[摘要] 人乳頭瘤病毒(HPV) 感染已成為頭頸部鱗狀細(xì)胞癌(HNSCC) 的主要致病因素之一,與HPV陰性相比,HPV陽(yáng)性HNSCC表現(xiàn)出以程序性死亡受體(PD) 為代表的多種免疫細(xì)胞及其效應(yīng)分子的表達(dá)增加。PD-1/PD-L1 高表達(dá)的患者與HPV陽(yáng)性HNSCC患者存活率的顯著提高相關(guān)。而HPV陽(yáng)性HNSCC患者在接受抗PD-1/程序性死亡配體(PD-L1) 免疫治療后的客觀緩解率、無進(jìn)展生存期、總生存期等指標(biāo)較HPV陰性HNSCC患者有所提高,提示HPV 陽(yáng)性HNSCC 患者在接受抗PD-1/PD-L1 免疫治療上可能取得更好療效。另外,PD-1/PD-L1 抑制劑聯(lián)合HPV癌癥疫苗、雙通路抑制劑等免疫治療方案在HPV相關(guān)癌癥中已發(fā)揮出獨(dú)特的優(yōu)勢(shì)。根據(jù)HPV狀態(tài)為患者制定個(gè)體化免疫治療是一種有前景的治療策略。
[關(guān)鍵詞] 頭頸部鱗狀細(xì)胞癌; 人乳頭瘤病毒; 程序性死亡受體/配體; 免疫治療
[中圖分類號(hào)] R782 [文獻(xiàn)標(biāo)志碼] A [doi] 10.7518/gikq.2024021
頭頸部鱗狀細(xì)胞癌(head and neck squamouscell carcinoma,HNSCC) 是全球最常見的六大癌癥之一,據(jù)統(tǒng)計(jì),2020年約有377 700例新發(fā)病例和177 800例死亡病例[1],且大多數(shù)HNSCC在確診時(shí)就已出現(xiàn)區(qū)域性進(jìn)展并伴有淋巴轉(zhuǎn)移。這些患者通常接受手術(shù)、放射治療和化學(xué)治療等綜合序列治療,但40%~60%接受治療的晚期患者會(huì)出現(xiàn)復(fù)發(fā)或轉(zhuǎn)移,對(duì)隨后的治療干預(yù)措施收效甚微,這導(dǎo)致了HNSCC的5年生存率較低。根據(jù)調(diào)查[2]顯示,隨著人乳頭瘤病毒(human papilloma virus,HPV)感染的大幅增加,尤其是非吸煙者中HPV陽(yáng)性HNSCC的患病率上升,HPV感染已經(jīng)成為HNSCC除吸煙、飲酒之外的另一個(gè)主要致癌因素。
近年來,免疫調(diào)節(jié)策略逐步應(yīng)用于臨床癌癥治療,這得益于人們對(duì)免疫系統(tǒng)重要性及其與腫瘤細(xì)胞和腫瘤微環(huán)境相互作用的認(rèn)識(shí)[3]。T細(xì)胞免疫檢查點(diǎn)的發(fā)現(xiàn)及針對(duì)性功能阻斷抗體的應(yīng)用,使得在控制腫瘤方面取得較大的進(jìn)步。
免疫檢查點(diǎn)是一個(gè)復(fù)雜的穩(wěn)態(tài)信號(hào)通路系統(tǒng),主要調(diào)節(jié)免疫系統(tǒng)對(duì)靶細(xì)胞的激活[4]。該系統(tǒng)在識(shí)別非自身抗原時(shí)發(fā)揮效應(yīng)器作用,同時(shí)防止自身免疫的發(fā)生。程序性死亡受體-1 (programmeddeath-1,PD-1) 是CD28家族成員之一,是由268個(gè)氨基酸組成的Ⅰ型跨膜糖蛋白。PD-1有程序性死亡配體-1 (programmed death-ligand 1,PD-L1)和程序性死亡配體-2(programmed cell death-ligand-2,PD-L2) 兩個(gè)配體,其與PD-1相互作用可抑制T細(xì)胞活化,而PD-L1與PD-1的相互作用在抑制T細(xì)胞活化中起主導(dǎo)作用。在正常免疫系統(tǒng)中,PDL1的生理作用是避免炎癥擴(kuò)散并限制組織損傷范圍,在維持正常機(jī)體保護(hù)性免疫和免疫耐受的平衡中起重要作用[5]。但在HNSCC組織中觀察到腫瘤細(xì)胞干擾免疫監(jiān)視和其反應(yīng)機(jī)制,形成免疫抑制的微環(huán)境,使得腫瘤持續(xù)快速進(jìn)展。HPV陰性和HPV陽(yáng)性HNSCC在分子表達(dá)上不同,具有不同的突變譜,免疫檢查點(diǎn)的表達(dá)各異。臨床試驗(yàn)[5-6]表明,HPV陽(yáng)性和HPV陰性頭頸部腫瘤的免疫逃逸機(jī)制可能不同,造成HPV陽(yáng)性和HPV陰性的HNSCC患者對(duì)免疫治療的反應(yīng)存在差異。
