[摘" "要]" "作為一種高危腫瘤,消化道腫瘤在全球的前6大高發(fā)癌癥當(dāng)中共占據(jù)5個(gè)。癌癥進(jìn)展除了受癌細(xì)胞自身的影響之外,也受腫瘤微環(huán)境(tumor microenvironment, TME)的影響。在TME中,癌相關(guān)成纖維細(xì)胞(cancer-associated fibroblasts, CAFs)是最重要的一種間質(zhì)細(xì)胞成分,對腫瘤的發(fā)生有較大影響。本綜述將重點(diǎn)闡述CAFs在消化道腫瘤中的作用,總結(jié)靶向消化道腫瘤中CAFs的相關(guān)抗腫瘤策略,以期為今后消化道腫瘤的治療提供理論指導(dǎo)。
[關(guān)鍵詞]" "消化道腫瘤;癌相關(guān)成纖維細(xì)胞;腫瘤微環(huán)境;靶向策略
[中圖分類號(hào)]" "R735" " " " " " " "[文獻(xiàn)標(biāo)志碼]" "A" " " " " " " "[文章編號(hào)]" "1674-7887(2024)02-0163-06
The role of cancer-associated fibroblasts in the occurrence
and development of gastrointestinal cancer*
XUE Peng1#, LI Chenlong2#, JIANG Zhihao1, PAN Jingying1**, YANG Riyun1**" " " " (1Department of Histology and Embryology, Medical School of Nantong University, Jiangsu 226001; 2Department of Neurosurgery, the Affiliated Hospital of Nantong University)
[Abstract]" "As a high-risk tumor, digestive tract tumors occupy a total of five of the top six most prevalent cancers worldwide. Cancer progression depends not only on the cancer cell itself, but also on the physiological state and composition of the tumor microenvironment(TME) in which it is located. Cancer-associated fibroblasts(CAFs), as the main type of cell in TME, serve as an important role in cancer progression. The review aims to interpret the role of CAFs in gastrointestinal cancer and summarize the anti-tumor strategries by targeting CAFs in gastrointestinal cancer. This article aims to provide theoretical guidance for the treatment of gastrointestinal cancer in the future.
[Key words]" "gastrointestinal cancer; cancer-associated fibroblats; tumor microenvironment; targeting stragety
消化道腫瘤是世界上常見的惡性腫瘤,其中以肝癌、胃癌等較為常見,在癌癥相關(guān)死亡中居高不下。盡管通過早期篩查、手術(shù)和放化療等手段以及靶向藥物的臨床應(yīng)用,使大多數(shù)消化道腫瘤的臨床診治水平有了顯著提高,但不少患者仍會(huì)因復(fù)發(fā)率高、遠(yuǎn)處轉(zhuǎn)移和對藥物不敏感等因素導(dǎo)致預(yù)后較差。因此,探討消化道腫瘤的主要發(fā)生發(fā)展機(jī)制,準(zhǔn)確識(shí)別有效的分子診斷標(biāo)志物與治療靶點(diǎn),對促進(jìn)消化道腫瘤的臨床治療具有重要意義。
