(Fokina,2014;Kertyset al.,2020)。長吻鮠(Leiocassis longirostris)(Liu et al.,2022)和雌性印鯪(Cirrhinus mrigala)(Li etal.,2024)在低溫脅迫下通過調節(jié)脂質代謝與合成影響細胞膜流動性。本研究發(fā)現(xiàn)急性低溫脅迫下花生四烯酸、溶血磷脂酰膽堿和磷脂酰膽堿水平降低,提示急性低溫脅迫可能影響青田田魚細胞膜流動性,進而導致細胞物質轉運和信號傳遞等功能異常。

        3.4復溫對青田田魚鰓組織免疫、細胞凋亡和氨基酸代謝的影響

        本研究發(fā)現(xiàn),復溫后青田田魚花生四烯酸相關代謝物水平仍下調,溶血磷脂酰膽堿等甘油磷脂代謝物水平仍然沒有完全恢復,說明復溫后青田田魚可能受到持續(xù)的免疫抑制,需更長時間的復溫才能恢復至正常水平。嘌呤在應激和免疫調節(jié)中發(fā)揮重要作用(Kuo et al.,2022),本研究發(fā)現(xiàn)復溫后黃嘌呤水平顯著降低,表明復溫可能通過調節(jié)嘌呤代謝來影響青田田魚的免疫功能。牛磺酸能緩解細胞凋亡和DNA氧化損傷(Cheng et al.,2018),而低溫可以使魚類細胞凋亡水平升高(Chen et al.,2022)。本研究中,RE組?;撬岷可?,提示復溫可能通過合成?;撬醽硪种萍毎蛲?,進而恢復組織功能。ABC轉運蛋白的主要功能涉及小分子的主動轉運(Yao et al.,2020),復溫下參與ABC轉運蛋白途徑的氨基酸代謝產物含量下降,提示復溫下調了氨基酸代謝,這可能與復溫后能量分配調整有關(Aguilar et al.,2022)。

        4結論

        急性低溫可導致青田田魚免疫、物質轉運和信號傳遞等功能異常。皮質醇的合成和代謝可能是青田田魚抵抗急性低溫脅迫的重要機制。復溫后青田田魚鰓組織損傷在短期內無法得到完全恢復。牛磺酸合成可能是青田田魚在復溫過程中的重要恢復機制。

        參考文獻(References):

        蔡潤佳.2021.低溫脅迫下軍曹魚幼魚脂代謝的變化[D].湛江:廣東海洋大學,2021.[Cai R J.2021.Changes in lipid metabolism of juvenile cobia under low temperature stress[D].Zhanjaing:Guangdong Ocean University.]doi:10.27788/d.cnki.ggdhy.2021.000182.

        李豫,黃建盛,陳有銘,溫震威,歐光海,黃鑒鵬,蔣鑫濤,謝瑞濤,馬騫,陳剛.2023.低溫脅迫對軍曹魚幼魚鰓組織抗氧化能力、細胞凋亡和組織結構的影響[J].南方水產科學,19(3):68-77.[Li Y,Huang J S,Chen Y M,Wen Z W,Ou G H,Huang J P,Jiang X T,Xie R T,Ma Q,Chen G.2023.Effect of low temperature stress on antioxidantstress,apoptosis and histological structure of gills in cobia(Rachycentron canadum)[J].South China Fisheries Scien-ce,19(3):68-77.]doi:10.12131/20220227.

        張旭.2023.溫度和光照對洄游型硬頭鱒(Oncorhynchus mykiss)行為和耐鹽能力的影響[D].大連:大連海洋大學.[Zhang X.2023.The effects of temperature and photope-riod on the behavior and salt tolerance of migratory steel-head trout(Oncorhynchus mykiss)[D].Dalian:Dalian Ocean University.]doi:10.27821/d.cnki.gdlhy.2023.000469.

        Abram Q H,Dixon B,Katzenback B A.2017.Impacts of lowtemperature on the teleost immune system[J].Biology,6(4):39.doi:10.3390/biology6040039.