本篇綜述旨在分析PD-1/PD-L1在HPV陽(yáng)性及HPV陰性HNSCC標(biāo)本中的表達(dá)差異,闡述HPV陽(yáng)性HNSCC患者應(yīng)用抗PD-1/PD-L1免疫治療的研究現(xiàn)狀及個(gè)體化免疫治療的應(yīng)用前景。
1 HPV 針對(duì)HNSCC 的發(fā)生發(fā)揮抗原特性
1.1 HPV感染的特異性
HPV可通過口腔、口咽黏膜的輕微磨損或直接接觸感染鱗狀上皮細(xì)胞,其中HPV-16是HNSCC樣本中檢出的最常見類型[7]。在HNSCC的不同部位HPV的歸因分?jǐn)?shù)差異性較大,其中在起源于扁桃體隱窩上皮的口咽鱗狀細(xì)胞癌(oropharyngealsquamous cell carcinoma,OPSCC) 中HPV檢出率最高。有研究[2]顯示:OPSCC的HPV歸因分?jǐn)?shù)估計(jì)為22%,其中扁桃體鱗狀細(xì)胞癌的HPV歸因分?jǐn)?shù)為47%。在世界范圍內(nèi),HPV在OPSCC中的歸因分?jǐn)?shù)約為32.7%,而非口咽部HNSCC中HPV感染的數(shù)據(jù)差異較大。有研究[8-9]報(bào)告了口腔和喉鱗狀細(xì)胞癌中HPV陽(yáng)性率分別為23.5%和24.0%,隨后的分析顯示,這些HPV 陽(yáng)性腫瘤的大部分亞群都不表達(dá)病毒癌基因E6和E7,而E6和E7 mRNA的存在目前被認(rèn)為與HPV感染誘導(dǎo)HNSCC發(fā)生密切相關(guān)[10],隨后進(jìn)一步分析得出HPV陽(yáng)性口腔鱗狀細(xì)胞癌和喉鱗狀細(xì)胞癌的歸因分?jǐn)?shù)分別下降到3.9%和3.1%[11]。HPV的歸因分?jǐn)?shù)在不同地理區(qū)域間有很大差異,并隨著時(shí)間的推移而增加,其中OPSCC在南美洲和歐洲中部、東部及北部的比例最高,而南歐的比例最低;口腔癌和喉癌中HPV的歸因分?jǐn)?shù)在南美洲、中美洲和北歐最高[12]。
1.2 HPV的致癌作用
目前對(duì)HPV陽(yáng)性HNSCC的發(fā)病機(jī)制還不甚了解。研究[13-14]發(fā)現(xiàn),HPV陽(yáng)性HNSCC中最常見的是磷脂酰肌醇3-激酶(phosphatidylinositide 3-kinases,PI3K) 途徑的基因突變,PI3K信號(hào)通路影響多個(gè)靶點(diǎn)的翻譯和轉(zhuǎn)錄,這些靶點(diǎn)涉及各種細(xì)胞屬性,如生長(zhǎng)、增殖和轉(zhuǎn)移。研究[15]發(fā)現(xiàn)部分HPV陽(yáng)性HNSCC樣本中染色體14q32和9q出現(xiàn)特異性丟失,它們分別包含腫瘤壞死因子受體相關(guān)因子-3(tumor necrosis factor receptor associated factor-3,TRAF-3) 和突變的共濟(jì)失調(diào)毛細(xì)血管擴(kuò)張基因。此外,載脂蛋白B mRNA編輯酶催化亞單位誘導(dǎo)的突變導(dǎo)致HPV陽(yáng)性HNSCC具有特定的突變特征[16]。
在一項(xiàng)研究中[17],從268位非癌癥受試者中分別收集了唾液和咽拭子,唾液中HPV陽(yáng)性率是咽拭子的3倍。還有研究[18]發(fā)現(xiàn),HPV-16中E6和E7蛋白可以誘導(dǎo)扁桃體表面和隱窩上皮延長(zhǎng)細(xì)胞生命周期。因此,與表面上皮細(xì)胞相比,隱窩上皮細(xì)胞轉(zhuǎn)化易感性的不同可能是由于病毒E6和E7啟動(dòng)子在兩種細(xì)胞類型中活性的不同[19]。另有研究[20]表明,HPV陽(yáng)性HNSCC所衍生的外泌體miR-9-5p可以抑制轉(zhuǎn)化生長(zhǎng)因子- β (transforming growthfactor,TGF-β) 信號(hào)介導(dǎo)的成纖維細(xì)胞表型轉(zhuǎn)化,這可能改善了HPV陽(yáng)性HNSCC的預(yù)后。
1.3 HPV促進(jìn)PD-1/PD-L1 表達(dá)