近期研究[1]顯示,在不同類型癌癥中,癌相關(guān)成纖維細(xì)胞(cancer-associated fibroblasts, CAFs)具有重要的影響。此類細(xì)胞為腫瘤間質(zhì)的重要組成,對原發(fā)腫瘤生長過程起促進(jìn)作用,同時(shí)還使腫瘤侵襲轉(zhuǎn)移獲得重要的生態(tài)空間?,F(xiàn)階段,CAFs在消化道腫瘤中的作用引起廣泛關(guān)注,其可通過外泌體和分泌生長因子對腫瘤細(xì)胞的生長進(jìn)行調(diào)控,影響癌癥發(fā)生發(fā)展過程的不同階段,在消化道腫瘤臨床治療領(lǐng)域是一種重要的潛在靶點(diǎn),具有重要的研究價(jià)值。本文將綜述CAFs的分型與起源,同時(shí)探討其對消化道腫瘤的影響與主要機(jī)制,為消化道腫瘤的治療提供參考。
1" "CAFs的定義、來源及特征
1.1" "CAFs的定義" "作為一種多功能細(xì)胞,成纖維細(xì)胞是間質(zhì)組織中不可或缺的組成部分。它在正常生理?xiàng)l件下通常處于靜息狀態(tài),但當(dāng)組織受損時(shí)會(huì)發(fā)生組織重塑并在修復(fù)期獲得短暫的活性,之后逐漸凋亡或再次恢復(fù)到靜息狀態(tài);否則,可能會(huì)出現(xiàn)組織纖維化或慢性炎癥等病理情況[2]。癌細(xì)胞在組織中持續(xù)增殖造成局部組織損傷,繼而導(dǎo)致針對癌細(xì)胞的慢性宿主修復(fù)反應(yīng)即癌癥纖維化[3]。癌周圍活化的成纖維細(xì)胞被稱作CAFs,具有成纖維細(xì)胞表型和代謝活性,在多種類型的癌癥及癌癥的各個(gè)階段均起重要作用[4]。CAFs和腫瘤血管、脂肪細(xì)胞、骨髓細(xì)胞與淋巴細(xì)胞等構(gòu)成了腫瘤微環(huán)境(tumor microenvironment, TME)[5]。研究[3, 6-7]顯示,CAFs主要通過重塑細(xì)胞外基質(zhì)(extracellular matrix, ECM),調(diào)節(jié)生長因子、趨化因子以及炎性因子的分泌等不同機(jī)制促進(jìn)腫瘤細(xì)胞的代謝、增殖,且有助于腫瘤血管生成。因此,CAFs被認(rèn)為是異質(zhì)且較為復(fù)雜的一種細(xì)胞群體。
1.2" "CAFs的來源" "目前,已有研究[8-9]指出CAFs是由脂肪細(xì)胞轉(zhuǎn)化而來;雖然在不同類型的腫瘤中CAFs并不完全來源于脂肪細(xì)胞[10],但病理組織中脂肪細(xì)胞的減少或缺失可能是由活化的成纖維細(xì)胞干擾了脂肪細(xì)胞的分化所致——這一觀點(diǎn)已經(jīng)得到學(xué)術(shù)界的廣泛認(rèn)可[11]。CAFs也存在某些其他來源,包括纖維細(xì)胞、周細(xì)胞、血管平滑肌細(xì)胞以及肌成纖維細(xì)胞等[12]。
1.3" "CAFs生物學(xué)特征和表型" "CAFs的常見標(biāo)志物主要包括血小板衍生生長因子受體(platelet-derived growth factor receptors, PDGF-R)、α-平滑肌肌動(dòng)蛋白(α-smooth muscle actin, α-SMA)、成纖維細(xì)胞特異性蛋白1(fibroblast specific protein 1, FSP1)以及成纖維細(xì)胞活化蛋白(fibroblast activating protein, FAP)等,但它們都不具備完全特異性,這也體現(xiàn)了CAFs異質(zhì)性的特點(diǎn)[13-15]。在腫瘤免疫微環(huán)境中CAFs同樣發(fā)揮一定的作用,它可通過表達(dá)α-SMA或成纖維細(xì)胞激活蛋白-α,有效地抑制抗腫瘤免疫,由此促進(jìn)TME的形成。CAFs的另一個(gè)生物學(xué)特征是,它自身表達(dá)的N-cadherin可以與腫瘤細(xì)胞表達(dá)的E-cadherin產(chǎn)生反式親和性,與腫瘤細(xì)胞進(jìn)行作用,形成腫瘤細(xì)胞隊(duì)列,然后對間質(zhì)進(jìn)行侵襲。有研究[3]指出,CAFs可以通過產(chǎn)生各種蛋白酶來降解沉積在基質(zhì)中的ECM,從而為腫瘤細(xì)胞的集體入侵提供通路。CAFs共有5個(gè)亞型,其中F1和F2亞型分別表現(xiàn)出抑癌和促癌作用,兩者在一定條件下可以相互轉(zhuǎn)化;F3亞型的生長因子分泌活性比較高,對血管生成與腫瘤細(xì)胞增殖產(chǎn)生一定的影響;F4亞型可進(jìn)行ECM的重新塑造;其他功能的CAFs命名為F5亞型。
