摘 要: 針對(duì)目前高速離心泵發(fā)生空化現(xiàn)象導(dǎo)致性能降低的情況,基于RNG κ-ε湍流模型和Zwart-Gerber-belamri空化模型,建立了高速離心泵的三維模型,對(duì)葉輪前后蓋板進(jìn)行開孔,使用CFX對(duì)葉輪穿孔高速離心泵在不同空化數(shù)下的流場(chǎng)進(jìn)行數(shù)值計(jì)算和模擬。研究結(jié)果表明,葉輪開孔可以有效降低流場(chǎng)壓力,降低發(fā)生空化時(shí)氣泡的體積分?jǐn)?shù),緩解發(fā)生空化時(shí)氣泡對(duì)流道的堵塞程度,能夠有效改善高速離心泵的空化性能。
關(guān)鍵詞: 離心泵;性能;空化;開孔;葉輪
中圖分類號(hào): TH311
文獻(xiàn)標(biāo)識(shí)碼: A" 文章編號(hào): 2096-3998(2024)06-0001-08
收稿日期:2023-10-19" 修回日期:2023-12-14
基金項(xiàng)目:國家自然科學(xué)基金項(xiàng)目(51373186);湖北省教育廳重點(diǎn)科研項(xiàng)目(D20161506)
*通信作者:王彥偉(1975—),男,河南尉氏人,博士,教授,主要研究方向?yàn)殡x心泵等流體機(jī)械。
引用格式:王彥偉,向林.高速離心泵葉輪開孔對(duì)空化性能的影響研究[J].陜西理工大學(xué)學(xué)報(bào)(自然科學(xué)版),2024,40(6):1-8.
空化是指在液體流場(chǎng)的低壓區(qū)域形成蒸氣空泡的過程[1]。當(dāng)液體中的壓力達(dá)到工作溫度所對(duì)應(yīng)的飽和蒸汽壓力時(shí),液體就會(huì)逐漸從液態(tài)轉(zhuǎn)化為氣態(tài)。當(dāng)空化現(xiàn)象發(fā)生嚴(yán)重時(shí),產(chǎn)生的氣體會(huì)堵塞流道,降低離心泵的揚(yáng)程和效率,嚴(yán)重影響離心泵的運(yùn)轉(zhuǎn),同時(shí)產(chǎn)生噪音,甚至?xí)?duì)離心泵零部件產(chǎn)生嚴(yán)重腐蝕,降低離心泵的工作壽命。
為了改善離心泵的空化性能,學(xué)者們做了許多研究。Xu Weihui等[2]研究發(fā)現(xiàn)在氣蝕發(fā)展和臨界氣蝕過程中適當(dāng)降低壁面粗糙度能夠有效改善離心泵的空化性能。Jiang Jin等[3]提出了通過布置變螺距誘導(dǎo)輪和采用環(huán)形噴嘴方案來改善離心泵空化性能。Pei Ji等[4]選取葉輪進(jìn)口直徑、葉片進(jìn)口角、葉片包角三個(gè)參數(shù)進(jìn)行正交實(shí)驗(yàn),通過調(diào)整葉片幾何參數(shù)能夠在不明顯降低離心泵效率的情況下改善離心泵的空化性能。張靜等[5]為了抑制空化的發(fā)生,提出了在靠近離心泵進(jìn)口處的葉片上開孔的改進(jìn)方案。王東偉等[6]研究發(fā)現(xiàn)將葉輪的平衡孔移到靠近葉片背側(cè)能夠減小空泡在流道內(nèi)所占的體積分?jǐn)?shù),改善葉輪流道內(nèi)的堵塞情況。趙偉國等[7]提出了一種在離心泵前蓋板布置非連通小葉片結(jié)構(gòu)來抑制空化的方法,并提出了4種方案。朱金瑞[8]研究了葉片數(shù)和葉片進(jìn)口邊位置的移動(dòng)與離心泵空化性能的關(guān)系,為離心泵抗空化設(shè)計(jì)及穩(wěn)定性的改善提供了參考。趙偉國等[9]在葉片工作面布置凸起結(jié)構(gòu)來抑制空化發(fā)展,同時(shí)發(fā)現(xiàn)方案對(duì)空化發(fā)生時(shí)產(chǎn)生的振動(dòng)、噪聲和磨損等也有一定的抑制效果。
