亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        喹啉氧基乙酰胺的Liガ/Naガ配合物及其高氯酸鹽的結(jié)構(gòu)和熒光性質(zhì)

        2018-03-14 06:35:56毛盼東吳偉娜楊慶雯
        關(guān)鍵詞:徐君氯酸鹽化工學(xué)院

        毛盼東 吳偉娜 楊 苗 楊慶雯 王 元

        (河南理工大學(xué)化學(xué)化工學(xué)院,焦作 454000)

        The complexes with the amide group have gained much attention due to their structural diversities,intriguing propertiesand applicationsin various fields[1-2].Such ligands with flexible structure,could form stable complexes with varies of transition metal or rare earth metal ions[3-6].To the best of our knowledge,however,the investigations on the complexes with main-group metal ions are relatively scarce.Thus,in this work,Liガ/Naガ complexes were obtained via the reaction of 2-(5-chloroquinolin-8-yloxy)-1-(pyrrolidin-1-yl)ethanone (L)with Liガ/Naガ perchlorate,which have been characterized by X-ray diffraction.In CH3CN solution,both complexes show similar fluorescence emission as L.However,under the same synthetic conditions, (HL)ClO4·H2O was accidentally produced in the case of Alバ perchlorate,which exhibits quite different fluorescence spectra from that of L.

        1 Experimental

        1.1 Materials and measurements

        Solvents and starting materials for synthesis were purchased commercially and used as received.Elemental analysis was carried out on an Elemental Vario EL analyzer.The IR spectra (ν=4000~400 cm-1)were determined by the KBr pressed disc method on a Bruker V70 FTIR spectrophotometer.The UV spectra were recorded on a Purkinje General TU-1800 spectrophotometer.Fluorescence spectra were determined on a Varian CARY Eclipse spectrophotometer,in the measurements of emission and excitation spectra the pass width is 5 nm.

        1.2 Preparations of 1,2 and(HL)ClO4·H2O

        The ligand L[7-8](0.1 mmol)and LiClO4,NaClO4or Al(ClO4)3(0.1 mmol)were dissolved in the ethyl acetate/acetone (10 mL,1∶2,V/V)solution,respectively.The mixture was filtered and spontaneously volatilized at room temperature to obtain crystals of 1,2 and (HL)ClO4·H2O,respectively.

        1:Colorless needles.Anal.Calcd.for C30H30Cl3LiN4O8(%):C,52.38;H,4.40;N,8.14.Found(%):C,52.27;H,4.52;N,7.9.FT-IR (cm-1):ν(C=O)1 650,ν(C=N)1 588,ν(Ar-O-C)1 236.

        2:Colorless plates.Anal.Calcd.for C30H30Cl3NaN4O8(%):C,51.19;H,4.30;N,7.96.Found(%):C,51.07;H,4.45;N,7.78.FT-IR (cm-1):ν(C=O)1 656,ν(C=N)1 593,ν(Ar-O-C)1 238.

        (HL)ClO4·H2O:Yellow rods.Anal.Calcd.for C15H15Cl2N2O7(%):C,44.35;H,3.72;N,6.90.Found(%):C,44.13;H,3.96;N,6.67.FT-IR (cm-1):ν(C=O)1 641,ν(C=N)1 594,ν(Ar-O-C)1 231.

        1.3 X-ray crystallography

        The X-ray diffraction measurements for 1,2 and(HL)ClO4·H2O were performed on a Bruker SMART APEXⅡCCD diffractometer equipped with a graphite monochromatized Mo Kα radiation (λ=0.071 073 nm)by using φ-ω scan mode.Semi-empirical absorption correction was applied to the intensity data using the SADABS program[9].The structures were solved by direct methods and refined by full matrix least-square on F2using the SHELXTL-97 program[10].All nonhydrogen atoms were refined anisotropically.The C13 and C14 atoms of 1 occupied two positions,with the occupancy value of C13(C14)/C13B(C14B)being 0.692/0.308.The similar feature of C14 atom in 2 is observed,with the occupancy value of C14/C14B being 0.717/0.283.The H atoms for water molecule in(HL)ClO4·H2O are located from difference Fourier map and refined with restraints in bond length and thermal parameters.All the other H atoms were positioned geometrically and refined using a riding model.Details of the crystal parameters,data collection and refinements for 1,2 and (HL)ClO4·H2O are summarized in Table 1.

        CCDC:1573564,1;1573565,2;1573566,(HL)ClO4·H2O.