2" "CAFs在消化道腫瘤發(fā)生發(fā)展中的作用
2.1" "CAFs作用具有雙面性" "由于CAFs具有高度異質(zhì)性,所以在不同腫瘤中具有抑癌與促癌的不同效果。具有促癌功能的CAFs主要通過促進(jìn)腫瘤轉(zhuǎn)移與侵襲、促炎癥反應(yīng)、免疫抑制、增加腫瘤凈能量產(chǎn)生[16]和誘導(dǎo)腫瘤新血管生成等多種途徑來加速腫瘤的發(fā)展,此外還包括誘導(dǎo)腫瘤細(xì)胞中上皮-間質(zhì)轉(zhuǎn)化(epithelial-mesenchymal transition, EMT)的方式。相反,有研究[17]指出通過去除CAFs的標(biāo)志物或抑制某些CAFs所介導(dǎo)的信號(hào)通路可以明顯促進(jìn)腫瘤的增殖,說明CAFs也具有抑癌的作用。研究[18]表明CAFs亞群具有某種特定的腫瘤抑制功能。由CAFs所分泌的趨化因子(C-C motif chemokine ligand, CCL)16、CCL7、CCL5與CCL2有利于肝癌的轉(zhuǎn)移[19]。其中,CCL5與CCL2都有利于肝癌細(xì)胞發(fā)生遷移,但不會(huì)對肝癌細(xì)胞侵襲起促進(jìn)作用,而CCL7和CXC趨化因子配體16(CXC chemokine ligand 16, CXCL16)可促進(jìn)肝癌細(xì)胞的遷移和侵襲。此外,CCL2和CCL5可刺激肝癌細(xì)胞中刺猬因子(hedgehog, HH)信號(hào)途徑的激活,而CCL7和CXCL16可增強(qiáng)TGF-β途徑的活性。趨化因子中和抗體顯著減弱了CAFs對肝癌轉(zhuǎn)移的影響,并抑制肝癌細(xì)胞中HH信號(hào)通路和TGF-β通路的激活。HH的配體,特別是由癌細(xì)胞所分泌的聲波刺猬因子(sonic hedgehog, SHH)可有效激活CAFs,由此有利于結(jié)締組織的增生,同時(shí)還使胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma, PDAC)加速。將IPI-926和吉西他濱相互結(jié)合之后,有利于藥物運(yùn)輸,可使PDAC臨床前小鼠模型具有顯著更高的生存率[20-21]。然而,在PDAC的小鼠模型中,抑制HH信號(hào)通路并未阻止PDAC的進(jìn)展,反而加快了PDAC的發(fā)展,表明HH激活的某些CAFs亞群可能具有抑制癌癥的作用[22]。同時(shí),在結(jié)腸癌模型中,激活成纖維細(xì)胞中的HH信號(hào)則顯著地降低了腫瘤負(fù)荷和疾病的進(jìn)展。G.F.XU等[23]研究發(fā)現(xiàn),miR-139可使TME中的基質(zhì)金屬蛋白酶(matrix metalloproteinase, MMP)11表達(dá)水平下降,由此對CAFs帶來影響,在此基礎(chǔ)上,對胃癌轉(zhuǎn)移與進(jìn)展起到抑制作用。因此,CAFs既是腫瘤的促進(jìn)者又是腫瘤的抑制者,需要進(jìn)一步探索CAFs抑制消化道腫瘤的可能機(jī)制。
2.2" "癌細(xì)胞與CAFs之間的相互作用" "越來越多的證據(jù)顯示癌細(xì)胞會(huì)影響癌相關(guān)成纖維細(xì)胞的生長。在正常情況下,基質(zhì)細(xì)胞產(chǎn)生TGF-β抑制劑[24],這種成纖維細(xì)胞來源的抑制劑asporin的低表達(dá)水平和消化道癌癥患者生存率較低存在一定的關(guān)聯(lián)性。然而,asporin的表達(dá)似乎受到腫瘤遺傳亞型的影響,表明成纖維細(xì)胞誘導(dǎo)的腫瘤抑制水平可能部分取決于腫瘤本身[25]。因此,成纖維細(xì)胞和CAFs的腫瘤抑制表型依賴于它們產(chǎn)生的因子,而這些因子在很大程度上并沒有特征性。腫瘤要想獲得進(jìn)一步發(fā)展,必須能夠進(jìn)化成具有控制、逃避或克服成纖維細(xì)胞誘導(dǎo)的抑制效應(yīng)。CAFs也能通過某些未知的機(jī)制來延緩癌癥的發(fā)展,CAFs發(fā)揮抑癌的生物學(xué)作用取決于多種因素,比如癌癥的發(fā)展階段[16]。研究[26]表明,miRNA失調(diào)能夠影響CAFs的分泌功能。