        Aguilar A,Mattos H,Carnicero B,Sanhueza N,Mu?oz D,Teles M,Tort L,Bolta?a S.2022.Metabolomic profiling reveals changes in amino acid and energy metabolism path-ways in liver,intestine and brain of zebrafish exposed to different thermal conditions[J].Frontiers in Marine Scien-ce,9:835379.doi:10.3389/fmars.2022.835379.

        Alhazzaa R,Bridle AR,Nichols P D,Carter C G.2013.Coping with sub-optimal water temperature:Modifications in fatty acid profile of barramundi as influenced by dietary lipid[J].Comparative Biochemistry and Physiology.Part A:Molecularamp;Integrative Physiology,165(2):243-253.doi:10.1016/j.cbpa.2013.03.019.

        Barrento S,Marques A,Vaz-Pires P,Nunes M L.2011.Cancer pagurus(Linnaeus,1758)physiological responses to simu-lated live transport:Influence of temperature,air exposure and AQUI-S?[J].Journal of Thermal Biology,36(2):128-137.doi:10.1016/j.jtherbio.2010.12.006.

        Barton B A.2002.Stress in fishes:A diversity of responses with particular reference to changes in circulating cortico-steroids[J].Integrative and Comparative Biology,42(3):517-525.doi:10.1093/icb/42.3.517.

        Buczynski M W,Dumlao D S,Dennis E A.2009.Thematic review series:Proteomics.An integrated omics analysis of eicosanoid biology[J].Journal of Lipid Research,50(6):1015-1038.doi:10.1194/jlr.R900004-JLR200.

        Bureau D P,Hua K,Harris A M.2008.The effect of dietary lipid and long-chain n-3 PUFA levels on growth,energy utilization,carcass quality,and immune function of rain-bow trout,Oncorhynchus mykiss[J].Journal of the WorldAquaculture Society,39(1):1-21.doi:10.1111/j.1749-7345.2007.00146.x.

        Cappello T,Brand?o F,Guilherme S,Santos M A,Maisano M,MauceriA,Canário J,Pacheco M,Pereira P.2016.Insightsinto the mechanisms underlying mercury-induced oxida-tive stress in gills of wild fish(Liza aurata)combining 1H NMR metabolomics and conventional biochemical assays[J].The Science of the Total Environment,548-549:13-24.doi:10.1016/j.scitotenv.2016.01.008.

        Chadwick Jr J G,Nislow K H,McCormick S D.2015.Thermal onset of cellular and endocrine stress responses correspondto ecological limits in brook trout,an iconic cold-water fish[J].Conservation Physiology,3(1):cov017.doi:10.1093/conphys/cov017.

        Chen J X,Li H X,Xu P,Tang Y K,Su S Y,Liu G X,Wu N Y,Xue M M,Yu F,F(xiàn)eng W R,Song C Y,Wen H B.2022.Hypothermia-mediated apoptosis and inflammation con-tribute to antioxidant and immune adaption in freshwater drum,Aplodinotusgrunniens[J].Antioxidants,11(9):1657.doi:10.3390/antiox 11091657.

        Chen X Y,Liu S B,Ding Q W,Teame T,Yang Y L,Ran C,Zhang Z,Zhou Z G.2023.Research advances in the struc-ture,function,and regulation of the gill barrier in teleost fish[J].Water Biology and Security,2(2):100139.doi:10.1016/j.watbs.2023.100139.

        Cheng C H,Guo Z X,Wang A L.2018.The protective effects of taurine on oxidative stress,cytoplasmic free-Ca2+and apoptosis of pufferfish(Takifugu obscurus)under low temperature stress[J].Fishamp;Shellfish Immunology,77:457-464.doi:10.1016/j.fsi.2018.04.022.

        Cheng X B,Li F C,Lu J J,Wen Y L,Li Z L,Liao J Y,Cao J W,He X M,Sun J M,Liu Q G.2024.Transcriptomeanaly-sis in gill reveals the adaptive mechanism of domesticated common carp to the high temperature in shallow rice pad-dies[J].Aquaculture,578:740107.doi:10.1016/j.aquacul-ture.2023.740107.

