亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        水母雪兔子通氣組織形成相關(guān)基因SmPAD4的克隆及表達分析

        2024-12-22 00:00:00韋鎔宜段鵬李培蘭羅丹史國民代吳斌李鳳珍何濤
        廣西植物 2024年12期

        摘 要:" 通氣組織是水母雪兔子(Saussurea medusa)應(yīng)對極端環(huán)境的適應(yīng)性結(jié)構(gòu),其形成通常伴隨著細胞程序性死亡(programmed cell death,PCD)的發(fā)生,而細胞的死亡與通氣組織的形成通常受到PAD4基因(Phytoalexin Deficient 4)的調(diào)控,但PAD4如何調(diào)控水母雪兔子通氣組織形成的機制尚不明確。該研究以水母雪兔子為試驗材料,利用同源克隆和RACE技術(shù)克隆了通氣組織形成相關(guān)基因SmPAD4,對其序列、系統(tǒng)進化、表達和亞細胞定位等進行分析,并采用hi-TAIL PCR技術(shù)擴增其啟動子,以探討該基因在環(huán)境適應(yīng)中的功能。結(jié)果表明:(1)SmPAD4基因cDNA全長為2 047 bp(GenBank登錄號為OR766038),包括1 866 bp的開放閱讀框,編碼621 個氨基酸,分子式為C3163H4906N848O910S26,該蛋白為堿性親水性不穩(wěn)定蛋白。(2)系統(tǒng)進化樹分析顯示,SmPAD4與刺苞菜薊CcPAD4的氨基酸序列相似度最高。(3)擴增出1 049 bp的SmPAD4啟動子序列,包含有光響應(yīng)元件、低氧應(yīng)答元件、干旱和生長素應(yīng)答元件等順式作用元件。(4)實時熒光定量(qRT-PCR)分析顯示,SmPAD4基因在根、莖和葉中均有表達且在葉中的表達量最高;在紫外和低氧脅迫下SmPAD4基因在葉和莖中表達量均上調(diào),根中表達量下調(diào)。(5)亞細胞定位顯示,SmPAD4分布于細胞核、細胞膜和葉綠體。該研究表明,SmPAD4基因擁有獨特的蛋白結(jié)構(gòu)域,并且響應(yīng)低氧和紫外兩種環(huán)境脅迫,在通氣組織的形成以及對逆境脅迫的響應(yīng)中具有重要作用,為進一步探究SmPAD4基因在水母雪兔子適應(yīng)環(huán)境過程中的作用提供了理論依據(jù)。

        關(guān)鍵詞: 水母雪兔子, SmPAD4, 通氣組織, 表達分析, 低氧脅迫, 紫外脅迫

        中圖分類號:" Q943"文獻標識碼:" A

        文章編號:" 1000-3142(2024)12-2265-14

        Cloning and expression of aerenchyma formation-related gene SmPAD4 in Saussurea medusa

        WEI Rongyi1,2,3, DUAN Peng4, LI Peilan1,2,3, LUO Dan1,2,3, SHI Guomin2,3,DAI Wubin2,3, LI Fengzhen1,2,3, HE Tao1,2,3*

        ( 1. School of Ecol-Environmental Engineering, Qinghai University, Xining 810016, China; 2. Key Laboratory of Landscape Plants of QinghaiProvince, Xining 810016, China; 3. State Key Laboratory of Plateau Ecology and Agriculture, Qinghai University,Xining 810016, China; 4. Academy of Animal Science and Veterinary, Qinghai University, Xining 810016, China )

        Abstract:" The aerenchyma is an adaptive structure of Saussurea medusa in response to extreme environments, and its formation is usually accompanied by programmed cell death (PCD). The death of cells and the formation of aerenchyma are typically regulated by the PAD4 gene (Phytoalexin Deficient 4). However, the mechanism by which SmPAD4 regulates the formation of aerenchyma in" S. medusa remains unclear. In this study, S. medusa was used as the experimental material, and the gene SmPAD4 related to aerenchyma formation was cloned by homologous cloning and RACE technology, and its sequence, phylogenetic evolution, expression and subcellular localization were analyzed, and its promoter was amplified by hi-TAIL PCR technology to explore its function in environmental adaptation. The results were as follows:(1) The cDNA of SmPAD4 gene was successfully cloned with a total length of 2 047 bp(GenBank accession number OR766038), including an open reading frame of 1 866 bp, encoding 621 amino acids, a molecular formula of C3163H4906N848O910S26. The protein was an alkaline and hydrophilic unstable protein. (2)Phylogenetic tree analysis showed that SmPAD4 had high similarity with CcPAD4 of Cynara cardunculus. (3)A length of 1 049 bp promoter sequence of SmPAD4" was amplified, which included cis-acting elements such as light response element, hypoxia response element, dry and auxin response elements.(4)Real-time quantitative fluorescence (qRT-PCR) analysis showed that SmPAD4 gene was expressed in root, stem and leaf, and the expression level was the highest in leaf. Under ultraviolet and hypoxia stresses, the expression of SmPAD4 gene was up-regulated in leaf and stem, and down-regulated in root. (5)Subcellular localization showed that SmPAD4 was distributed in the nucleus, cell membrane, and chloroplast. The results show that SmPAD4 gene has a unique protein domain and it responds to hypoxia and ultraviolet environmental stresses, so it plays an important role in the formation of aerenchyma and the response to adversity stress. This study provides theoretical reference for further exploring the role of SmPAD4 gene in the environmental adaptation process of Saussurea medusa.

        Key words: Saussurea medusa, SmPAD4, aerenchyma, expression analysis, hypoxia stress, ultraviolet stress

        水母雪兔子(Saussurea medusa)屬菊科(Asteraceae)風(fēng)毛菊屬(Saussurea),為多年生草本植物,主要分布于青藏高原地區(qū)(Pegadaraju et al., 2007;Dawa et al., 2009;Szechynska-Hebda et al., 2016),主要受高寒、低氧和強紫外輻射等極端環(huán)境的脅迫。根、莖和葉中發(fā)達的通氣組織是水母雪兔子最具有代表性的應(yīng)對極端環(huán)境的結(jié)構(gòu)特征(王文和等,2007;蔣欣悅等,2023)。PAD4基因在植物細胞程序性死亡和形成通氣組織形成中起著重要作用(Bernacki et al., 2019, 2023),但目前水母雪兔子的非生物脅迫響應(yīng)機制尚未明確。因此,研究水母雪兔子通氣組織形成相關(guān)基因SmPAD4,對揭示高山植物適應(yīng)環(huán)境的特殊機制具有重要的理論意義。