        Table 1 Selected crystallographic data for 1,2 and(HL)ClO4·H2O

        Continued Table 1

        2 Results and discussion

        2.1 Crystal structures

        A diamond drawing of 1,2 and (HL)ClO4·H2O is shown in Fig.1.Selected bond distances are summarized in Table 2.Complexes 1 and 2 are isostructural and crystallize in the monoclinic,space group P2/n.Thus the structure of 1 is discussed in detail for an example.As shown in Fig.1a,the asymmetric unit of 1 contains a half of coordination cation with the Liガion lying on the two-fold rotate axis,and a half of free perchlorate anion for charge balance.The Liガion in 1 is surrounded by two acetamide ligands with N2O4donor set,thus giving a distorted octahedron geometry[11-12]. As expected,there exist no classic hydrogen bonds in both complexes.

        Fig.1 Diamond drawing of 1 (a),2 (b)and (HL)ClO4·H2O (c)with 30%thermal ellipsoids

        Table 2 Selected bond lengths(nm)and angles(°)in 1,2 and(HL)ClO4·H2O

        In (HL)ClO4·H2O,the distances of C=N and C=O are slightly shorter than those in 1 and 2,probably due to the protonation of quinoline N atom and the formation of hydrogen bonds,respectively.In the crystal,the cation (HL)+and free perchlorate anion are linked by crystal water molecule via intermolecular N-H…O (N1-H1A…O7,with D…A distance being 0.261 1(5)nm,D-H…A angle being 163.0°)and O-H…O hydrogen bonds (O7-H7C…O2,with D…A distance being 0.267 3(5)nm,D-H…A angle being 173.0°;O7-H7B…O5,with D…A distance being 0.295 3(4)nm,D-H…A angle being 160.0°).

        2.2 IR spectra

        The spectral regions for both complexes are more or less similar due to the similarity in coordination modes of the ligand with the metal centre.The free ligand L exhibit three absorption bands at 1 682,1 598 and 1 241 cm-1,assigned to ν(C=O),ν(C=N)and ν(CO-C),respectively[13-16].However,in complexes 1 and 2,such three absorption bands shift evidently to lower frequency,indicating that the oxygen atoms of the carbonyl group,quinoline nitrogen atoms and ethereal oxygen atoms take part in coordination to the central metal ion.In addition,compared with that of the ligand,the stretching vibration frequency of the C=O(at 1 641 cm-1)and C=N (at 1 594 cm-1)of (HL)ClO4·H2O shifted by 41 cm-1and 4 cm-1,indicating the existence of hydrogen bonds involving carbonyl group and the protonation of the quinoline nitrogen atom[17].

        2.3 UV spectra

        Fig.2 UV spectra of L (a),1 (b),2 (c)and (HL)ClO4·H2O(d)in CH3CN solution at room temperature

        The UV spectra of 1,2 and (HL)ClO4·H2O in CH3CN solution (concentration:10 μmol·L-1)were measured at room temperature (Fig.2).The spectra of L features two main band located around 244 nm (ε=156 000 L·mol-1·cm-1)and 316 nm (ε=19 500 L·mol-1·cm-1),which could be assigned to characteristic ππ*transition centered on quinoline ring and the acetamide unit, respectively[18].Similar bands are observed in 1 (242 nm,ε=26 948 L·mol-1·cm-1;314 nm,ε=3 389 L·mol-1·cm-1)and 2 (243 nm,ε=26 072 L·mol-1·cm-1;314 nm, ε=3 198 L·mol-1·cm-1).The hyperchromicities indicate that the ligand L take part in the coordination in 1 and 2.However,a significant red-shift (254 nm,ε=32 400 L·mol-1·cm-1;371 nm,ε=1 850 L·mol-1·cm-1)can be observed in the case of(HL)ClO4·H2O,probably due to the protonation of quinoline N atom[19].

        2.4 Fluorescence spectra

        Fig.3 Fluorescence emission spectra of L (a,e),1 (b,f),2 (c,g),and (HL)ClO4·H2O (d,h)in CH3CN solution at room temperature excited at different wavelengths

        The fluorescence spectra of 1,2 and (HL)ClO4·H2O in CH3CN solution (concentration:10 μmol·L-1)were measured at room temperature (Fig.3).When excited at 310 nm,complexes 1 and 2 show a broad emission at 403 nm as the free ligand L[18],while (HL)ClO4·H2O exhibits almost no emission under the same tested conditions (Fig.3A).On the contrary, (HL)ClO4·H2O could display intense green emission (at 525 nm)observed by naked eyes at excitation of 390 nm(Fig.3B).The protonation of nitrogen atoms can greatly enhance the electron-withdrawing ability of quinoline,which may lead to a little bit delocalize.Meanwhile,the delocalization of the electron cloud density can help to stabilize the molecules in the excited states,which is contributed to the shifts of the fluorescence spectra to longer wavelength[20].