在腫瘤細(xì)胞的免疫過程中,腫瘤細(xì)胞形成并釋放腫瘤抗原,由樹突狀細(xì)胞(dendritic cells, DCs)捕獲并通過主要組織相容性復(fù)合體(major histocompatibilitycomplex,MHC) Ⅰ、Ⅱ類分子將抗原呈遞給T細(xì)胞,然后抗腫瘤特異性效應(yīng)T細(xì)胞激活、運(yùn)輸至腫瘤病灶并浸潤(rùn)腫瘤病灶,通過T細(xì)胞表面受體(T cell receptor,TCR) 與MHC結(jié)合抗原相互作用,識(shí)別并殺傷腫瘤細(xì)胞。研究[21-23]表明,在腫瘤微環(huán)境中,PD-1/PD-L1相互作用可以抑制淋巴細(xì)胞增殖和活化、誘導(dǎo)抗原特異性T細(xì)胞凋亡、促進(jìn)CD4+ T細(xì)胞向Foxp3+調(diào)節(jié)性T細(xì)胞分化,具有免疫負(fù)性調(diào)控的作用,導(dǎo)致T細(xì)胞功能障礙,也可以抑制調(diào)節(jié)性T細(xì)胞的功能,抑制DCs的作用,導(dǎo)致免疫抑制。在腫瘤微環(huán)境中,PD-L1表達(dá)上調(diào),阻礙了效應(yīng)免疫細(xì)胞殺死腫瘤細(xì)胞,作為一種負(fù)反饋調(diào)節(jié)機(jī)制抑制腫瘤免疫,從而造成腫瘤細(xì)胞的免疫逃逸[24-25]。
臨床研究[26]表明,與大多數(shù)其他常見類型的腫瘤相比,HPV陽(yáng)性的HNSCC是免疫浸潤(rùn)率最高的腫瘤之一,在腫瘤微環(huán)境中可以檢測(cè)到T細(xì)胞上PD-1的高表達(dá)。在HNSCC患者中,PD-1陽(yáng)性T細(xì)胞水平的升高與較好的臨床預(yù)后呈正相關(guān)[27-28],這說明HPV陽(yáng)性HNSCC中存在高表達(dá)的PD-1陽(yáng)性T細(xì)胞,提示機(jī)體對(duì)HPV病毒蛋白的免疫監(jiān)視功能正在發(fā)揮作用,激活了抑制機(jī)制的負(fù)反饋調(diào)節(jié)。在HPV陽(yáng)性HNSCC中,CD3+ T細(xì)胞的浸潤(rùn)率高于其他腫瘤,與CD56+、CD3+、NK、T細(xì)胞和PD-1/TIM3共同表達(dá)CD8+ T細(xì)胞的頻率呈正相關(guān)[29]。相比之下,HPV陰性HNSCC表現(xiàn)出免疫浸潤(rùn)性細(xì)胞的總體數(shù)量較少,共表達(dá)PD-1/TIM3的CD8+ T細(xì)胞水平相對(duì)較低[29]。這些研究結(jié)果進(jìn)一步說明了HNSCC腫瘤微環(huán)境的高度多樣性和異質(zhì)性,而這種多樣性和異質(zhì)性可能受到HPV狀態(tài)的影響。與HPV陽(yáng)性HNSCC不同,HPV陰性HNSCC表現(xiàn)出廣泛的基因突變、擴(kuò)增和高水平的突變負(fù)荷。有研究[30-31]證據(jù)表明,攜帶突變的癌細(xì)胞會(huì)獲得新的腫瘤相關(guān)抗原,被稱為“新抗原”。這些新抗原被宿主免疫系統(tǒng)視為“自我改變”,所以被視為癌癥免疫治療的理想靶點(diǎn)[32]。進(jìn)而可以推斷,在HPV陰性HNSCC中針對(duì)新抗原適當(dāng)激活的免疫反應(yīng)可作為免疫療法的新途徑。
總體而言,HNSCC利用多種免疫抑制機(jī)制來逃脫免疫監(jiān)視,形成了支持腫瘤發(fā)生、發(fā)展和轉(zhuǎn)移的免疫抑制狀態(tài)。免疫細(xì)胞能否成功捕獲及清除腫瘤更是依賴于免疫抑制狀態(tài)能否緩解或逆轉(zhuǎn),以及激活的抗腫瘤效應(yīng)能否正確應(yīng)答。而HPV陽(yáng)性與HPV陰性HNSCC的免疫狀態(tài)存在差異性,因此HPV陽(yáng)性HNSCC患者相較于HPV陰性HNSCC患者的免疫治療方案需作出適應(yīng)性調(diào)整。
2 PD-1/PD-L1免疫治療策略在HPV陽(yáng)性HNSCC中的應(yīng)用
2.1 PD-1/PD-L1抑制劑在HPV陽(yáng)性HNSCC中的應(yīng)用