        PAD4作為R(resistance)基因介導(dǎo)的信號轉(zhuǎn)導(dǎo)分子,是參與植物免疫應(yīng)答、PCD調(diào)控和通氣組織形成的關(guān)鍵基因,在植物響應(yīng)生物與非生物脅迫的過程中起到重要作用(Rietz et al., 2011;Zeng et al., 2021;支添添等,2022)。PAD4響應(yīng)各種非生物脅迫(如強光、紫外線輻射、干旱和寒冷等)主要通過次級信使介導(dǎo),如水楊酸(salicylic acid,SA)、活性氧(reactive oxygen species,ROS)、乙烯(ethylene,ET)和其他信號分子等,并且在擬南芥與木本植物中被證明參與調(diào)節(jié)植物細胞程序性死亡、細胞壁合成、種子產(chǎn)量、生物物質(zhì)生成和水分利用(Feys et al., 2001; [HT9.]S[HT]'lesak et al., 2014;Cui et al., 2017)。已有大量研究表明,PAD4與LSD1(Lesion Simulating Disease 1)和EDSI(Enhanced Disease Susceptibility 1)形成特定樞紐來調(diào)節(jié)植物細胞死亡和適應(yīng)生物和非生物脅迫(Aviv et al., 2002;Mateo et al., 2004;Mühlenbock et al., 2007;Gao et al., 2010;Karpiński et al., 2013;Wituszyńska et al., 2015)。在擬南芥中,AtPAD4突變導(dǎo)致SA、ET和ROS穩(wěn)態(tài)受損,從而中斷適應(yīng)反應(yīng)和細胞死亡信號傳導(dǎo),并且在低氧條件下AtPAD4被AtLSD1.1負調(diào)控來參與乙烯途徑的溶生型通氣組織形成過程(Mühlenbock et al., 2007;Karpiński et al., 2013;Youssef et al., 2013;Bernacki et al., 2018)。在水稻中,朱靜雯(2014)通過改變氮素含量來刺激水稻,使OsPAD4改變對氮素的響應(yīng)模式,從而來調(diào)控細胞程序性死亡誘導(dǎo)通氣組織形成。在葡萄中,VvPAD4與VvEDS1形成穩(wěn)定的分子復(fù)合物來適應(yīng)非生物脅迫和調(diào)控細胞死亡(Gao et al., 2014;Tandon et al., 2015)。在大豆中,GmPAD4是防御信號傳導(dǎo)所必需,并且參與調(diào)控細胞死亡和生物脅迫應(yīng)答過程(Wang et al., 2014;Pant et al., 2015)。目前,PAD4基因?qū)ν饨M織形成及其調(diào)控研究主要集中于擬南芥、水稻和煙草等植物(Bubici et al., 2006;Hanling et al., 2024),對PAD4基因在水母雪兔子逆境適應(yīng)過程中的功能研究尚未明確。

        鑒于此,本研究以自然生長于青藏高原地區(qū)的水母雪兔子為試驗材料,通過分子生物學(xué)技術(shù)克隆與通氣組織形成相關(guān)的基因SmPAD4及擴增其啟動子,并研究該基因在紫外和低氧脅迫條件下的表達,從而分析基因與生態(tài)環(huán)境之間的關(guān)系,以期為水母雪兔子的分子適應(yīng)機制和高山植物功能生態(tài)學(xué)研究提供科學(xué)依據(jù)。

        1 材料與方法

        1.1 材料和處理

        取青藏高原東北部祁連山支脈(青海西寧,101°41′ E、37°36′ N)的水母雪兔子植株及種子進行相關(guān)實驗。于開花期采集幼嫩葉片用于基因克隆和啟動子擴增。

        將采集的種子于實驗室培養(yǎng)至長出兩片真葉(約70 d),參照師生波等(2006)和蔣欣悅等(2023)的方法對其進行紫外脅迫和低氧脅迫,并于脅迫處理1、2、4、6、12 h后取樣,用于基因的組織表達分析。

        1.2 SmPAD4基因cDNA全長的克隆

        從NCBI下載菊科植物刺苞菜薊(Cynara cardunculus)、萵苣(Lactuca sativa)、向日葵(Helianthus annuus)和小蓬草(Erigeron canadensis)已上傳的PAD4的CDS區(qū)域,利用DNAMAN 5.0比對后設(shè)計簡并引物(表1)。

        以野外采集的水母雪兔子葉片為實驗材料,利用MiniBest Universal RNA Extraction Kit試劑盒提取水母雪兔子總RNA,檢測RNA質(zhì)量合格后利用Prime Script TMⅡ1st strand cDNA synthesis Kit(TaKaRa)試劑盒反轉(zhuǎn)cDNA第一鏈。根據(jù)簡并引物擴增出的中間片段設(shè)計2個3′-RACE和2個5′-RACE的巢式PCR特異性引物(表1),利用SMARTerRACE 5′/3′Kit試劑盒進行RACE實驗,并對PCR產(chǎn)物進行1%瓊脂糖凝膠電泳檢測,將符合大小的條帶回收并進行藍白斑篩選,將陽性菌落挑出送生物公司測序。二輪巢式PCR擴增得到的序列與中間片段進行拼接得到水母雪兔子SmPAD4基因的cDNA全長,根據(jù)全長序列設(shè)計引物進行驗證。

        1.3 SmPAD4基因的生物信息學(xué)分析

        利用Open Reading Frame Finder(ORF Finder)尋找開放閱讀框和序列編碼產(chǎn)物;通過ProtParam工具(http://web.expasy.org/protparam/)進行氨基酸序列等電點、分子量和不穩(wěn)定系數(shù)等理化性質(zhì)分析;用Pfam(http://pfam.xfam.org/)進行保守結(jié)構(gòu)域分析,通過SOPMA(http://pbil.ibcp.fr)和 SWISS-MODEL數(shù)據(jù)庫(http: //swissmodel.expasy.org/)預(yù)測SmPAD4蛋白的二級、三級結(jié)構(gòu);借助NCBI Blastp和DNAMAN 5.0軟件進行同源序列比對;將同源性高的PAD4基因蛋白使用MEGA 11構(gòu)建水母雪兔子SmPAD4與其他植物的同源蛋白系統(tǒng)進化樹;通過WoLF PSORT(https://www.genscript.com/wolf-psor)對SmPAD4進行亞細胞定位預(yù)測。