2.3" "CAFs對胃癌的影響" "一項(xiàng)對1 524例胃癌患者TME中細(xì)胞表達(dá)譜與臨床病理特征的分析研究[27]結(jié)果顯示,TME之中CAFs的浸潤數(shù)量越高,患者的臨床預(yù)后越差。研究[28-30]表明,CAFs通過控制自分泌或旁分泌信號(hào)傳導(dǎo)一些生長因子和細(xì)胞因子,通過分泌外泌體進(jìn)行RNA、蛋白質(zhì)、DNA和代謝產(chǎn)物的運(yùn)輸,進(jìn)而與癌細(xì)胞建立聯(lián)系;還通過細(xì)胞的物理相互作用如代謝產(chǎn)物交換或直接接觸等方式,最終促進(jìn)癌細(xì)胞的生長。CAFs以miRNA-149/IL-6依賴的方式增強(qiáng)胃癌細(xì)胞的EMT并維持胃癌干細(xì)胞的干性,miRNA-149的沉默可顯著促進(jìn)腫瘤的生長[30]。K.KURODA等[31]通過胃癌組織標(biāo)本研究發(fā)現(xiàn),CAFs中血小板反應(yīng)素(thrombospondin-4, THBS4)的表達(dá)和腫瘤體積、腹膜轉(zhuǎn)移程度、淋巴結(jié)轉(zhuǎn)移程度及腫瘤細(xì)胞浸潤深度等因素之間存在明顯的正相關(guān)性,且THBS4表達(dá)水平較高的患者5年總生存率明顯低于THBS4表達(dá)低的患者。
2.3.1" "對胃癌侵襲、轉(zhuǎn)移的影響" "胃癌患者之所以有較低的生存率與不良的預(yù)后,其核心原因就是早期即發(fā)生侵襲轉(zhuǎn)移。大量數(shù)據(jù)[32]顯示,CAFs可釋放多種細(xì)胞因子與生長因子,對胃癌細(xì)胞自身的生物活性造成一定的影響。ECM是由多種基質(zhì)細(xì)胞和糖胺聚糖和蛋白質(zhì)組成的復(fù)雜且動(dòng)態(tài)的生態(tài)系統(tǒng)支架,它通過不斷地被成纖維細(xì)胞降解和合成來適應(yīng)組織狀態(tài)的變化[33]。ECM還可以充當(dāng)細(xì)胞??空静⒋龠M(jìn)實(shí)質(zhì)與間質(zhì)細(xì)胞間的通訊、分化、黏附和運(yùn)動(dòng)等。CAFs通過調(diào)節(jié)ECM的重塑、代謝和免疫再編程影響胃癌的發(fā)生和發(fā)展。CAFs可產(chǎn)生腱生蛋白-C、骨膜素、蛋白聚糖、纖連蛋白以及膠原蛋白等ECM成分,進(jìn)而使腫瘤的組織結(jié)構(gòu)變得紊亂[23]。此外,它還是MMPs的重要來源。研究[33]表明,MMPs可降解ECM當(dāng)中絕大部分的成分,ECM降解則為腫瘤實(shí)現(xiàn)侵襲轉(zhuǎn)移不可或缺的一個(gè)條件。ECM螯合了多種生長因子和細(xì)胞因子,CAFs可以重塑ECM;CAFs生成的MMPs對ECM的降解不僅釋放了螯合的蛋白質(zhì),同時(shí)還會(huì)產(chǎn)生具有潛在的促遷移和促血管生成的新分子片段;并且ECM的降解釋放了大量空間,利于腫瘤細(xì)胞的增殖和遷移,最終促進(jìn)胃癌的侵襲、轉(zhuǎn)移[34]。
2.3.2" "對胃癌病理性血管生成過程的影響" "腫瘤中會(huì)存在病理性血管無序生長的現(xiàn)象,而腫瘤的新生血管不僅受到腫瘤細(xì)胞的調(diào)節(jié),也受到基質(zhì)細(xì)胞的調(diào)節(jié)。CAFs可以通過直接分泌促血管生成因子和產(chǎn)生ECM促進(jìn)腫瘤血管的生成,進(jìn)而改善腫瘤的氧合作用、營養(yǎng)物質(zhì)代謝和代謝產(chǎn)物的清除[35]。胃癌轉(zhuǎn)移、浸潤與生長等的過程均與血管供應(yīng)的營養(yǎng)物質(zhì)及氧氣緊密相關(guān)。比較常見的促血管生成因子主要包括單核細(xì)胞趨化蛋白-1(monocyte chemoattractant protein-1, MCP-1)、胰島素樣生長因子1(insulin-like growth factor 1, IGF-1)、血管生成素(angiopoitin, Ang)-1、TNF-α、肝細(xì)胞生長因子(hepatocyte growth factor, HGF)、血小板衍生生長因子(platelet-derived growth factor, PDGF)、TGF-β以及血管內(nèi)皮生長因子(vascular endothelial growth factor, VEGF)等,它們主要來源于CAFs。