現(xiàn)階段改善離心泵的空化性能的研究主要集中在葉片的結(jié)構(gòu)改變,且研究對(duì)象多為低速離心泵,對(duì)于改變前后蓋板的結(jié)構(gòu)來改善高速離心泵空化性能的研究較少。本文采用數(shù)值模擬的方法對(duì)葉輪前后蓋板穿孔的高速離心泵進(jìn)行研究。主要對(duì)比穿孔前后的空化性能與流場(chǎng)的變化,以期為離心泵空化性能的改善與優(yōu)化設(shè)計(jì)提供一些參考。
1 控制方程和計(jì)算模型
1.1 控制方程
離心泵流道內(nèi)的流體遵循質(zhì)量守恒定律和動(dòng)量守恒定律。
質(zhì)量守恒方程表示質(zhì)點(diǎn)內(nèi)流體質(zhì)量的增量與流入質(zhì)點(diǎn)內(nèi)流體質(zhì)量的凈增量相等,其表達(dá)式[10]為
ρt+(ρu)x+(ρv)x+(ρw)x=0,(1)
式中,t為時(shí)間, ρ為流體密度,u、v、w為計(jì)算點(diǎn)的流體速度矢量在x、y、z方向的分量。
動(dòng)量守恒定律表示流體質(zhì)點(diǎn)的動(dòng)量變化等于作用在質(zhì)點(diǎn)的力的總和。
x方向的動(dòng)量守恒方程為
ρdudt=(-p+τxx)x+τyxy+τzxz+Sx,(2)
y方向的動(dòng)量守恒方程為
ρdvdt=τxyx+(-p+τyy)y+τzyz+Sy,(3)
z方向的動(dòng)量守恒方程為
ρdwdt=τxzx+(-p+τyz)y+(-p+τzz)z+Sz,(4)
式中,p為壓力,τ為應(yīng)力張量,Sx、Sy、Sz為動(dòng)量守恒方程的廣義源項(xiàng)。
1.2 湍流模型
RNG κ-ε模型可以考慮分離流動(dòng)和渦旋流動(dòng)的效應(yīng),同時(shí)可以較準(zhǔn)確地預(yù)測(cè)近壁區(qū)的流動(dòng)[11]。其湍流動(dòng)能方程、湍流耗散率方程和湍流粘度方程分別為
(ρκ)t+(ρκuj)xi=xjακμeffκxj+Gκ+ρε,(5)
(ρε)t+(ρεui)xj=xjαεμeffεxj+C1εεκ-C2ερε2κ,(6)
μeff=μ+μt,(7)
μt=ρCμκ2ε,(8)
式中:κ為湍流動(dòng)能;ε為湍流耗散率; μeff為有效粘度系數(shù);Gκ是平均速度梯度產(chǎn)生的湍流動(dòng)能;Cμ、C1ε、C2ε、ακ、αε為經(jīng)驗(yàn)系數(shù),Cμ=0.084 5,ακ=1.39,αε=1.39,在CFX中,C1ε=1.42,C2ε=1.68; μ為動(dòng)力粘度系數(shù); μt為湍流粘度系數(shù); μi和μj為速度分量,i、 j代表坐標(biāo)的方向。
1.3 空化模型
本次研究使用Zwart-Gerber-belamri空化模型,它基于簡(jiǎn)化的Rayleigh-Plesset方程,考慮了在空化過程中空泡體積的變化[12],如下式所示:
(αvρv)t+((ρvu))=Re-Rc,(9)
Re=Cvap3αnuc(1-αv)ρvRb23max(pv-p,0)ρl,(10)
Rc=Ccond3αvρvRb23max(p-pv,0)ρl,(11)
式中:Re、Rc為單位體積質(zhì)量蒸發(fā)率和質(zhì)量冷凝率;αnuc為成核部位體積分?jǐn)?shù),αnuc=5×10-4;αv為氣體體積分?jǐn)?shù);p為入口的絕對(duì)壓力;pv為飽和蒸汽壓力,pv=3 169 Pa; ρv為氣相密度; ρl為液相密度;Cvap和Ccond為經(jīng)驗(yàn)常數(shù),Cvap=50,Ccond=0.01;Rb為氣泡半徑,Rb=1.0×10-6 m。
2 數(shù)值計(jì)算方法
2.1 物理模型
本文研究的對(duì)象為Q5H26高速離心泵。離心泵的設(shè)計(jì)參數(shù):設(shè)計(jì)流量Q=5 m3/h,揚(yáng)程h=20 m,