        1.4 SmPAD4基因的表達分析

        用野外采取的水母雪兔子組織(根、莖、葉)為實驗材料,提取RNA反轉(zhuǎn)成cDNA為模板,進行野外環(huán)境下的組織表達分析。以實驗室培養(yǎng)的水母雪兔子實生苗為實驗材料進行紫外、低氧兩種脅迫,于處理1、2、4、6、12 h后采集水母雪兔子不同組織(根、莖、葉)提取cDNA進行環(huán)境脅迫的組織表達分析。本實驗參照郭佳磊等(2020)和蔣欣悅等(2023)的方法以UPL7作為內(nèi)參基因,設(shè)計熒光定量引物(表1),每組處理進行3個生物學(xué)重復(fù),按照SYBR Premix Ex Taq Ⅱ說明書流程進行qRT-PCR。反應(yīng)程序:95 ℃預(yù)變性5 min;95 ℃變性10 s,60 ℃退火30 s,72 ℃延伸30 s(40個循環(huán))。數(shù)據(jù)分析采用2-ΔΔCt計算水母雪兔子SmPAD4基因在根、莖和葉中的表達量,并使用SPSS 26、Excel 2021和Origin 2021進行分析與制圖。

        1.5 SmPAD4啟動子擴增

        依據(jù)已克隆出的SmPAD4基因組序列設(shè)計3個巢式下游特異性引物(表1)。按照Mini BEST通用型DNA提取試劑盒提取高濃度的水母雪兔子DNA。采用hi-TAIL PCR(Liu amp; Chen, 2007;郭佳磊等,2020)的方法擴增SmPAD4啟動子序列。分別進行預(yù)擴增、第一輪擴增和第二輪擴增PCR反應(yīng)。擴增的啟動子序列采用PlantCARE(https://bioinformatics.psb.ugent.be/webtools/plantcare/html)在線預(yù)測順式作用元件。

        1.6 SmPAD4基因的亞細胞定位

        通過Primer Premier 5尋找SmPAD4基因中帶有Sac Ⅰ和Xba Ⅰ的雙酶切位點,之后加入5′和3′接頭引物合成PAD4-2300F和PAD4-2300R引物(表1)。通過PCR擴增該基因的CDS區(qū),對PCR產(chǎn)物和pCAMBIA2300-GFP載體進行雙酶切。使用同源重組方法用T4DNA連接酶構(gòu)建融合表達載體PAD4-2300。通過熱激法將其轉(zhuǎn)化大腸桿菌DH5α感受態(tài)細胞并篩選出陽性克隆,挑取陽性菌落進行菌落PCR檢測。通過液氮凍融法將重組質(zhì)粒轉(zhuǎn)化農(nóng)桿菌GV3101,再侵染本氏煙草葉片進行瞬時表達,培養(yǎng)2~3 d后,使用含2300-GFP空載體的農(nóng)桿菌作為對照,利用FV10-ASW激光共聚焦顯微鏡觀察葉片中的熒光信號。

        2 結(jié)果與分析

        2.1 SmPAD4基因cDNA全長的克隆

        通過RT-PCR擴增出574 bp的保守片段,3′ RACE和5′ RACE反應(yīng)分別擴增出1 150 bp和1 359 bp的片段(圖1)。該基因cDNA全長2 047 bp(GenBank登錄號OR766038),其中包括1 866 bp的開放閱讀框,編碼621 個氨基酸,并進行了cDNA全長驗證。

        2.2 SmPAD4基因的生物信息學(xué)分析

        SmPAD4基因共編碼621個氨基酸,分子式為C3163H4906N848O910S26,分子量為70.22 kDa,等電點為8.18,蛋白脂肪指數(shù)為87.13,無信號肽,總平均親水系數(shù)為-0.194,不穩(wěn)定系數(shù)為40.48,為堿性親水性不穩(wěn)定蛋白??缒そY(jié)構(gòu)預(yù)測結(jié)果顯示有跨膜區(qū)域,說明SmPAD4蛋白屬于跨膜蛋白。將水母雪兔子SmPAD4基因預(yù)測的編碼氨基酸序列,通過Neighbor-Joining法構(gòu)建SmPAD4和其他物種PAD4蛋白的系統(tǒng)進化樹(圖2)發(fā)現(xiàn),水母雪兔子SmPDA4(WPA93990.1)和刺苞菜薊(XP_024962884.1、XP_024962885.1)、萵苣(XP_023737098.1)、小蓬草(XP_043623496.1)、向日葵(XP_021989681.1)等PAD4蛋白親緣關(guān)系較近,其中進化距離最近的是刺苞菜薊(XP_024962884.1、XP_024962885.1)。蛋白多序列比對(圖3)顯示水母雪兔子PAD4與刺苞菜薊相似度最高。將SmPAD4與菊科其他植物進行核苷酸和氨基酸序列比較發(fā)現(xiàn),與刺苞菜薊的核苷酸序列相似度高達87.16%,與其他菊科的核苷酸序列相似度在74%以上,與刺苞菜薊的氨基酸序列相似度高達87.66%,與其他菊科的核苷酸序列相似度在73%以上。

        SmPAD4含有多個磷酸化位點(圖4:A),其中絲氨酸磷酸化位點最多且多個位點預(yù)測值在0.9以上,表明SmPAD4蛋白可受磷酸化作用調(diào)控。其蛋白質(zhì)二級結(jié)構(gòu)預(yù)測(圖4:B)顯示,該序列主要含有α-螺旋、延伸鏈、β-折疊和無規(guī)卷曲。其中,α-螺旋有314個氨基酸,占50.56%;延伸鏈有51個氨基酸,占8.21%;β-折疊有18個氨基酸,占2.90%;無規(guī)卷曲有238個氨基酸,占38.33%。α-螺旋、延伸鏈和無規(guī)卷曲貫穿于整個氨基酸鏈,β-折疊只有一點點且散布在α-螺旋附近。利用SWISS-MODEL對SmPAD4蛋白三級結(jié)構(gòu)的預(yù)測見圖4:C。并且該蛋白N端具有保守性較高的α/β水解酶折疊結(jié)構(gòu)域,在菊科植物的進化過程中具有高度的保守性。C端包含EDS1-PAD4(EP)結(jié)構(gòu)域,是穩(wěn)定異二聚化所必需的,包括類脂酶蛋白家族(EDS1、PAD4、SAG101),這組蛋白質(zhì)可參與細胞表面和細胞內(nèi)免疫受體的信號傳導(dǎo),因此PAD4具有特定的結(jié)構(gòu)域功能。

        2.3 SmPAD4基因的啟動子擴增

        通過 hi-TAIL PCR的方法擴增出1 049 bp的SmPAD4啟動子序列(圖5)。通過PlantCARE在線預(yù)測發(fā)現(xiàn)該啟動子區(qū)域除大量的TATA-box和CTAA-box啟動子順式元件外,還包含光響應(yīng)元件(Box 4和GT1-motif)、低氧應(yīng)答元件(ARE)、茉莉酸甲酯(MeJA)應(yīng)答元件(CGTCA-motif和TGACG-motif)、干旱(MBS)和生長素應(yīng)答元件(AuxRR-core)等順式作用元件(表2)。這說明SmPAD4基因可參與光信號、低氧、干旱和茉莉酸甲酯以及WRKY轉(zhuǎn)錄因子的結(jié)合位點(W-box)等信號脅迫誘導(dǎo)的調(diào)控機制,因此推測SmPAD4在水母雪兔子生長發(fā)育過程中參與相關(guān)的調(diào)控及生理過程。