當(dāng)前,帕博利珠單抗被批準(zhǔn)作為一線治療復(fù)發(fā)和轉(zhuǎn)移性HNSCC的免疫藥物。在一項(xiàng)研究[33]中,帕博利珠單抗治療的受益程度是根據(jù)綜合陽(yáng)性評(píng)分(combined positive score,CPS) 進(jìn)行分層的,CPS評(píng)分越大,受益的機(jī)會(huì)越大,但在接受治療的HNSCC患者中,客觀緩解率(objective remissionrate,ORR) 卻僅約為10%~20%。
隨著現(xiàn)在對(duì)HPV狀態(tài)和腫瘤類型高度異質(zhì)性的認(rèn)識(shí),通過將HPV陽(yáng)性與HPV陰性病例分組對(duì)照,使得HNSCC臨床試驗(yàn)結(jié)果能更加準(zhǔn)確地反應(yīng)療效。例如,2016年的一項(xiàng)臨床試驗(yàn)[34]選取了60名PD-L1 表達(dá)陽(yáng)性(CPSgt;1%) 的HNSCC患者,均接受帕博利珠單抗治療,結(jié)果顯示,研究對(duì)象總體的ORR為18%,其中HPV陽(yáng)性患者的ORR值為25%,HPV陰性患者的ORR值為14%。一項(xiàng)對(duì)復(fù)發(fā)或轉(zhuǎn)移性HNSCC進(jìn)行二線治療的臨床試驗(yàn)[35]中, 在應(yīng)用PD-1/PD-L1 抑制劑治療后HPV陽(yáng)性HNSCC患者的死亡風(fēng)險(xiǎn)比顯著降低,但HPV陰性的HNSCC患者的死亡風(fēng)險(xiǎn)比沒有顯著降低。另外,一項(xiàng)隊(duì)列研究[36]中,對(duì)126名HNSCC患者進(jìn)行抗PD-1/PD-L1 治療, 與HPV陰性患者相比, 在HPV陽(yáng)性患者中觀察到更好的臨床反應(yīng)和結(jié)果。
在一項(xiàng)研究[37]中,納入PD-L1高表達(dá)(CPS≥25%) 的復(fù)發(fā)和轉(zhuǎn)移性HNSCC患者共111名,每2周接受1次靜脈滴注度伐單抗(10 mg/kg,最長(zhǎng)持續(xù)12個(gè)月),研究主要終點(diǎn)為ORR,次要終點(diǎn)包括無進(jìn)展生存期(progression-free survival,PFS) 和總生存期(overall survival,OS)。觀察到ORR為16.2% [95%置信區(qū)間(confidence interval,CI),9.9%~24.4%], HPV 陽(yáng)性HNSCC 患者為29.4%(95%CI, 15.1%~47.5%),HPV陰性HNSCC患者為10.9%(95%CI, 4.5%~21.3%); 中位PFS和OS分別為2.1個(gè)月(95%CI,1.9~3.7個(gè)月) 和7.1個(gè)月(95%CI,4.9~9.9個(gè)月)。12 個(gè)月時(shí)PFS 和OS 的比值在HPV 陽(yáng)性HNSCC 患者中為14.6%(95%CI,8.5%~22.1%),在HPV陰性HNSCC患者中為33.6%(95%CI,24.8%~42.7%)。
無死亡病例。這些研究結(jié)果均表明,在PD-1/PD-L1免疫檢查點(diǎn)阻斷后,HPV陽(yáng)性HNSCC患者可能獲得良好預(yù)后。另有研究[38-39]表明,腫瘤表現(xiàn)出較高突變載量和CD8+ T細(xì)胞浸潤(rùn)的HPV陰性患者對(duì)免疫檢查點(diǎn)抑制劑治療的反應(yīng)較好,而腫瘤表現(xiàn)為PD-1耗竭表型的患者對(duì)免疫檢查點(diǎn)抑制劑的臨床反應(yīng)性較差,這有助于為HPV陰性患者選擇精準(zhǔn)有效的免疫靶向藥物。
然而,另一項(xiàng)臨床試驗(yàn)[40]卻得出了不同結(jié)論。該試驗(yàn)共納入32名晚期HNSCC患者,均接受阿替利珠單抗靜脈滴注,每3周1次,共16個(gè)周期,最長(zhǎng)1年或直至疾病進(jìn)展。結(jié)果顯示HPV狀態(tài)、PDL1表達(dá)水平與預(yù)后無統(tǒng)計(jì)學(xué)差異,這可能受到樣本總量、樣本未分層或其他因素影響,有待驗(yàn)證結(jié)論的可靠性。
2.2 PD-1/PD-L1 抑制劑聯(lián)合HPV癌癥疫苗