        Dennis E A,Norris P C.2015.Eicosanoid storm in infection and inflammation[J].Nature Reviews Immunology,15(8):511-523.doi:10.1038/nri3859.

        Engelsma M Y,Hougee S,Nap D,Hofenk M,Rombout J H,van Muiswinkel W B,Lidy Verburg-van Kemenade B M.2003.Multiple acute temperature stress affects leucocyte populations and antibody responses in common carp,Cyp-rinus carpio L.[J].Fishamp;Shellfish Immunology,15(5):397-410.doi:10.1016/s 1050-4648(03)00006-8.

        Farooqui A A,Horrocks L A,F(xiàn)arooqui T.2000.Glycerophos-pholipids in brain:Their metabolism,incorporation into membranes,functions,and involvement in neurological disorders[J].Chemistry and Physics of Lipids,106(1):1-29.doi:10.1016/s0009-3084(00)00128-6.

        Feiner Z S,Coulter D P,Guffey S C,H??k T O.2016.Does overwinter temperature affect maternal body composition and egg traits in yellow perch Percaflavescens?[J].Jour-nal of Fish Biology,88(4):1524-1543.doi:10.1111/jfb.12929.

        Fiehn O.2002.Metabolomics-the link between genotypes and phenotypes[J].Plant Molecular Biology,48:155-171.doi:10.1023/A:1013713905833.

        Fokina N N,Bakhmet I N,Shklyarevich G A,Nemova N N.2014.Effect of seawater desalination and oil pollution on the lipid composition of blue mussels Mytilus edulis L.from the White Sea[J].Ecotoxicology and Environmental Safety,110:103-109.doi:10.1016/j.ecoenv.2014.08.010.

        Goos H J T,Consten D.2002.Stress adaptation,cortisol and pubertal development in the male common carp,Cyprinus carpio[J].Molecular and Cellular Endocrinology,197(1-2):105-116.doi:10.1016/s0303-7207(02)00284-8.

        He J,Qiang J,Yang H,Xu P,Zhu Z X,Yang R Q.2015.Changes in the fatty acid composition and regulation of antioxidant enzymes and physiology of juvenile geneti-cally improved farmed tilapia Oreochromis niloticus(L.),subjected to short-term low temperature stress[J].Journal of Thermal Biology,53:90-97.doi:10.1016/j.jtherbio.2015.08.010.

        IbarzA,Padrós F,Gallardo Má,F(xiàn)ernández-Borràs J,Blasco J,Tort L.2010.Low-temperature challenges to gilthead sea bream culture:Review of cold-induced alterations and‘Winter Syndrome’[J].Reviews in Fish Biology and Fishe-ries,20:539-556.doi:10.1007/s 11160-010-9159-5.

        Kabarowski J H S,Xu Y,Witte O N.2002.Lysophosphatidyl-choline as a ligand for immunoregulation[J].Biochemical Pharmacology,64(2):161-167.doi:10.1016/s0006-2952(02)01179-6.

        Kertys M,Grendar M,Kosutova P,Mokra D,Mokry J.2020.Plasma based targeted metabolomic analysis reveals altera-tions of phosphatidylcholines and oxidative stress markersin guinea pig model of allergic asthma[J].Biochimica et Biophysica Acta(BBA)-Molecular Basis of Disease,1866(1):165572.doi:10.1016/j.bbadis.2019.165572.

        Kuo C H,Ballantyne B,Huang P L,Ding S W,Hong M C,Lin T Y,Wu F C,Xu Z Y,Chiu K,Chen B,Liu C H.2022.Sarcodia suae modulates the immunity and disease resis-tance of white shrimp Litopenaeus vannamei against Vib-rio alginolyticus via the purine metabolism and phenylala-nine metabolism[J].Fishamp;Shellfish Immunology,127:766-777.doi:10.1016/j.fsi.2022.07.011.

        LeBlanc S,Middleton S,Gilmour K M,Currie S.2011.Chronic social stress impairs thermal tolerance in the rain-bow trout(Oncorhynchus mykiss)[J].Journal of Experi-mental Biology,214(10):1721-1731.doi:10.1242/jeb.056135.