        2.4 SmPAD4基因的組織表達

        組織表達結(jié)果(圖6)表明,SmPAD4基因在野生水母雪兔子根、莖、葉中均有表達,表達量由高到低依次為葉gt;根gt;莖,其中葉中的表達量約為莖的5.3倍,根中的表達量約為莖的2.5倍,均差異顯著(Plt;0.05)。

        紫外脅迫條件下,SmPAD4基因在根中的表達量均低于對照,處理4 h時達到最低峰值;莖中的表達量呈先升高后降低的趨勢,處理6 h時達到最高峰值;葉中的表達量呈先升高后降低的趨勢,處理4 h時達到最高峰值(圖7:A)。低氧脅迫條件下,根中的表達量均低于對照,處理6 h時達到最低峰值;莖中的表達量呈上下反復(fù)波動趨勢,處理時間表達量均高于對照表達量,處理12 h時達到最高峰值;葉中的表達量呈先上升后下降趨勢,處理4 h時達到最高峰值(圖7:B)。

        根據(jù)Lorbiecke和Sauter(1999)與孔妤等(2008)研究可知,在缺氧情況下1~3 h內(nèi)乙烯積累促進生成通氣組織,并且在脅迫時間達到12 h時基因響應(yīng)脅迫產(chǎn)生的表達水平具有顯著差異(Bailey-Serres amp; Voesenek, 2008)。因此,本研究對水母雪兔子實生苗分別進行了4 h和12 h的紫外脅迫和低氧脅迫處理,并對SmPAD4在水母雪兔子根莖葉中的表達進行分析。結(jié)果表明,脅迫4 h時,紫外和低氧脅迫的響應(yīng)均能顯著影響水母雪兔子各組織中SmPAD4表達量(圖8:A)。在根中,紫外脅迫和低氧脅迫顯著降低了SmPAD4表達量(Plt;0.05),其中紫外脅迫下SmPAD4的表達量最低;在莖中,紫外脅迫和低氧脅迫顯著提高了SmPAD4表達量(Plt;0.05),其中低氧脅迫下SmPAD4的表達量最高;在葉中,紫外脅迫和低氧脅迫顯著提高了SmPAD4表達量(Plt;0.05),其中紫外脅迫下SmPAD4的表達量最高。脅迫12 h時,紫外和低氧脅迫的響應(yīng)均能顯著影響水母雪兔子各組織中SmPAD4表達量(圖8:B)。在根中, 紫外脅迫和低氧脅迫顯著降低了SmPAD4表達量(Plt;0.05),其中紫外脅迫下PAD4的表達量最低;在莖和葉中,紫外脅迫和低氧脅迫顯著提高了SmPAD4表達量(Plt;0.05),其中低氧脅迫下SmPAD4的表達量最高(Plt;0.05)。

        2.5 SmPAD4基因的亞細胞定位

        亞細胞定位結(jié)果(圖9)顯示,含有目標基因的 PAD4-2300融合蛋白綠色熒光信號主要分布于細胞膜和細胞核,部分分布于葉綠體中,表明SmPAD4蛋白主要在細胞膜、細胞核和葉綠體中發(fā)揮功能。

        3 討論與結(jié)論

        PAD4是調(diào)控植物響應(yīng)生物與非生物脅迫和PCD的關(guān)鍵基因,在植物生長發(fā)育中有著重要作用(Wituszynska et al., 2013)。本研究從水母雪兔子中克隆出2 047 bp的SmPAD4基因,包含1 866 bp的CDS區(qū),編碼621 個氨基酸。對SmPAD4進行蛋白分析,其蛋白脂肪指數(shù)為87.13,為堿性親水性不穩(wěn)定蛋白,屬于水解酶超家族蛋白。SmPAD4蛋白含有多個磷酸化位點,表明其可受磷酸化作用調(diào)控。通過結(jié)構(gòu)域預(yù)測,發(fā)現(xiàn)SmPAD4基因N端有α/β水解酶結(jié)構(gòu)域,在菊科植物的進化過程中具有高度的保守性,C端包含著EP結(jié)構(gòu)域,可以形成穩(wěn)定的異二聚化結(jié)構(gòu)。PAD4與同屬于水解酶家族的EDS1的N端都有與?;饷竿吹慕Y(jié)構(gòu)域,使兩者可為互作蛋白來響應(yīng)逆境脅迫(Wiermer et al., 2005)。種子植物中,PAD4和EDS1因具有同源結(jié)構(gòu)域特征能夠形成異源二聚體,從而介導(dǎo)植物的細胞死亡和免疫反應(yīng)(Lapin et al., 2019, 2020)。在被子植物的研究中,沉默PAD4基因N端的穩(wěn)定復(fù)合物并進行共表達,結(jié)果表明PAD4響應(yīng)干旱、脫落酸以及生物脅迫(Baggs et al., 2020)。在擬南芥中,通過表達PAD4基因的N端脂肪酶樣結(jié)構(gòu)域(LLD),不表達其C端EP結(jié)構(gòu)域,發(fā)現(xiàn)PAD4可以作為二分蛋白發(fā)揮作用,說明LLD和EP結(jié)構(gòu)域在植物防御中發(fā)揮獨特且可分離的作用(Dongus et al., 2020)。SmPAD4獨特的結(jié)構(gòu)域使其可作為二分蛋白來響應(yīng)水解代謝和免疫信號,進一步參與調(diào)控植物的生物及非生物脅迫。