HPV治療性癌癥疫苗通過激活HPV抗原特異性T細(xì)胞靶向作用于HPV感染和轉(zhuǎn)化的細(xì)胞,這一方法已被用于以E6/E7肽、DNA或RNA病毒為載體的HNSCC臨床試驗(yàn)中。一項(xiàng)臨床研究[41]報(bào)告了HPV陽(yáng)性HNSCC患者應(yīng)用HPV癌癥疫苗后的免疫水平變化,在21名患者中,有18名出現(xiàn)抗原特異性T細(xì)胞活性升高,并在后續(xù)接受抗PD-1治療后觀察到快速持久的臨床反應(yīng)。一項(xiàng)臨床試驗(yàn)[42]納入24例HPV陽(yáng)性癌癥患者(其中OPSCC 22例、肛門鱗狀細(xì)胞癌1例、宮頸鱗狀細(xì)胞癌1例) 進(jìn)行PD-1抑制劑聯(lián)合HPV疫苗治療,結(jié)果顯示總緩解率為33% (8例;90% CI,19%~50%),中位PFS為2.7個(gè)月(95% CI,2.5~9.4個(gè)月),中位OS為17.5個(gè)月(95% CI,17.5個(gè)月至不可估量);與單獨(dú)使用任何一種方案相比,PD-1/PD-L1抑制劑聯(lián)合HPV癌癥疫苗在激活對(duì)HPV-16的免疫反應(yīng)方面呈現(xiàn)顯著提高,并延長(zhǎng)OS。此外,在多項(xiàng)關(guān)于PD-1/PD-L1抑制劑聯(lián)合HPV疫苗應(yīng)用于HPV相關(guān)癌癥的臨床試驗(yàn)[7,43]中,也觀察到臨床應(yīng)答率有所提高。
2.3 PD-L1 結(jié)合TGF-β 的雙通路抑制劑
TGF-β是一種多效性細(xì)胞因子,在癌前狀態(tài)中發(fā)揮抑制腫瘤生長(zhǎng)作用,但同時(shí)又與腫瘤生長(zhǎng)、侵襲和轉(zhuǎn)移有關(guān)。研究[44]表明,TGF-β受體在HPV陽(yáng)性HNSCC組織中的表達(dá)顯著高于良性組織。另一項(xiàng)研究[45]發(fā)現(xiàn),口腔鱗狀細(xì)胞癌患者血清和唾液中HPV感染與TGF-β水平呈正相關(guān)。故TGF-β通路的失調(diào)可能在HPV介導(dǎo)的致癌過程中起關(guān)鍵作用,該通路可作為一個(gè)理想的治療靶點(diǎn)。M7824是一種雙功能融合蛋白,由PD-L1與TGF-β的胞外區(qū)融合而成[46]。在一項(xiàng)臨床試驗(yàn)[47-48]中,59名晚期HPV相關(guān)癌癥患者每2周靜脈滴注1次雙通路抑制劑, 結(jié)果顯示總臨床反應(yīng)率為35.6% (95%CI,23.6%~49.1%)。Tsai等[49]選取65例HPV陽(yáng)性癌癥患者,在應(yīng)用雙通路抑制劑治療前和治療后第14天分析受試者外周免疫水平變化,其結(jié)果顯示HPV-16特異性CD8+ T細(xì)胞的水平較高,這表明HPV狀態(tài)可能影響雙通路抑制劑的抗腫瘤作用。多項(xiàng)研究[50-51]提示,以TGF-β和PD-L1為靶點(diǎn)的雙通路抑制劑治療HPV相關(guān)HNSCC的免疫療法已展露其優(yōu)勢(shì),值得進(jìn)一步探索。
3 展望
HPV陽(yáng)性HNSCC的腫瘤微環(huán)境顯示出獨(dú)特的免疫抑制狀態(tài),當(dāng)現(xiàn)有的免疫抑制成分被及時(shí)消除時(shí),HPV陽(yáng)性患者更有可能對(duì)免疫激活刺激作出反應(yīng)。為此,可以通過針對(duì)HPV特異性抗原有效地激活腫瘤特異性T細(xì)胞,從而開發(fā)新的免疫治療方案。而HPV陰性HNSCC對(duì)PD-1/PD-L1抑制劑治療的反應(yīng)較差,HPV陰性HNSCC腫瘤中高水平突變負(fù)荷的存在為激活新抗原特異性抗腫瘤免疫創(chuàng)造了較為有利的條件,有必要進(jìn)一步研究確定特定的免疫抑制途徑或靶點(diǎn)作為個(gè)體化免疫治療策略的靶點(diǎn)。
綜上所述,HPV陽(yáng)性和HPV陰性HNSCC在分子和免疫方面的差異,影響了PD-1/PD-L1抑制劑治療的反應(yīng)療效,提示HPV狀態(tài)有可能作為評(píng)估HNSCC免疫治療的潛在預(yù)后指標(biāo),同時(shí)也為個(gè)體化靶向免疫治療策略的發(fā)展提供了新的機(jī)遇。根據(jù)HPV狀態(tài)設(shè)計(jì)個(gè)性化免疫治療試驗(yàn),有助于開發(fā)抗腫瘤免疫治療的新策略,以改善疾病預(yù)后。
利益沖突聲明:作者聲明本文無利益沖突。
4 參考文獻(xiàn)