轉(zhuǎn)速n=7 000 r/min。其他主要幾何參數(shù)見表1。
為了能夠準(zhǔn)確計(jì)算流場(chǎng),對(duì)離心泵蝸殼、葉輪進(jìn)行建模并抽取流場(chǎng)。同時(shí),為了減少邊界條件對(duì)內(nèi)部流動(dòng)的影響,對(duì)葉輪入口和蝸殼出口進(jìn)行延長(zhǎng),如圖1所示。
為研究離心泵前后蓋板穿孔對(duì)空化性能的影響,對(duì)離心泵的葉輪進(jìn)行穿孔,如圖2所示。穿孔位置在距葉輪中心35 mm處且孔徑為3 mm。
2.2 網(wǎng)格劃分與網(wǎng)格無關(guān)性檢驗(yàn)
結(jié)構(gòu)化網(wǎng)格計(jì)算精度高,便于得到更接近實(shí)際的結(jié)果,因此,本次實(shí)驗(yàn)使用結(jié)構(gòu)化網(wǎng)格,如圖3所示。
隨著網(wǎng)格數(shù)量的增加,計(jì)算結(jié)果趨近于一個(gè)較為穩(wěn)定的值。為了驗(yàn)證網(wǎng)格的獨(dú)立性,取了5個(gè)不同數(shù)量的網(wǎng)格進(jìn)行離心泵定常計(jì)算,
如圖4所示。7.0×105網(wǎng)格與7.5×105網(wǎng)格之間的計(jì)算差距較大,但7.5×105網(wǎng)格與8.0×105網(wǎng)格、8.5×105網(wǎng)格和9.0×105網(wǎng)格之間的計(jì)算差距在1%以內(nèi),故使用7.5×105網(wǎng)格進(jìn)行計(jì)算[17]。
2.3 邊界條件設(shè)置
本研究中使用CFX計(jì)算高速離心泵的流體域,入口邊界條件為總壓力,出口邊界條件為質(zhì)量流,參考?jí)毫?,工作條件為25 ℃。離心泵內(nèi)的介質(zhì)為純水,其25 ℃下飽和蒸汽壓為3 139 Pa[13]。入口處液相體積分?jǐn)?shù)為1,氣相體積分?jǐn)?shù)為0。通過降低入口的壓力來使泵發(fā)生空化。
非定常計(jì)算以定常計(jì)算為基礎(chǔ)進(jìn)行。時(shí)間步長(zhǎng)約為葉輪旋轉(zhuǎn)3°的時(shí)間,共計(jì)算10個(gè)旋轉(zhuǎn)周期來獲得穩(wěn)定的計(jì)算數(shù)據(jù)。迭代次數(shù)選擇為1 000,且當(dāng)殘差降到1.0×10-4以下時(shí)停止迭代。
3 實(shí)驗(yàn)驗(yàn)證
3.1 實(shí)驗(yàn)儀器
為了驗(yàn)證模擬結(jié)果的可行性,在離心泵特性曲線試驗(yàn)臺(tái)上對(duì)模型泵進(jìn)行了測(cè)試。試驗(yàn)臺(tái)示意圖如圖5所示,主要包括電動(dòng)機(jī)(型號(hào)為YL110PSO1-4870)、指針式壓力表(表盤直徑100 mm,測(cè)量范圍0~0.25 MPa,精度1.5級(jí))、指針式真空表、PS-139功率變送器(功率范圍0~1.5 kW)、渦輪流量計(jì)(測(cè)量范圍0.5~10.0 m3/h)、Q5H26離心泵(額定功率550 W,轉(zhuǎn)速7 000 r/min)等。
3.2 實(shí)驗(yàn)結(jié)果可行性驗(yàn)證
在測(cè)試臺(tái)上對(duì)離心泵的性能進(jìn)行測(cè)試,將測(cè)試結(jié)果與仿真結(jié)果進(jìn)行對(duì)比。如圖6所示,隨著離心泵流量增加,揚(yáng)程先增加再減小,效率逐漸減小,且實(shí)驗(yàn)結(jié)果與仿真結(jié)果誤差在5%以內(nèi)。測(cè)試結(jié)果與仿真結(jié)果吻合較好,此模型能夠模擬現(xiàn)實(shí)工況[14]。
4 實(shí)驗(yàn)結(jié)果
4.1 空化曲線
為了對(duì)離心泵的空化性能進(jìn)行量化,引入無量綱常數(shù)空化數(shù)σ,其定義為[15]