        在植物中,大多數(shù)含TATA-box的啟動子主要參與組織特異性表達和脅迫反應(yīng),并且已知AP2 / ERF、bZIP、NAC、MYB和WRKY是常見的參與病原體防御的啟動子元件(Singh et al., 2002;Gutterson amp; Reuber, 2004;Molina amp; Grotewold, 2005;Civáň amp; vec, 2009;Ng et al., 2018)。本研究發(fā)現(xiàn),SmPAD4啟動子區(qū)域除大量的TATA-box和CTAA-box啟動子順式元件外,還包含光響應(yīng)元件(Box 4和GT1-motif)、低氧應(yīng)答元件(ARE)、茉莉酸甲酯應(yīng)答元件(CGTCA-motif和TGACG-motif)、干旱(MBS)和生長素應(yīng)答元件(AuxRR-core)以及WRKY轉(zhuǎn)錄因子結(jié)合位點(W-box)等順式作用元件。在雪蓮SikCDPK1基因和玉米GRAS基因家族啟動子的研究中均包含了光信號、低氧、干旱、生長素和MeJA相關(guān)的順式元件從而參與植物的生長發(fā)育和調(diào)控生物與非生物脅迫響應(yīng)(史光珍等,2022;吳占清等,2024),與本研究結(jié)果一致。說明了SmPAD4基因可響應(yīng)多種脅迫信號,來保障其在植物生長發(fā)育中的重要作用,進一步說明SmPAD4參與調(diào)控水母雪兔子的生長發(fā)育以及應(yīng)答生物與非生物脅迫,在水母雪兔子適應(yīng)極端環(huán)境中起到重要作用。

        蛋白質(zhì)在植物細胞內(nèi)的定位分布是了解其分子功能、基因調(diào)控和蛋白質(zhì)-蛋白質(zhì)相互作用的關(guān)鍵(未麗和劉建利,2021)。本研究通過侵染本氏煙草對SmPAD4基因進行了亞細胞定位,結(jié)果顯示SmPAD4定位于細胞膜、細胞核和葉綠體中,這與植物響應(yīng)生物與非生物脅迫時產(chǎn)生的蛋白質(zhì)傳導(dǎo)信號EDS1-PAD4復(fù)合物通常出現(xiàn)于細胞核中的結(jié)果一致(García et al., 2010;Gao et al., 2020)。在擬南芥中AtPAD4定位于細胞質(zhì)和細胞核中(Czarnocka et al., 2017),產(chǎn)生防御信號轉(zhuǎn)導(dǎo)促進細胞程序性死亡。在小麥中,TaPAD4同擬南芥一樣定位于細胞質(zhì)和細胞核中來參與植物免疫(Song et al., 2022)。本研究發(fā)現(xiàn)SmPAD4不止定位于細胞膜和細胞核中,還定位于葉綠體中,可能因為葉綠體是光響應(yīng)場所,而PAD4在光響應(yīng)的過量激發(fā)能量(excess excitation energy,EEE)中作為乙烯和ROS生產(chǎn)的上游來調(diào)節(jié)程序性細胞死亡、光馴化和整體防御反應(yīng)的信號傳導(dǎo),同時PAD4可轉(zhuǎn)導(dǎo)光氧化應(yīng)激信號,導(dǎo)致細胞死亡和植物生長緩慢,以及參與植物適應(yīng)性調(diào)節(jié)(Mühlenbock et al., 2008;Neubauer et al., 2020)。并且PAD4被認為是典型的NLR信號成分,可在細胞質(zhì)、細胞核、質(zhì)膜、液泡膜和內(nèi)質(zhì)網(wǎng)等亞細胞結(jié)構(gòu)中發(fā)揮功能,對乙烯、活性氧產(chǎn)生、胼胝質(zhì)積累及植保素基因表達起到誘導(dǎo)及抑制作用(Chiang amp; Coaker, 2015;Pruitt et al., 2021;劉艷艷等,2023;Wang et al., 2024)。因此,SmPAD4的亞細胞定位結(jié)果進一步確定了其可響應(yīng)生物或非生物脅迫產(chǎn)生的乙烯、活性氧、水楊酸和脫落酸等信號來維持植物的正常生長。

        水母雪兔子作為典型的高山植物,其生境具有強紫外輻射和缺氧等特征。為探究SmPAD4對其生境脅迫的響應(yīng),本研究對水母雪兔子進行了紫外和低氧脅迫,并對SmPAD4在其根、莖和葉中的表達量進行分析。qRT-PCR結(jié)果表明,紫外和低氧脅迫下,SmPAD4基因在根中的表達量始終低于對照;在莖和葉中的表達量始終高于對照。擬南芥受到紫外脅迫時,AtPDA4上調(diào)來調(diào)控PCD(Bernacki et al., 2021),與本研究結(jié)果一致。在低氧脅迫研究中發(fā)現(xiàn),玉米、小麥和黃瓜的PAD4基因參與調(diào)控細胞程序性死亡(Rajil et al., 2011; Yamauchi et al., 2014; Qi et al., 2019)。在水稻通氣組織相關(guān)基因研究中發(fā)現(xiàn),低氧處理會下調(diào)OsPAD在根系中的表達而調(diào)控細胞程序性死亡(朱靜雯,2014),這與本研究中低氧脅迫下SmPAD4基因在植物根中的表達情況一致。這可能是因為在缺氧的環(huán)境下,通過乙烯和生長素誘導(dǎo)ROS響應(yīng),使PAD4等相關(guān)基因協(xié)作后產(chǎn)生應(yīng)答造成程序性細胞死亡從而形成通氣組織(Yamauchi et al., 2014; Qi et al., 2019)。在對水母雪兔子SmLSD1的研究中發(fā)現(xiàn),在紫外與低氧脅迫下SmLSD1于葉和莖中表達量下調(diào),在根中表達量上調(diào)(蔣欣悅等,2023),而本研究中SmPAD4的表達量變化與SmLSD1相反。研究發(fā)現(xiàn)擬南芥中的AtPDA4被AtLSD1負調(diào)控來影響PCD(Bernacki et al., 2021),說明在環(huán)境脅迫中SmPAD4與SmLSD1均響應(yīng)并做出了應(yīng)答且SmPAD4在低氧和紫外脅迫下受SmLSD1負調(diào)控來適應(yīng)極端環(huán)境。這與擬南芥中AtPAD被AtLSD1.1負調(diào)控后參與乙烯途徑來誘導(dǎo)植物通氣組織的形成結(jié)果一致(Mühlenbock et al., 2007),推測SmPAD4基因在水母雪兔子不同組織中存在著不同的表達模式來響應(yīng)逆境脅迫。在紫外和低氧脅迫4 h后,SmPAD4表達量在各組織中顯著變化,而SmPAD4在根和葉中的表達量變化高于低氧脅迫;進行12 h脅迫后,SmPAD4在紫外脅迫后根中的表達量變化高于低氧脅迫,說明SmPAD4基因在紫外脅迫下的表達量改變較顯著。這可能因為PAD4可轉(zhuǎn)導(dǎo)光氧化應(yīng)激信號和乙烯與ROS生成的上游信號來調(diào)控植物的程序性細胞死亡(Mühlenbocket al., 2008;Petrov et al., 2015;Neubauer et al., 2020;Witoń et al., 2021)。本研究表明在兩種脅迫下,SmPAD4基因在水母雪兔子各組織中均能發(fā)生響應(yīng),在根中起負響應(yīng),在葉和莖中起正響應(yīng),這與擬南芥中AtPAD被AtLSD1.1負調(diào)控后參與乙烯途徑來影響植物通氣組織的形成結(jié)果一致(Mühlenbock et al., 2007),推測逆境脅迫下SmPAD4基因在水母雪兔子不同組織中存在著不同的表達模式。盡管水母雪兔子SmPAD4基因?qū)Φ脱鹾妥贤廨椛渚茏龀鰬?yīng)答反應(yīng),但其通氣組織是由低氧引起,還是與紫外輻射有關(guān),還是高山各種環(huán)境因子綜合影響的結(jié)果,目前還不清楚,還需要更多的研究來證明。

        參考文獻:

        AVIV DH, CHRISTINE RUSTRUCCI, HOLT BF, et al., 2002. Runaway cell death, but not basal disease resistance, in lsd1 is SA- and NIM1/NPR1-dependent [J]. Plant J, 29: 381-391.