        [1]Song X Q,Wen X G,Liu W S,et al.J.Solid State Chem.,2010,183:1-9

        [2]Binnemans K.Coord.Chem.Rev.,2015,295:1-45

        [3]Yan Z Z,Hou N,Wang C M.Spectrochim.Acta A,2015,137:1265-1269

        [4]Song X Q,Xing D Y,Lei Y K,et al.Inorg.Chim.Acta,2013,404:113-122

        [5]Song X Q,Wang Y W,Zheng J R,et al.Spectrochim.Acta A,2007,68:701-704

        [6]Wu W N,Tang N,Yan L.J.Fluoresc.,2008,18:101-107

        [7]Wu W N,Yuan W B,Tang N,et al.Spectrochim.Acta A,2006,65:912-918

        [8]MAO Pan-Dong(毛盼東),CHEN Liang(陳 亮),WU Wei-Na(吳 偉 娜 ),et al.Chinese J.Inorg.Chem.(無(wú) 機(jī) 化 學(xué) 學(xué) 報(bào) ),2016,32(2):336-342

        [9]Sheldrick G M.SADABS,University of G?ttingen,Germany,1996.

        [10]Sheldrick G M.SHELX-97,Program for the Solution and the Refinement of Crystal Structures,University of G?ttingen,Germany,1997.

        [11]Huang Y Q,Zhao W,Chen J G,et al.Z.Anorg.Allg.Chem.,2012,638:679-682

        [12]Huang Y Q,Wan Y,Chen H Y,et al.New J.Chem.,2016,40:7587-7595

        [13]Wu W N,Tang N,Yan L.Spectrochim.Acta A,2008,71:1461-1465

        [14]Wu W N,Cheng F X,Yan L,et al.J.Coord.Chem.,2008,61:2207-2215

        [15]MAO Pan-Dong(毛盼東),XU Jun(徐君),WU Wei-Na(吳偉娜),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2016,32(4):677-682

        [16]YE Xing-Pei(葉行培),WU Wei-Na(吳偉娜),LI Fei-Fei(李飛飛),et al.Chinese J.Inorg.Chem.(無(wú)機(jī)化學(xué)學(xué)報(bào)),2013,29(13):2678-2682

        [17]XU Mu-Sheng(徐 木 生),ZHUANG Zhi-Xia(莊 峙 廈),SUN Da-Hai(孫 大 海),et al.Spectroscopy and Spectral Analysis(光譜學(xué)與光譜分析),1999,19(4):556-558

        [18]Song X Q,Zang Z P,Liu W S,et al.J.Solid State Chem.,2009,182:841-848

        [19]HAO Yong-Jing(郝勇靜),XIE Juan(謝娟),YIN Xiao-Ru(殷曉茹).Journal of Northwest University:Nature Science(西北大學(xué)學(xué)報(bào):自然科學(xué)版),2016,52(5):64-67

        [20]Ma S Q,Zhang J B,Liu Y J,et al.J.Phys.Chem.Lett.,2017,8:3068-3072

        猜你喜歡
        徐君氯酸鹽化工學(xué)院
        使固態(tài)化學(xué)反應(yīng)100%完成的方法
        國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心列表
        徐君 簡(jiǎn)介
        【鏈接】國(guó)家開(kāi)放大學(xué)石油和化工學(xué)院學(xué)習(xí)中心(第四批)名單
        離子色譜法測(cè)定PM2.5中草甘膦、硫氰酸鹽和高氯酸鹽
        提高氯酸鹽分解槽分解量的方法探討
        《化工學(xué)報(bào)》贊助單位
        人非別后,心許生前
        季札贈(zèng)劍
        微生物法去除高氯酸鹽的研究進(jìn)展
        熟女无套高潮内谢吼叫免费| 日本国主产一区二区三区在线观看| 手机在线国产福利av| 国产av无码专区亚洲av麻豆| 97人妻碰碰视频免费上线| 2021国产精品视频| 一区二区三区精品偷拍| 开心五月天第四色婷婷| 久久人人爽人人爽人人片av东京热| 在线视频制服丝袜中文字幕| 女女同性av一区二区三区免费看| 亚洲国产精品中文字幕久久| 北条麻妃国产九九九精品视频| 国产精品原创巨作AV女教师 | 草草影院国产| 视频国产一区二区在线| 亚洲av无码日韩av无码网站冲| 免费无码午夜福利片69| 亚洲综合伦理| 一区二区人妻乳中文字幕| 国产专区一线二线三线码| 亚洲欧美精品伊人久久| 国内精品九九久久精品小草| 偷拍一区二区三区高清视频| 国产精品亚洲αv天堂无码| 欧美激情αv一区二区三区| 91精品国产乱码久久久| 熟女人妻中文字幕av| 欧美 变态 另类 人妖| 免费黄网站久久成人精品| 亚洲av色香蕉一区二区三区潮| 国产人成无码视频在线观看| 国产精品久久久久久久成人午夜 | 亚洲乱码中文字幕在线| 亚洲精品92内射| 中日韩欧美高清在线播放| 水蜜桃视频在线观看入口| aa片在线观看视频在线播放| 国产曰批免费视频播放免费s| 亚洲av永久综合网站美女| 国产精品久久久福利|