σ=p-pv12ρu21,(12)
u1=πD1n60,(13)
式中:p是入口的絕對(duì)壓力;pv是液體的飽和蒸汽壓力,pv=3 169 Pa; ρ是液體的密度;u1是基準(zhǔn)速度;D1為葉輪葉片進(jìn)口側(cè)與前蓋板相交處的直徑。
本次研究以揚(yáng)程下降5%的空化數(shù)作為臨界空化數(shù)[16]。原泵和葉輪穿孔后泵的空化曲線如圖7所示,隨著空化數(shù)的降低高速離心泵的揚(yáng)程也發(fā)生了下降,但開孔前后離心泵的臨界空化數(shù)從1.82降到了1.79,說明前后蓋板開孔可以有效改善高速離心泵空化性能。
4.2 葉輪壓力云圖
為了探究穿孔前后離心泵空化性能的改變,通過降低入口壓力使高速離心泵發(fā)生空化。選取了空化數(shù)σ分別為2.74、2.23、1.82、1.72的四組,涵蓋了從未發(fā)生空化到已發(fā)生嚴(yán)重空化的過程。圖8為原離心泵葉輪壓力云圖,圖9為開孔后離心泵葉輪壓力云圖。
如圖8所示,原離心泵在空化數(shù)σ=2.74時(shí),在葉片背側(cè)且靠近入口的位置出現(xiàn)小區(qū)域的低壓區(qū);當(dāng)空化數(shù)σ=2.23時(shí),低壓區(qū)向軸心方向延伸;達(dá)到臨界空化數(shù)σ=1.82時(shí),開始發(fā)生空化現(xiàn)象,低壓區(qū)向流道延伸且?guī)缀跽紦?jù)流道的前半部分;當(dāng)空化數(shù)σ=1.72時(shí),此時(shí)已經(jīng)發(fā)生劇烈空化,低壓區(qū)向流道延伸,流道大部分面積的壓力降至0.08 MPa以下。
對(duì)比圖8和圖9,當(dāng)σ=2.74時(shí),開孔前后離心泵葉輪壓力云圖并無太大差別;但隨著入口壓力的降低,σ=2.23時(shí)開孔離心泵向軸心延伸的低壓面積明顯小于原離心泵;在原離心泵開始發(fā)生空化σ=1.82時(shí),開孔后離心泵在流道中部產(chǎn)生了點(diǎn)狀低壓區(qū),但與原離心泵相比低壓區(qū)面積明顯較少。因此,葉輪前后蓋板穿孔可以有效延緩低壓區(qū)在流道區(qū)域的蔓延,從而改善了離心泵的空化性能。
4.3 離心泵中間截面氣體體積分布圖
發(fā)生空化時(shí)離心泵流道中的液體會(huì)氣化為氣體堵塞流道,故對(duì)穿孔前后中間截面氣體體積分布進(jìn)行了對(duì)比。圖10為原離心泵的氣體體積分布圖,圖11為穿孔后離心泵氣體體積分布圖,圖中氣體集中分布在入口處葉片的背側(cè)。這是由于旋轉(zhuǎn)葉輪中的液體在慣性作用下產(chǎn)生軸向渦流,而葉片入口處的軸向渦流與葉輪的旋轉(zhuǎn)方向相同,使得該區(qū)域的流速增加,并導(dǎo)致局部壓力降低[17-19]。
對(duì)比圖10和圖11,在還未達(dá)到臨界空化數(shù)的σ=2.74和σ=2.23中,相同位置原離心泵氣體體積分?jǐn)?shù)高于穿孔后離心泵氣體體積分?jǐn)?shù)。在原離心泵開始發(fā)生空化的σ=1.82中,產(chǎn)生氣體區(qū)域的氣體體積分?jǐn)?shù)大部分處于0.9~1.0,嚴(yán)重堵塞流道。但在穿孔后離心泵的σ=1.82中,只有最靠近葉片背側(cè)的小部分低壓區(qū)域的氣體體積分?jǐn)?shù)達(dá)到0.9~1.0,大部分區(qū)域氣體體積分?jǐn)?shù)低于60%。當(dāng)發(fā)生嚴(yán)重空化時(shí),穿孔前后的離心泵都發(fā)生了嚴(yán)重的流道堵塞,但對(duì)比發(fā)現(xiàn)穿孔后的氣體體積分?jǐn)?shù)過高區(qū)域小于開孔前氣體體積分?jǐn)?shù)過高區(qū)域。因此,離心泵葉輪穿孔可以有效降低相同空化數(shù)下的氣體體積分?jǐn)?shù),緩解流道堵塞,改善離心泵抗空化性能。