        Li H Q,Li W H,Su J S,Zhou Z X,Miao Y,Tian X L,Tao M,Zhang C,Zhou Y,Qin Q B,Yang H R,Liu S J.2024.Inte-gration of transcriptome and metabolome reveals molecu-lar mechanisms responsive to cold stress in gynogenetic mrigal carp(Cirrhinus mrigala)[J].Aquaculture,579:740200.doi:10.1016/j.aquaculture.2023.740200.

        Liu M,Zhou Y L,Guo X F,Wei W Y,Li Z,Zhou L,Wang Z W,Gui J F.2022.Comparative transcriptomes and metabo-lomes reveal different tolerance mechanisms to cold stress in two different catfish species[J].Aquaculture,560:738 543.doi:10.1016/j.aquaculture.2022.738543.

        Mommsen T P,Vijayan M M,Moon T W.1999.Cortisol in teleosts:Dynamics,mechanisms of action,and metabolic regulation[J].Reviews in Fish Biology and Fisheries,9:211-268.doi:10.1023/a:1008924418720.

        P?rtner H O.2002.Climate variations and the physiological basis of temperature dependent biogeography:Systemic to molecular hierarchy of thermal tolerance in animals[J].Comparative Biochemistry and Physiology Part A:Molecu-laramp;Integrative Physiology,132(4):739-761.doi:10.1016/s1095-6433(02)00045-4.

        Prodocimo V,F(xiàn)reire C A.2001.Critical thermal maxima and minima of the platyfish Xiphophorus maculatus Günther(Poecillidae,Cyprinodontiformes):A tropical species of ornamental freshwater fish[J].Revista Brasileira de Zoolo-gia,18:97-106.doi:10.1590/S0101-81752001000500007.

        Qi M,Wu Q Q,Liu T,Hou Y L,Miao Y X,Hu M H,Liu Q G.2020.Hepatopancreas transcriptome profiling analysis reveals physiological responses to acute hypoxia and reoxygenation in juvenile Qingtian paddy field carp Cypri-nus carpio var qingtianensis[J].Frontiers in Physiology,11:1110.doi:10.3389/fphys.2020.01110.

        Qian B,Xue L.2016.Liver transcriptome sequencing and de novo annotation of the large yellow croaker(Larimichthy crocea)under heat and cold stress[J].Marine Genomics,25:95-102.doi:10.1016/j.margen.2015.12.001.

        Ren W Z,Hu L L,Guo L,Zhang J,Tang L,Zhang E T,Zhang J E,Luo S M,Tang J J,Chen X.2018.Preservation of the genetic diversity of a local common carp in the agricultural heritage rice-fish system[J].Proceedings of the National Academy of Sciences,115(3):E546-E554.doi:10.1073/pnas.1709582115.

        Schwalme K.1994.Reproductive and overwintering adapta-tions in northern pike(Esox lucius L.):Balancing essen-tial fatty acid requirements with dietary supply[J].Physio-logical Zoology,67(6):1507-1522.doi:10.1086/physzool.67.6.30163909.

        Shikata T,Iwanaga S,Shimeno S.1995.Metabolic response of acclimation temperature in carp[J].Fisheries Science,61(3):512-516.doi:10.2331/fishsci.61.512.

        Song M,Zhao J,Wen H S,Li Y,Li J F,Li L M,Tao Y X.2019.The impact of acute thermal stress on the metabolome ofthe blackrockfish(Sebastes schlegelii)[J].PLoS One,14(5):e0217133.doi:10.1371/journal.pone.0217133.

        Sui C J,Zhang Z H,Cai Y,Wu H D.1964.Using the physical decomposition method to study the effects of Arctic factors on wintertime temperatures in the Northern Hemisphere and China[J].Advances in Polar Science,25(4):213-221.doi:10.13679/j.advps.2014.4.00213.

        Velmurugan B K,Chan C R,Weng C F.2019.Innate-immuneresponses of tilapia(Oreochromis mossambicus)exposureto acute cold stress[J].Journal of Cellular Physiology,234(9):16125-16135.doi:10.1002/jcp.28270.