[1] Johnson DE, Burtness B, Leemans CR, et al. Headand neck squamous cell carcinoma[J].Nat Rev Dis Primers, 2020, 6(1): 1-22.
[2] Castellsagué X, Alemany L, Quer M, et al. HPV involvementin head and neck cancers: comprehensiveassessment of biomarkers in 3 680 patients[J]. JNatl Cancer Inst, 2016, 108(6): djv403.
[3] Waldman AD, Fritz JM, Lenardo MJ. A guide tocancer immunotherapy: from T cell basic science toclinical practice[J]. Nat Rev Immunol, 2020, 20(11):651-668.
[4] Kumar H. Progresses in immunotherapy[J]. Int RevImmunol, 2020, 39(5): 203-204.
[5] Gibson-Corley KN, Coppock J, Espinosa-Cotton M,et al. Clinical significance of activating interleukin1 ligands in HPV-positive and HPV-negativeHNSCCs[J]. FASEB J, 2020, 34(S1): 1.
[6] Cochicho D, Esteves S, Rito M, et al. PIK3CA genemutations in HNSCC: systematic review and correlationswith HPV status and patient survival[J]. Cancers(Basel), 2022, 14(5): 1286.
[7] von Witzleben A, Wang C, Laban S, et al. HNSCC:tumour antigens and their targeting by immunotherapy[J]. Cells, 2020, 9(9): 2103.
[8] D’Souza G, Kreimer AR, Viscidi R, et al. Case-controlstudy of human papillomavirus and oropharyngealcancer[J]. N Engl J Med, 2007, 356(19): 1944-1956.
[9] Kreimer AR, Clifford GM, Boyle P, et al. Humanpapillomavirus types in head and neck squamous cellcarcinomas worldwide: a systematic review[J]. CancerEpidemiol Biomarkers Prev, 2005, 14(2): 467-475.
[10] Hoppe-Seyler K, Bossler F, Braun JA, et al. TheHPV E6/E7 oncogenes: key factors for viral carcinogenesisand therapeutic targets[J]. Trends Microbiol,2018, 26(2): 158-168.
[11] Rietbergen MM, Snijders PJ, Beekzada D, et al. Molecularcharacterization of p16-immunopositive butHPV DNA-negative oropharyngeal carcinomas[J].Int J Cancer, 2014, 134(10): 2366-2372.
[12] Dok R, Glorieux M, Holacka K, et al. Dual role forp16 in the metastasis process of HPV positive headand neck cancers[J]. Mol Cancer, 2017, 16(1): 113.