其中,效率最好的是VEGF,它可以利用其同源受體VEGF受體2促進(jìn)血管的生成。除了旁分泌信號(hào),CAFs還可以通過重塑ECM蛋白(如骨膜蛋白、腱球蛋白、纖維連接蛋白、骨橋蛋白和膠原蛋白)來間接地促進(jìn)血管生成[35]。對于TME來說,缺氧是一種十分典型的特征,已有數(shù)據(jù)[36]顯示,缺氧的TME會(huì)對CAFs起到刺激作用,由此導(dǎo)致CAFs分泌更多的VEGF和Ang,最終促進(jìn)胃腫瘤的血管生成。
2.3.3" "對胃癌免疫逃逸的影響" "在癌癥的發(fā)生與發(fā)展過程中,免疫系統(tǒng)起到了非常重要的作用。CAFs參與腫瘤的免疫逃逸過程,通過誘導(dǎo)免疫抑制微環(huán)境,使腫瘤細(xì)胞能有效地逃逸抗腫瘤免疫的監(jiān)視作用,使癌癥能更快地發(fā)生與發(fā)展。它還有利于免疫抑制細(xì)胞進(jìn)行順利地浸潤與分化,對腫瘤免疫抑制微環(huán)境起到重要的誘導(dǎo)作用。CAFs還可通過分泌細(xì)胞因子如:IL、TGF-β及PDGF等影響T細(xì)胞的浸潤、分化和凋亡,進(jìn)而抑制T細(xì)胞的免疫功能。此外,CAFs還可直接使免疫系統(tǒng)失活,一些CAFs亞群可表達(dá)負(fù)性協(xié)同調(diào)節(jié)免疫信號(hào),如程序性死亡配體(programmed death-ligand, PD-L)1和PD-L2,或分泌免疫抑制因子,如前列腺素E2(prostaglandin E2, PGE2),從而直接減少T細(xì)胞和自然殺傷細(xì)胞的激活[37]。研究[38]顯示,腫瘤神經(jīng)腹側(cè)抗原-1(neuro-oncological ventral antigen-1, NOVA1)在胃癌TME中表達(dá)下調(diào),其下調(diào)與M2型巨噬細(xì)胞的增加有關(guān),而M2型巨噬細(xì)胞的數(shù)量與胃癌患者的不良預(yù)后密切相關(guān)。
2.4" "CAFs對肝癌的影響" "CAFs能夠分泌多種因子促進(jìn)肝癌的惡性轉(zhuǎn)化,包括生長因子、趨化因子、促血管生成因子等。其中主要分泌的媒介生長因子為表皮生長因子(epidermal growth factor, EGF)、TGF-β、HGF以及基質(zhì)細(xì)胞衍生因子-1(stromal cell-derived factor-1, SDF-1)等,其中HGF是肝癌CAFs最常見分泌的生長因子[39]。在肝癌TME中CAFs能通過分泌HGF,誘導(dǎo)細(xì)胞間質(zhì)上皮轉(zhuǎn)換因子/Fos相關(guān)抗原-1/HEY1癌基因級聯(lián)反應(yīng),推動(dòng)肝癌細(xì)胞的EMT,進(jìn)一步促進(jìn)轉(zhuǎn)移與侵襲能力的提升[40]。研究[19]表明,CAFs可通過分泌CCL5來促進(jìn)肝癌細(xì)胞的EMT發(fā)生,使肝癌細(xì)胞具有更強(qiáng)的遷移和侵襲能力。
2.5" "CAFs對胰腺癌的影響" "胰腺癌是一種惡性程度極高的消化道腫瘤,預(yù)后極差。CAFs、免疫細(xì)胞以及ECM構(gòu)成了胰腺癌的TME,其中,CAFs可通過數(shù)種方式影響腫瘤細(xì)胞的生活環(huán)境,促進(jìn)腫瘤免疫逃逸,導(dǎo)致其轉(zhuǎn)移[41]。來自腫瘤細(xì)胞的IL-1β和TNF-α可刺激CAFs分泌胸腺基質(zhì)淋巴細(xì)胞生成素(thymic stromal lymphopoietin, TSLP),樹突狀細(xì)胞被TSLP激活后高表達(dá)TSLP受體,分泌趨化因子IL-4,IL-4可吸引輔助型T細(xì)胞2(T helper 2, Th2),Th2細(xì)胞聚集進(jìn)一步加強(qiáng)MAPK、轉(zhuǎn)錄激活因子-3(signal transducer and activator of transcription 3, STAT3)和蛋白激酶B(protein kinase B, AKT)的激活,這些因素協(xié)同作用使胰腺癌細(xì)胞分化增殖[42]。可發(fā)現(xiàn)胰腺CAFs通過釋放生長因子、趨化因子等改變T細(xì)胞的遷移、分化能力以促進(jìn)胰腺癌細(xì)胞的免疫逃避,因此臨床上可針對CAFs的這些作用機(jī)制給藥[43]。