        Wen B,Jin S R,Chen Z Z,Gao J Z.2018.Physiological responses to cold stress in the gills of discus fish(Symphy-sodon aequifasciatus)revealed by conventional biochemi-cal assays and GC-TOF-MS metabolomics[J].Science of The Total Environment,640:1372-1381.doi:10.1016/j.sci-totenv.2018.05.401.

        Wendelaar Bonga S E.1997.The stress response in fish[J].Physiological Reviews,77(3):591-625.doi:10.1152/phy-srev.1997.77.3.591.

        Xu H G,Meng X X,Wei Y L,Ma Q,Liang M Q,Turchini G M.2022.Arachidonic acid matters[J].Reviews in Aqua-culture,14(4):1912-1944.doi:10.1111/raq.12679.

        Yao H Z,Li X,Tang L,Wang H,Wang C L,Mu C K,Shi C.2020.Metabolic mechanism of the mud crab(Scylla para-mamosain)adapting to salinity sudden drop based on GC-MS technology[J].Aquaculture Reports,18:100533.doi:10.1016/j.aqrep.2020.100533.

        Young T,Alfaro AC.2018.Metabolomic strategies for aquacul-ture research:A primer[J].Reviews in Aquaculture,10(1):26-56.doi:10.1111/raq.12146.

        Zehmer J K,Hazel J R.2005.Thermally induced changes in lipid composition of raft and non-raft regions of hepato-cyte plasma membranes of rainbow trout[J].Journal of Experimental Biology,208(22):4283-4290.doi:10.1242/jeb.01899.

        (責任編輯 蘭宗寶)

        猜你喜歡
        代謝組學
        何首烏致肝損傷大鼠的動態(tài)血清代謝組學研究
        基于UPLC—Q—TOF—MS技術的牛血清白蛋白誘導過敏反應的代謝組學研究
        基于UPLC—Q—TOF—MS技術的牛血清白蛋白誘導過敏反應的代謝組學研究
        藥用植物代謝組學研究
        藏藥鑒定及質量控制研究現(xiàn)狀
        新疆維吾爾族和漢族大學生尿液代謝輪廓差異分析
        分析化學(2015年10期)2015-11-03 07:42:21
        枯草芽孢桿菌代謝組樣品前處理方法的比較研究
        分析化學(2015年8期)2015-08-13 07:23:40
        鎘超富集植物東南景天根系分泌物的代謝組學研究
        分析化學(2015年1期)2015-01-20 06:52:54
        国产精品98视频全部国产| 中文字幕一精品亚洲无线一区| 亚洲精品无amm毛片| 亚洲AV成人无码久久精品老人| 久99久精品免费视频热77| 一道本加勒比在线观看| 久久亚洲道色综合久久| 亚洲综合欧美在线一区在线播放| 国产精品第1页在线观看| 中文乱码字幕在线中文乱码| 日本久久精品视频免费| 中文字幕人妻第一区| 五十路熟女一区二区三区| AV在线毛片| 亚洲视频专区一区二区三区| 日产精品久久久一区二区 | 免费人成再在线观看网站| 无码AⅤ最新av无码专区| 一本色道久久88加勒比| 免费视频爱爱太爽了| 91社区视频在线观看| 亚洲精品国产精品系列| 亚洲一区在线观看中文字幕| 88久久精品无码一区二区毛片| 在线观看av手机网址| 国产精品国产三级国产不卡| 欲香欲色天天天综合和网| 中文人妻av久久人妻18| 爆乳日韩尤物无码一区| 久久日本视频在线观看| 国产熟妇另类久久久久| 国产欧美精品一区二区三区,| 亚洲av午夜福利一区二区国产| 亚洲国产精品无码久久一区二区| 成年午夜无码av片在线观看| 在线你懂| 国产精品国产三级国产av18| 国产台湾无码av片在线观看| 日本在线观看不卡| 国产一区二区三区免费av| 成人国产精品一区二区网站公司|