        BAGGS EL, MONROE JG, THANKI AS," et al., 2020. Convergent loss of an EDS1/PAD4 signaling pathway in several plant lineages reveals coevolved components of plant immunity and drought response [J]. Plant Cell, 32(7): 2158-2177.

        BAILEY-SERRES J, VOESENEK LA, 2008. Flooding stress: Acclimations and genetic diversity [J]. Ann Rev Plant Biol, 59: 313-39.

        BERNACKI MJ, CZARNOCKA W, RUSACZONEK A, et al., 2019. LSD1-, EDS1- and PAD4-dependent conditional correlation among salicylic acid, hydrogen peroxide, water use efficiency and seed yield in Arabidopsis thaliana [J]. Physiol Plant, 165(2): 369-382.

        BERNACKI MJ, MIELECKI J, ANTCZAK A, et al., 2023. Biotechnological potential of the stress response and plant cell death regulators proteins in the biofuel industry" [J]. Cells, 12(16): 2018.

        BERNACKI MJ, RUSACZONEK A, CZARNOCKA W, et al., 2021. Salicylic acid accumulation controlled by" LSD1 is essential in triggering cell death in response to abiotic stress [J]. Cells, 10(4): 962.

        BERNACKI MJ, CZARNOCKA W, WITON' D, et al., 2018. Enhanced disease susceptibility 1 (EDS1) affects development, photosynthesis, and hormonal homeostasis in hybrid aspen (Populus tremula L. × P. tremuloides)" [J]. J Plant Physiol, 226: 91-102.

        BUBICI C, PAPA S, DEAN K, et al., 2006. Mutual cross-talk between reactive oxygen species and nuclear factor-kappa B: Molecular basis and biological significance [J]. Oncogene, 25(51): 6731-6748.

        CHIANG YH, COAKER G, 2015. Effector triggered immunity: NLR immune perception and downstream defense responses [J]. Arabidopsis Book, 13: e0183.

        CIVNˇ P, VEC M, 2009. Genome-wide analysis of rice (Oryza sativa L. subsp. japonica) TATA box and Y patch promoter elements [J]. Genome, 52(3): 294-297.

        CUI H, GOBBATO E, KRACHER B, et al., 2017. A core function of EDS1 with PAD4 is to protect the salicylic acid defense sector in Arabidopsis immunity [J]. New Phytol, 213: 1802-1817.

        CZARNOCKA W, VAN DER KELEN K, WILLEMS P, et al., 2017. The dual role of lesion simulating disease 1 as a condition-dependent scaffold protein and transcription regulator: Insight into the LSD1 molecular function [J]. Plant Cell Environ, 40: 2644-2662.

        DAWA ZM, BAI Y, ZHOU Y, et al., 2009. Chemical constituents of the whole plants of Saussurea medusa [J]. J Nat Med, 63: 327-330.

        DONGUS JA, BHANDARI DD, PATEL M, et al., 2020. The Arabidopsis PAD4 lipase-like domain is sufficient for resistance to green peach aphid [J]. Mol Plant Microb Interaction, 33(2): 328-335.

        FEYS BJ, MOISAN LJ, NEWMAN MA, et al., 2001. Direct interaction between the Arabidopsis disease resistance signaling proteins, EDS1 and" PAD4 [J]. EMBO J, 20: 5400-5411.

        GAO C, WANG M, DING L, et al., 2020. High water uptake ability was associated with root aerenchyma formation in rice: Evidence from local ammonium supply under osmotic stress conditions [J]. Plant Physiol Biochem, 150: 171-179.

        GAO F, DAI R, PIKE SM, et al., 2014. Functions of EDS1-like and PAD4 genes in grapevine defenses against powdery mildew [J]. Plant Mol Biol, 86: 381-393.

        GAO F, SHU X, ALI MB, et al., 2010. A functional EDS1 ortholog is differentially regulated in powdery mildew resistant and susceptible grapevines and complements an Arabidopsis eds1 mutant [J]. Planta, 231: 1037-1047.

        GARCA, ANA V, BLANVILLAIN-BAUFUM, et al., 2010. Balanced nuclear and cytoplasmic activities of EDS1 are required for a complete plant innate immune response [J]. Plos Pathog, 6(7): e1000970.

        GUO JL, WANG LX, LI FZ, et al., 2020. Cloning and expression of anthocyanin-related gene in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 40(11): 1840-1846." [郭佳磊, 王聯(lián)星, 李鳳珍, 等, 2020. 水母雪蓮花青素合成相關(guān)基因的克隆及表達 [J]. 西北植物學(xué)報, 40(11): 1840-1846.]

        GUTTERSON N, REUBER TL, 2004. Regulation of disease resistance pathways by AP2/ERF transcription factors [J]. Curr Opin Plant Biol, 7: 465-471.

        HANLING W, SUSHENG S, SHANG G, et al., 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.

        JIANG XY, SHI GM, DAI WB, et al., 2023. Cloning and expression of aerenchyma-related gene SmLSD1 in Saussurea medusa Maxim. [J]. Acta Bot Boreal-Occident Sin, 43(4): 550-558." [蔣欣悅, 史國民, 代吳斌, 等, 2023. 水母雪蓮?fù)饨M織形成的相關(guān)基因SmLSD1克隆及表達 [J]. 西北植物學(xué)報, 43(4): 550-558.]

        KARPIN'SKI S, SZECHYN'SKA-HEBDA M, WITUSZYN'SKA W, et al., 2013. Light acclimation, retrograde signalling, cell death and immune defences in plants [J]. Plant Cell Environ, 36(4): 736-744.