3" "CAFs在消化道腫瘤治療中的應(yīng)用前景
腫瘤起源于腫瘤細(xì)胞內(nèi)的突變積累,但疾病進(jìn)展和對治療的反應(yīng)均受TME中的非突變細(xì)胞的調(diào)節(jié)。近年來,關(guān)于CAFs的科學(xué)研究已經(jīng)實(shí)現(xiàn)了巨大的突破。通過ECM合成和重構(gòu)及生長因子的產(chǎn)生來調(diào)節(jié)癌癥轉(zhuǎn)移,并影響血管生成、腫瘤力學(xué)、藥物獲取和治療反應(yīng),使CAFs在消化道腫瘤的發(fā)生和發(fā)展中扮演重要角色。
近來,人們越來越認(rèn)識(shí)到CAFs調(diào)節(jié)免疫系統(tǒng)的能力。CAFs是TME的關(guān)鍵組成部分,具有多種功能,包括基質(zhì)沉積和重塑、與癌細(xì)胞的廣泛相互作用及與浸潤性白細(xì)胞的干擾作用。所以,對于腫瘤治療策略的優(yōu)化,CAFs是非常重要的抑制潛在靶標(biāo)。通過改變其數(shù)量、亞型或功能來靶向調(diào)控CAFs,最終使消化道腫瘤得到有效治療。然而,這一領(lǐng)域的研究面臨著許多挑戰(zhàn),尤其是因?yàn)镃AFs同時(shí)具有促癌和抑癌的雙重作用;如何精準(zhǔn)地調(diào)控CAFs及其亞型的表達(dá),以干擾其與癌細(xì)胞的相互作用,繼而作為一種改善腫瘤患者的治療和預(yù)后的途徑,在下一階段中需進(jìn)一步探索。
4" "總結(jié)與展望
消化道腫瘤及其局部微環(huán)境形成了一個(gè)復(fù)雜的生態(tài)系統(tǒng),腫瘤發(fā)展進(jìn)程涉及多個(gè)步驟和因素。消化道腫瘤與TME中各種成分之間的相互作用,尤其是CAFs可以通過誘導(dǎo)炎癥、免疫抑制、血管生成、提供能量及侵襲性和轉(zhuǎn)移性的環(huán)境以促進(jìn)腫瘤的進(jìn)展,或利用新的機(jī)制對腫瘤進(jìn)展進(jìn)行有效的抑制。如今,CAFs由于其異質(zhì)性而在腫瘤發(fā)生中可能起雙重作用的觀點(diǎn)已得到廣泛認(rèn)可。成纖維細(xì)胞開始時(shí)可能是抑制腫瘤的細(xì)胞類型,但隨著腫瘤的發(fā)展,它開始影響TME發(fā)揮促腫瘤作用。如果條件合適,上述效應(yīng)將會(huì)發(fā)生轉(zhuǎn)化。由于不同的CAFs亞型在腫瘤發(fā)生中的不同作用,因此需進(jìn)一步完善CAFs的分子標(biāo)志物類型,以幫助分類其在不同組織中的促腫瘤及抗腫瘤的效應(yīng),以期能準(zhǔn)確地靶向調(diào)控促腫瘤亞型和CAFs的衍生因子,如使CAFs表型往抗腫瘤方向發(fā)展,或完全阻止CAFs的活化。最終將關(guān)于調(diào)控CAFs的策略與其他靶向治療腫瘤的藥物聯(lián)合使用,以改善消化道腫瘤的治療效果和提高患者的生存率。
[參考文獻(xiàn)]
[1]" "ROJAS A, ARAYA P, GONZALEZ I, et al. Gastric tumor microenvironment[J]. Adv Exp Med Biol, 2020, 1226:23-35.
[2]" "ZELTZ C, PRIMAC I, ERUSAPPAN P, et al. Cancer-associated fibroblasts in desmoplastic tumors: emerging role of integrins[J]. Semin Cancer Biol, 2020, 62:166-181.
[3]" "KALLURI R. The biology and function of fibroblasts in cancer[J]. Nat Rev Cancer, 2016, 16(9):582-598.
[4]" "NAZEMI M, RAINERO E. Cross-talk between the tumor microenvironment, extracellular matrix, and cell metabolism in cancer[J]. Front Oncol, 2020, 10:239.