[13] Sewell A, Brown B, Biktasova A, et al. Reversephaseprotein array profiling of oropharyngeal cancerand significance of PIK3CA mutations in HPVassociatedhead and neck cancer[J]. Clin CancerRes, 2014, 20(9): 2300-2311.
[14] Devaraja K, Aggarwal S, Verma SS, et al. Clinicopathologicalpeculiarities of human papilloma virusdriven head and neck squamous cell carcinoma: a comprehensiveupdate[J]. Life Sci, 2020, 245: 117383.
[15] Zhang JL, Chen T, Yang XP, et al. AttenuatedTRAF3 fosters activation of alternative NF- κB andreduced expression of antiviral interferon, TP53,and RB to promote HPV-positive head and neckcancers[J]. Cancer Res, 2018, 78(16): 4613-4626.
[16] Faden DL, Ding F, Lin Y, et al. APOBEC mutagenesisis tightly linked to the immune landscape and immunotherapybiomarkers in head and neck squamouscell carcinoma[J]. Oral Oncol, 2019, 96: 140-147.
[17] Combes JD, Dalstein V, Gheit T, et al. Prevalence ofhuman papillomavirus in tonsil brushings and garglesin cancer-free patients: the SPLIT study[J].Oral Oncol, 2017, 66: 52-57.
[18] Li BN, Sui L. Metabolic reprogramming in cervicalcancer and metabolomics perspectives[J]. NutrMetab (Lond), 2021, 18(1): 93.
[19] Kahue CN, Jerrell RJ, Parekh A. Expression of humanpapillomavirus oncoproteins E6 and E7 inhibitsinvadopodia activity but promotes cell migrationin HPV-positive head and neck squamous cellcarcinoma cells[J]. Cancer Rep (Hoboken), 2018, 1(3): e1125.
[20] Wang BZ, Zhang SW, Tong FJ, et al. HPV+HNSCCderivedexosomal miR-9-5p inhibits TGF- β signaling-mediated fibroblast phenotypic transformationthrough NOX4[J]. Cancer Sci, 2022, 113(4): 1475-1487.
[21] Lechner A, Schl??er HA, Thelen M, et al. Tumor-associatedB cells and humoral immune response inhead and neck squamous cell carcinoma[J]. Oncoimmunology,2019, 8(3): 1535293.
[22] Chatfield-Reed K, Gui SY, O’Neill WQ, et al.HPV33+ HNSCC is associated with poor prognosisand has unique genomic and immunologic landscapes[J]. Oral Oncol, 2020, 100: 104488.
[23] Hladíková K, Koucky V, Bou?ek J, et al. Tumor-infiltratingB cells affect the progression of oropharyngealsquamous cell carcinoma via cell-to-cell inter‐actions with CD8+ T cells[J]. J Immunother Cancer,2019, 7(1): 261.
[24] Ruffin AT, Cillo AR, Tabib T, et al. B cell signaturesand tertiary lymphoid structures contribute to outcomein head and neck squamous cell carcinoma[J].Nat Commun, 2021, 12(1): 3349.
[25] Forster MD, Devlin MJ. Immune checkpoint inhibitionin head and neck cancer[J]. Front Oncol, 2018,8: 310.
[26] Lenouvel D, González-Moles Má, Ruiz-ávila I, etal. Prognostic and clinicopathological significanceof PD-L1 overexpression in oral squamous cell carcinoma:a systematic review and comprehensive meta-analysis[J]. Oral Oncol, 2020, 106: 104722.
[27] Hwan KM, Jae-Hwan K, Min L, et al. Molecularsubtypes of oropharyngeal cancer show distinct immunemicroenvironment related with immune checkpointblockade response[J]. Br J Cancer, 2020, 122(11): 1649-1660.
[28] Wang J, Sun H, Zeng Q, et al. HPV-positive statusassociated with inflamed immune microenvironmentand improved response to anti-PD-1 therapy inhead and neck squamous cell carcinoma[J]. Sci Rep,2019, 9(1): 13404.
[29] Cillo AR, Kürten CHL, Tabib T, et al. Immune landscapeof viral- and carcinogen-driven head and neckcancer[J]. Immunity, 2020, 52(1): 183-199.e9.
[30] Zagozdzon R, Winiarska M, Firczuk M. Immuneevasion as the main challenge for immunotherapy ofcancer[J]. Cancers (Basel), 2022, 14(15): 3622.