        KONG S, WANG Z, GU YJ, et al., 2008. Research progress on aerenchyma formation in plant roots" [J]. Chin Bull Bot, 25(2): 248-253." [孔妤, 王忠, 顧蘊潔, 等, 2008. 植物根內(nèi)通氣組織形成的研究進展 [J]. 植物學(xué)通報, 25(2): 248-253.]

        LAPIN D, BHANDARI DD, PARKER JE, 2020. Origins and immunity networking functions of EDS1 family proteins [J]. Ann Rev Phytopathol, 58: 253-276.

        LAPIN D, KOVACOVA V, SUN X, et al., 2019. A coevolved EDS1-SAG101-NRG1 module mediates cell death signaling by TIR-Domain immune receptors [J]. Plant Cell, 31(10): 2430-2455.

        LIU YG, CHEN Y, 2007. High-efficiency thermal asymmetric interlaced PCR for amplification of unknown flanking sequences [J]. Biol Techniques, 43(5): 649-656.

        LIU YY, DING Y, ZHENG JQ, et al., 2023. Research progress on PRRs and NLRs mediated immune signaling pathways in plants [J]. Jiangsu Agric Sci, 51(8): 43-50." [劉艷艷, 丁穎, 鄭佳秋, 等, 2023. 植物PRRs和NLRs介導(dǎo)的免疫信號通路研究進展 [J]. 江蘇農(nóng)業(yè)科學(xué), 51(8): 43-50.]

        LORBIECKE R, SAUTER M, 1999. Adventitious root growth and cell-cycle induction in deepwater rice [J]. Plant Physiol, 119: 21-29.

        MATEO A, MHLENBOCK P, RUSTRUCCI C, et al., 2004. Lesion simulating disease 1 is required for acclimation to conditions that promote excess excitation energy [J]. Plant Physiol, 136: 2818-2830.

        MOLINA C, GROTEWOLD E, 2005. Genome wide analysis of Arabidopsis core promoters [J]. BMC Genomics, 6(1): 25.

        MHLENBOCK P, PLASZCZYCA M, PLASZCZYCA M, et al., 2007. Lysigenous aerenchyma formation in Arabidopsis is controlled by lesion simulating disease 1 [J]. Plant Cell, 19(11): 3819-3830.

        MHLENBOCK P, SZECHYNSKA-HEBDA M, PLASZCZYCA M, et al., 2008. Chloroplast signaling and lesion simulating disease 1 regulate crosstalk between light acclimation and immunity in Arabidopsis [J]. Plant Cell, 20(9): 2339-2356.

        NEUBAUER M, SERRANO I, RODIBAUGH N, et al., 2020. Arabidopsis EDR1 protein kinase regulates the association of EDS1" and" PAD4 to inhibit cell death [J]. Mol Plant Microb Interaction, 33(4): 693-703.

        NG DW, ABEYSINGHE JK, KAMALI M, 2018. Regulating the regulators: the control of transcription factors in plant defense signaling [J]. Int J Mol Sci, 19(12): 3737.

        PANT SR, KRISHNAVAJHALA A, MCNEECE BT, et al., 2015. The syntaxin 31-induced gene, lesion simulating disease 1 (LSD1), functions in Glycine max defense to the root parasite Heterodera glycines [J]. Plant Signal Behav, 10: e977737.

        PEGADARAJU V, LOUIS J, SINGH V, et al., 2007. Phloem-based resistance to green peach aphid is controlled by Arabidopsis phytoalexin deficient 4 without its signaling partner enhanced disease susceptibility 1 [J]. Plant J, 52(2): 332-341.

        PETROV V, HILLE J, MUELLER-ROEBER B,et al., 2015. ROS-mediated abiotic stress-induced programmed cell death in plants [J]. Front Plant Sci, 6: 69.

        PRUITT RN, LOCCI F, WANKE F, et al., 2021. The EDS1-PAD4-ADR1 node mediates Arabidopsis pattern-triggered immunity [J]. Nature, 598(7881): 495-499.

        QI X, LI Q, MA X, et al., 2019. Waterlogging-induced adventitious root formation in cucumber is regulated by ethylene and auxin through reactive oxygen species signalling [J]. Plant Cell Environ, 42(5): 1458-1470.

        RAJHI I, YAMAUCHI T, TAKAHASHI H, et al., 2011. Identification of genes expressed in maize root cortical cells during lysigenous aerenchyma formation using laser microdissection and microarray analyses [J]. New Phytol, 190(2): 351-368.

        RIETZ S, STAMM A, MALONEK S, et al., 2011. Different roles of enhanced disease susceptibility 1 (EDS1) bound to and dissociated from phytoalexin deficient4 (PAD4) in Arabidopsis immunity [J]. New Phytol, 191: 107-119.

        S'LESAK I, SZECHY[KG-0.5mm]N'SKA-HEBDA M, FEDAK H, et al.," 2014." PHYTOALEXIN DEFICIENT 4 affects reactive oxygen species metabolism, cell wall and wood properties in hybrid aspen (Populus tremula L. ×" tremuloides)" [J]. Plant Cell Environ, 4(1): 55-61.

        SHI GZ, WANG ZY, SUN Q, et al., 2022. Cloning and activity analysis of SikCDPK1 promoter from Saussurea involucrate [J]. Biotechnol Bull, 38(9): 191-197." [史光珍, 王兆曄, 孫琦, 等, 2022. 雪蓮SikCDPK1啟動子的克隆和活性分析 [J]. 生物技術(shù)通報, 38(9): 191-197.]

        SHI SB, HAN F, 2006. Light sources for ultraviolet research and simulation of solar ultraviolet-B [J]. Biotechnol Bull (S1): 161-166." [師生波, 韓發(fā), 2006. 紫外光源及太陽UV-B輻射的模擬實驗 [J]. 生物技術(shù)通報 (S1): 161-166.]

        SINGH K, FOLEY RC, OATE-SNCHEZ L, 2002. Transcription factors in plant defense and stress responses [J]. Curr Opin Plant Biol, 5: 430-436.

        SONG N, LIN J, LIU X, et al., 2022. Histone acetyltransferase TaHAG1 interacts with TaPLATZ5 to activate TaPAD4 expression and positively contributes to powdery mildew resistance in wheat" [J]. New Phytol, 236(2): 590-607.

        SZECHYNSKA-HEBDA M, CZARNOCKA W, HEBDA M, et al., 2016. PAD4," LSD1" and" EDS1 regulate drought tolerance, plant biomass production, and cell wall properties [J]. Plant Cell Rep, 35(3): 527-539.

        TANDON G, JAISWAL S, IQUEBAL MA, et al., 2015. Evidence of salicylic acid pathway with EDS1" and" PAD4" proteins by molecular dynamics simulation for grape improvement [J]. J Biomol Struct Dyn, 33: 2180-2191.