4.4 葉輪軸向截面氣體體積分布圖
為了探究穿孔后氣泡在軸向截面分布的差異,分別研究了空化數(shù)σ分別為2.74、2.23、1.82、1.72四組的葉輪軸向截面氣體體積分布。圖12為原泵葉輪軸向截面氣體體積分分布圖,圖13為開孔后葉輪軸向截面氣體體積分布圖,圖中氣體大部分集中分布在葉片背側(cè),隨著空化數(shù)σ的減小逐漸向流道中部蔓延,最后堵塞流道。
對(duì)比圖12和圖13。在σ=2.74和σ=2.23中靠近葉片背側(cè)的位置,原離心泵的氣體體積分?jǐn)?shù)達(dá)到了90%以上,而開孔后的離心泵氣體體積分?jǐn)?shù)低于90%。在σ=1.82的軸向截面中,原離心泵已經(jīng)出現(xiàn)較大區(qū)域氣體體積分?jǐn)?shù)大于90%,開孔后離心泵出現(xiàn)氣體區(qū)域面積與氣體體積分?jǐn)?shù)大于90%的區(qū)域面積比原離心泵小。即使在已經(jīng)發(fā)生嚴(yán)重空化現(xiàn)象的σ=1.72中,原離心泵流道堵塞程度依然大于葉輪穿孔的離心泵。
5 結(jié)論
本文通過數(shù)值模擬對(duì)離心泵葉輪穿孔前后的空化性能進(jìn)行對(duì)比分析,得出以下結(jié)論:
1)離心泵葉輪開孔后揚(yáng)程和效率都會(huì)有一定的下降,但仍能達(dá)到其額定工況要求。臨界空化數(shù)從1.82下降到1.79,說明葉輪前后蓋板開孔后必須達(dá)到更低的壓力才開始發(fā)生空化,能夠有效改善高速離心泵的空化性能。
2)葉輪前后蓋板開孔后,可引起較大的反向壓力梯度,延緩低壓區(qū)從葉片背側(cè)向流道內(nèi)側(cè)延伸的速度,有效減少低壓面積,改善高速離心泵空化性能。
3)在相同空化數(shù)的情況下,前后蓋板開孔后有效降低了葉片背面氣體的體積分?jǐn)?shù)。同時(shí),隨著空化數(shù)的減少,葉輪內(nèi)空化體積的增長(zhǎng)率遠(yuǎn)小于原始模型。開孔后,有效緩解空化引起的流道堵塞,改善葉輪內(nèi)的流場(chǎng),改善高速離心泵空化性能。
[ 參 考 文 獻(xiàn) ]
[1] 關(guān)醒凡.現(xiàn)代泵技術(shù)手冊(cè)[M].北京:中國宇航出版社,1995:54-56.
[2] XU Weihui,HE Xiaoke,HOU Xiao,et al.Influence of wall roughness on cavitation performance of centrifugal[J].Journal of the Brazilian Society of Mechanical Sciences and Engineering,2021,43(6):1-12.
[3] JIANG Jin,LI Yanhui,PEI Chongyan,et al.Cavitation performance of high-speed centrifugal pump with annular jet and inducer at different temperatures and void fractions[J].Journal of Hydrodynamics,2019,31(1):93-101.
[4] PEI Ji,YIN Tingyun,YUAN Shouqi,et al.Cavitation Optimization for a Centrifugal Pump Impeller by Using Orthogonal Design of Experiment[J].Chinese Journal of Mechanical Engineering,2017,30(1):103-109.
[5] 張靜,陳先培,蘇春明,等.葉片進(jìn)口邊開孔對(duì)離心泵空化和湍動(dòng)能影響的研究[J].流體機(jī)械,2021,49(7):14-19.