[5]" "?魻HLUND D, ELYADA E, TUVESON D. Fibroblast heterogeneity in the cancer wound[J]. J Exp Med, 2014, 211(8):1503-1523.
[6]" "ISHII G, OCHIAI A, NERI S. Phenotypic and functional heterogeneity of cancer-associated fibroblast within the tumor microenvironment[J]. Adv Drug Deliv Rev, 2016, 99(Pt B):186-196.
[7]" "KOBAYASHI H, ENOMOTO A, WOODS S L, et al. Cancer-associated fibroblasts in gastrointestinal cancer[J]. Nat Rev Gastroenterol Hepatol, 2019, 16(5):282-295.
[8]" "ZHU Q Z, ZHU Y, HEPLER C, et al. Adipocyte mesenchymal transition contributes to mammary tumor progression[J]. Cell Rep, 2022, 40(11):111362.
[9]" "GLABMAN R A, CHOYKE P L, SATO N. Cancer-associated fibroblasts: tumorigenicity and targeting for cancer therapy[J]. Cancers, 2022, 14(16):3906.
[10]" "ZHANG Y, DAQUINAG A C, AMAYA-MANZANARES F, et al. Stromal progenitor cells from endogenous adipose tissue contribute to pericytes and adipocytes that populate the tumor microenvironment[J]. Cancer Res, 2012, 72(20):5198-5208.
[11]" "MASTROGIANNAKI M, LICHTENBERGER B M, REIMER A, et al. β-catenin stabilization in skin fibroblasts causes fibrotic lesions by preventing adipocyte differentiation of the reticular dermis[J]. J Invest Dermatol, 2016, 136(6):1130-1142.
[12]" "XING F. Cancer associated fibroblasts(CAFs) in tumor microenvironment[J]. Front Biosci, 2010, 15(1):166.
[13]" "NURMIK M, ULLMANN P, RODRIGUEZ F, et al. In search of definitions: cancer-associated fibroblasts and their markers[J]. Int J Cancer, 2020, 146(4):895-905.
[14]" "CHEN X M, SONG E W. Turning foes to friends: targeting cancer-associated fibroblasts[J]. Nat Rev Drug Discov, 2019, 18(2):99-115.
[15]" "SALIMIFARD S, MASJEDI A, HOJJAT-FARSANGI M, et al. Cancer associated fibroblasts as novel promising therapeutic targets in breast cancer[J]. Pathol Res Pract, 2020, 216(5):152915.
[16]" "GIENIEC K A, BUTLER L M, WORTHLEY D L, et al. Cancer-associated fibroblasts-heroes or villains?[J]. Br J Cancer, 2019, 121(4):293-302.
[17]" "KNIPPER K, LYU S I, QUAAS A, et al. Cancer-associated fibroblast heterogeneity and its influence on the extracellular matrix and the tumor microenvironment[J]. Int J Mol Sci, 2023, 24(17):13482.
[18]" "GANGULY D, CHANDRA R, KARALIS J, et al. Cancer-associated fibroblasts: versatile players in the tumor microenvironment[J]. Cancers, 2020, 12(9):2652.
[19]" "LIU J, CHEN S, WANG W, et al. Cancer-associated fibroblasts promote hepatocellular carcinoma metastasis through chemokine-activated hedgehog and TGF-β pathways[J]. Cancer Lett, 2016, 379(1):49-59.
[20]" "OLIVE K P, JACOBETZ M A, DAVIDSON C J, et al. Inhibition of Hedgehog signaling enhances delivery of chemotherapy in a mouse model of pancreatic cancer[J]. Science, 2009, 324(5933):1457-1461.
[21]" "BAILEY J M, SWANSON B J, HAMADA T, et al. Sonic hedgehog promotes desmoplasia in pancreatic cancer[J]. Clin Cancer Res, 2008, 14(19):5995-6004.
[22]" "NEESSE A, BAUER C A, ?魻HLUND D, et al. Stromal biology and therapy in pancreatic cancer: ready for clinical translation?[J]. Gut, 2019, 68(1):159-171.
[23]" "XU G F, ZHANG B, YE J H, et al. Exosomal miRNA-139 in cancer-associated fibroblasts inhibits gastric cancer progression by repressing MMP11 expression[J]. Int J Biol Sci, 2019, 15(11):2320-2329.
[24]" "COSTANZA B, UMELO I A, BELLIER J, et al. Stromal modulators of TGF-β in cancer[J]. J Clin Med, 2017, 6(1):7.