        WANG HL, SONG SS, GAO S, et al., 2024. The NLR immune receptor ADR1 and lipase-like proteins EDS1 and PAD4 mediate stomatal immunity in Nicotiana benthamiana and Arabidopsis [J]. Plant Cell, 36(2): 427-446.

        WANG J, SHINE MB, GAO QM, et al., 2014. Enhanced disease susceptibility 1 mediates pathogen resistance and virulence function of a bacterial effector in soybean [J]. Plant Physiol, 165(3): 1269-1284.

        WANG WH, YU JJ, TIAN HL, 2007. Comparative studies on the anatomical structures of leave of 3 species in Saussurea [J]. Bull Bot Res, 27(3): 275-278." [王文和, 于建軍, 田曄林, 2007. 風(fēng)毛菊屬3種植物葉的解剖結(jié)構(gòu)比較 [J]. 植物研究, 27(3): 275-278.]

        WEI L, LIU JL, 2021. Overview of research on protein subcellular localization in plants [J]. Plant Sci, 39(1): 93-101." [未麗, 劉建利, 2021. 植物蛋白質(zhì)亞細胞定位相關(guān)研究概述 [J]. 植物科學(xué)學(xué)報, 39(1): 93-101.]

        WIERMER M, FEYS BJ, PARKER JE, 2005. Plant immunity: the EDS1 regulatory node [J]. Curr Opin Plant Biol, 8(4): 383-389.

        WITON' D, SUJKOWSKA-RYBKOWSKA M, D[KG-0.7mm][XCA尾巴.eps,SQ;P][KG-0.4mm]BROWSKA-BRONK J, et al., 2021. Mitogen-activated protein kinase 4 impacts leaf development, temperature, and stomatal movement in hybrid aspen [J]. Plant Physiol, 186(4): 2190-2204.

        WITUSZYN'SKA W, SLESAK I, VANDERAUWERA S, et al., 2013. Lesion simulating disease 1, enhanced disease susceptibility" 1, and phytoalexin deficient 4 conditionally regulate cellular signaling homeostasis, photosynthesis, water use efficiency, and seed yield in Arabidopsis [J]. Plant Physiol, 161: 1795-1805.

        [JP3]WITUSZYN'SKA W, SZECHYN'SKA-HEBDA M, SOBCZAK M, et al., 2015. Lesion simulating disease 1 and enhanced disease susceptibility 1 differentially regulate UV-C-induced photooxidative stress signalling and programmed cell death in Arabidopsis thaliana [J]. Plant Cell Environ, 38: 315-330.

        WU ZQ, CHEN W, ZHAO Z, et al., 2024. Genome-wide identification and bioinformatics analysis of GRAS gene family in maize [J]. J Agric Sci Technol, 26(3): 15-25." [吳占清, 陳威, 趙展, 等, 2024. 玉米GRAS基因家族的全基因組鑒定及生物信息學(xué)分析 [J]. 中國農(nóng)業(yè)科技導(dǎo)報, 26(3): 15-25.]

        YAMAUCHI T, WATANABE K, FULAZAWA A, et al., 2014. Ethylene and reacive oxygen species are involved in oot aerenchyma formation and adaptation of wheat seedlings to oxygen-deficient conditions [J]. J Exp Bot, 65(1): 261-273.

        YOUSSEF RM, MACDONALD MH, BREWER EP, et al., 2013. Ectopic expression of AtPAD4 broadens resistance of soybean to soybean cyst and root-knot nematodes [J]. BMC Plant Biol, 13(1): 67.

        ZENG HY, LIU Y, CHEN DK, et al., 2021. The immune components enhanced disease susceptibility 1 and phytoalexin deficient 4" are required for cell death caused by overaccumulation of ceramides in Arabidopsis [J]. Plant J, 107(5): 1447-1465.

        ZHI TT, ZHOU Z, HAN CY, et al., 2022. PAD4 mutation accelerating programmed cell death in Arabidopsis thaliana tyrosine degradation deficient mutant sscd1 [J]. Chin Bull Bot, 57(3): 288-298." [支添添, 周舟, 韓成云, 等, 2022. PAD4突變加速擬南芥酪氨酸降解缺陷突變體sscd1的程序性細胞死亡 [J]. 植物學(xué)報, 57(3): 288-298.]

        ZHU JW, 2014. Effect of aerenchyma formation related genes on growth and nitrogen utilization in rice" [D]. Nanjing: Nanjing Agricultural University: 55-58." [朱靜雯, 2014. 通氣組織形成相關(guān)基因?qū)λ旧L和氮素利用的影響研究 [D]. 南京: 南京農(nóng)業(yè)大學(xué): 55-58.]

        (責(zé)任編輯 周翠鳴)

        基金項目:" 國家自然科學(xué)基金(31960222)。

        第一作者: 韋鎔宜(1998—),碩士,主要從事植物分子生物技術(shù)研究,(E-mail)1435928499@qq.com。

        *通信作者:" 何濤,博士,教授,主要從事植物生物技術(shù)研究,(E-mail)hetaoxn@aliyun.com。

        熟妇人妻无乱码中文字幕av| 亚洲av高清在线观看三区| 亚洲嫩模一区二区三区视频| 今井夏帆在线中文字幕| 精品+无码+在线观看| 老师脱了内裤让我进去| 欧美日韩区1区2区3区| 久久精品国产白丝爆白浆| 不卡一区二区黄色av| 97久久精品无码一区二区天美| 岛国成人在线| 国产日韩精品视频一区二区三区| 激情亚洲一区国产精品久久| 亚洲国产精品综合久久网各| 国产亚洲欧美在线| 在线日韩中文字幕乱码视频| 国产精品女主播福利在线| 又粗又粗又黄又硬又深色的| 亚洲免费av电影一区二区三区| 日本在线一区二区在线| 亚洲av无码乱码精品国产| 欧美疯狂做受xxxx高潮小说| 国产成人久久精品亚洲小说| 国产愉拍91九色国产愉拍| 亚洲av综合色区| 亚洲男人av香蕉爽爽爽爽| 久久精品国产亚洲av热九九热| 少妇人妻字幕精品毛片专区| 久久精品国产色蜜蜜麻豆| 国产午夜无码视频免费网站| 中文字幕一区二区三区在线看一区| 亚洲啪啪视频一区二区| 免费无码又爽又刺激聊天app| 人妻夜夜爽天天爽三区麻豆av网站| 国产极品美女高潮无套在线观看 | 久久精品一区二区熟女| 一边做一边喷17p亚洲乱妇50p| 国产曰批免费视频播放免费s| 国产av一区二区三区在线 | 未满十八勿入av网免费| 99久久久久国产|