[6] 王東偉,劉在倫,趙偉國.基于平衡孔偏移的離心泵空化性能改善研究[J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2020,51(5):142-150.
[7] 趙偉國,周忠亮,羅云霞,等.離心泵前蓋板小葉片抑制空化效果的研究[J].工程熱物理學(xué)報(bào),2022,43(11):2926-2936.
[8] 朱金瑞.葉片參數(shù)對(duì)離心泵空化性能及壓力脈動(dòng)特性的影響[D].西安:西安理工大學(xué),2022.
[9] 趙偉國,郭寶,亢艷東.離心泵葉片布置凸起抑制空化的數(shù)值模擬[J].華中科技大學(xué)學(xué)報(bào)(自然科學(xué)版),2021,49(5):122-126.
[10] MOUSMOULIS G,KASSANOS I,AGGIDIS G,et al.Numerical simulation of the performance of a centrifugal pump with a semi-open impeller under normal and cavitating conditions[J].Applied Mathematical Modelling,2021,89(3):1814-1834.
[11] COUTIER-DELGOSHA O,F(xiàn)ORTES-PATELLA R,REBOUD J L,et al.Experimental and Numerical Studies in a Centrifugal Pump with Two-Dimensional Curved Blades in Cavitating Condition[J].Journal of Fluids Engineering,2003,125(6):970-978.
[12] 帥澤豪,王凱,羅光釗,等.葉根圓弧對(duì)航空燃油離心泵空化性能的影響[J].流體機(jī)械,2023,51(7):60-67.
[13] WU Dazhuan,WANG Leqin,HAO Zongrui,et al.Experimental study on hydrodynamic performance of a cavitating centrifugal pump during transient operation[J].Journal of Mechanical Science and Technology,2010,24(2):575-582.
[14] HE Qing,LI Jingjing,GAO Ni,et al.Optimization Design and Simulation of Cavitation Resistance of Aviation Fuel Centrifugal Pump[J].Manufacturing Automation, 2021(1):67-72.
[15] 王東偉,劉在倫,曾繼來.離心泵非定常空化流場(chǎng)及空泡特征分析[J].流體機(jī)械,2020,48(12):28-35.
[16] 馮憲,劉洪福,肖虎,等.基于CFD的雙吸離心泵空化特性分析[J].科技與創(chuàng)新,2022(11):1-5.
[17] 陶成.葉片開孔對(duì)離心泵空化流動(dòng)影響的研究[D].成都:西華大學(xué),2021.
[18] LU Jiaxing,WANG Jian,LIU Xiaobing,et al.Study of the effect of solid particle volume fraction on cavitation characteristics in a centrifugal pump[J].Meccanica,2022,57(12):2947-2961.
[19] 鄧志強(qiáng),蔣佳睿,劉小兵.某離心泵內(nèi)部流場(chǎng)非定常空化分析[J].水電能源科學(xué),2021,39(6):166-170.
[責(zé)任編輯:魏 強(qiáng)]
Effect of impeller perforation on cavitation performance of high-speed centrifugal pump
WANG Yanwei , XIANG Lin
1.School of Mechanical and Electrical Engineering, Wuhan Institute of Technology, Wuhan 430205, China;
2.Hubei Provincial Key Laboratory of Chemical Equipment Strengthening and Intrinsic Safety, Wuhan 430205, China;
3.Hubei Green Chemical Equipment Engineering Technology Research Center, Wuhan 430205, China
Abstract: To address the issue of performance degradation in high-speed centrifugal pumps due to cavitation, a three-dimensional model of a high-speed centrifugal pump was established based on the RNG κ-ε turbulence model and the Zwart-Gerber-belamri cavitation model. Holes were made in the front and rear shrouds of the impeller. CFX was used to perform numerical calculations and simulations of the flow field in the perforated impeller high-speed centrifugal pump under different cavitation numbers." The results show that the impeller opening can effectively reduce the pressure of the flow field, reduce the volume fraction of bubbles when cavitation occurs, alleviate the blockage of the bubble flow channel when cavitation occurs, and effectively improve the cavitation performance of the high-speed centrifugal pump. It provides a reference for further research on improving the cavitation performance of centrifugal pumps.
Key words: centrifugal pump; cavitation; performance; perforation; impeller