[25]" "MARIS P, BLOMME A, PALACIOS A P, et al. Asporin is a fibroblast-derived TGF-β1 inhibitor and a tumor suppressor associated with good prognosis in breast cancer[J]. PLoS Med, 2015, 12(9):e1001871.
[26]" "APRELIKOVA O, GREEN J E. MicroRNA regulation in cancer-associated fibroblasts[J]. Cancer Immunol Immunother, 2012, 61(2):231-237.
[27]" "ZENG D Q, LI M Y, ZHOU R, et al. Tumor microenvironment characterization in gastric cancer identifies prognostic and immunotherapeutically relevant gene signatures[J]. Cancer Immunol Res, 2019, 7(5):737-750.
[28]" "YANG X, LI Y D, ZOU L Q, et al. Role of exosomes in crosstalk between cancer-associated fibroblasts and cancer cells[J]. Front Oncol, 2019, 9:356.
[29]" "YAN Y, WANG R F, GUAN W B, et al. Roles of microRNAs in cancer associated fibroblasts of gastric cancer[J]. Pathol Res Pract, 2017, 213(7):730-736.
[30]" "LI P, SHAN J X, CHEN X H, et al. Epigenetic silencing of microRNA-149 in cancer-associated fibroblasts mediates prostaglandin E2/interleukin-6 signaling in the tumor microenvironment[J]. Cell Res, 2015, 25(5):588-603.
[31]" "KURODA K, YASHIRO M, SERA T, et al. The clinicopathological significance of Thrombospondin-4 expression in the tumor microenvironment of gastric cancer[J]. PLoS One, 2019, 14(11):e0224727.
[32]" "MIYAI Y, ESAKI N, TAKAHASHI M, et al. Cancer-associated fibroblasts that restrain cancer progression: hypotheses and perspectives[J]. Cancer Sci, 2020, 111(4):1047-1057.
[33]" "BARBAZ?魣N J, MATIC VIGNJEVIC D. Cancer associated fibroblasts: is the force the path to the dark side?[J]. Curr Opin Cell Biol, 2019, 56:71-79.
[34]" "KALLURI R, ZEISBERG M. Fibroblasts in cancer[J]. Nat Rev Cancer, 2006, 6(5):392-401.
[35]" "KUGERATSKI F G, ATKINSON S J, NEILSON L J, et al. Hypoxic cancer-associated fibroblasts increase NCBP2-AS2/HIAR to promote endothelial sprouting through enhanced VEGF signaling[J]. Sci Signal, 2019, 12(567):eaan8247.
[36]" "MA Z L, CHEN M, YANG X H, et al. The role of cancer-associated fibroblasts in tumorigenesis of gastric cancer[J]. Curr Pharm Des, 2018, 24(28):3297-3302.
[37]" "LIAO D, LUO Y P, MARKOWITZ D, et al. Cancer associated fibroblasts promote tumor growth and metastasis by modulating the tumor immune microenvironment in a 4T1 murine breast cancer model[J]. PLoS One, 2009, 4(11):e7965.
[38]" "KIM E K, YOON S O, JUNG W Y, et al. Implications of NOVA1 suppression within the microenvironment of gastric cancer: association with immune cell dysregulation[J]. Gastric Cancer, 2017, 20(3):438-447.
[39]" "JIA C C, WANG T T, LIU W, et al. Cancer-associated fibroblasts from hepatocellular carcinoma promote malignant cell proliferation by HGF secretion[J]. PLoS One, 2013, 8(5):e63243.
[40]" "LAU E, LO J, CHENG B, et al. Cancer-associated fibroblasts regulate tumor-initiating cell plasticity in hepatocellular carcinoma through c-met/FRA1/HEY1 signaling[J]. Cell Rep, 2016, 15(6):1175-1189.
[41]" "GOEHRIG D, NIGRI J, SAMAIN R, et al. Stromal protein βig-h3 reprogrammes tumour microenvironment in pancreatic cancer[J]. Gut, 2019, 68(4):693-707.
[42]" "DE MONTE L, RENI M, TASSI E, et al. Intratumor T helper type 2 cell infiltrate correlates with cancer-associated fibroblast thymic stromal lymphopoietin production and reduced survival in pancreatic cancer[J]. J Exp Med, 2011, 208(3):469-478.
[43]" "GORCHS L, FERN?魣NDEZ MORO C, BANKHEAD P, et al. Human pancreatic carcinoma-associated fibroblasts promote expression of co-inhibitory markers on CD4+ and CD8+T-cells[J]. Front Immunol, 2019, 10:847.
[收稿日期] 2022-02-28