[31] Li FG, Deng LG, Jackson KR, et al. Neoantigenvaccination induces clinical and immunologic responsesin non-small cell lung cancer patients harboringEGFR mutations[J]. J Immunother Cancer,2021, 9(7): e002531.
[32] Sanchez-Canteli M, Hermida-Prado F, Sordo-BahamondeC, et al. Lectin-like transcript 1 (LLT1)checkpoint: a novel independent prognostic factorin HPV-negative oropharyngeal squamous cell carcinoma[J]. Biomedicines, 2020, 8(12): 535.
[33] Burtness B, Harrington KJ, Greil R, et al. Pembrolizumabalone or with chemotherapy versus cetuximabwith chemotherapy for recurrent or metastaticsquamous cell carcinoma of the head and neck(KEYNOTE-048): a randomised, open-label, phase3 study[J]. Lancet, 2019, 394(10212): 1915-1928.
[34] Seiwert TY, Burtness B, Mehra R, et al. Safety andclinical activity of pembrolizumab for treatment ofrecurrent or metastatic squamous cell carcinoma ofthe head and neck (KEYNOTE-012): an open-label,multicentre, phase 1b trial[J]. Lancet Oncol, 2016,17(7): 956-965.
[35] Ferris RL, Blumenschein G, Fayette J, et al. Nivolumabfor recurrent squamous-cell carcinoma of thehead and neck[J]. N Engl J Med, 2016, 375(19):1856-1867.
[36] Zhao B, Zhao H, Zhao J. Efficacy of PD-1/PD-L1blockade monotherapy in clinical trials[J]. Ther AdvMed Oncol, 2020, 12: 1758835920937612.
[37] Zandberg DP, Algazi AP, Jimeno A, et al. Durvalumabfor recurrent or metastatic head and neck squamouscell carcinoma: results from a single-arm,phase Ⅱ study in patients with ≥25% tumour cellPD-L1 expression who have progressed on platinum-based chemotherapy[J]. Eur J Cancer, 2019,107: 142-152.
[38] Hanna GJ, Lizotte P, Cavanaugh M, et al. Frameshiftevents predict anti-PD-1/L1 response in headand neck cancer[J]. JCI Insight, 2018, 3(4): e98811.
[39] Chen ZG, Chen ZJ, Zhang C, et al. Abstract 321:identification of proteins associated with FAT1 mutationswhich potentially contribute to oncogenesisand progression of head and neck cancers[J]. CancerRes, 2021, 81(13_Supplement): 321.
[40] Colevas AD, Bahleda R, Braiteh F, et al. Safety andclinical activity of atezolizumab in head and neckcancer: results from a phase Ⅰ trial[J]. Ann Oncol,2018, 29(11): 2247-2253.
[41] Aggarwal C, Cohen RB, Morrow MP, et al. Immunotherapytargeting HPV16/18 generates potent immuneresponses in HPV-associated head and neckcancer[J]. Clin Cancer Res, 2019, 25(1): 110-124.
[42] Massarelli E, William W, Johnson F, et al. Combiningimmune checkpoint blockade and tumor-specificvaccine for patients with incurable human papillomavirus16-related cancer: a phase 2 clinical trial[J]. JAMA Oncol, 2019, 5(1): 67-73.
[43] Hibma M. Special issue: HPV and HPV vaccines[J].Viruses, 2022, 14(2): 274.
[44] Levovitz C, Chen D, Ivansson E, et al. TGFβ receptor1: an immune susceptibility gene in HPV-associatedcancer[J]. Cancer Res, 2014, 74(23): 6833-6844.
[45] Polz-Dacewicz M, Strycharz-Dudziak M, DworzańskiJ, et al. Salivary and serum IL-10, TNF- α,TGF- β, VEGF levels in oropharyngeal squamouscell carcinoma and correlation with HPV and EBVinfections[J]. Infect Agent Cancer, 2016, 11: 45.
[46] Lan Y, Zhang D, Xu CX, et al. Enhanced preclinicalantitumor activity of M7824, a bifunctional fusionprotein simultaneously targeting PD-L1 and TGF- β[J]. Sci Transl Med, 2018, 10(424): eaan5488.
[47] Strauss J, Heery CR, Schlom J, et al. Phase Ⅰ trialof M7824 (MSB0011359C), a bifunctional fusionprotein targeting PD-L1 and TGFβ, in advanced solidtumors[J]. Clin Cancer Res, 2018, 24(6): 1287-1295.
[48] Strauss J, Gatti-Mays ME, Cho BC, et al. Bintrafuspalfa, a bifunctional fusion protein targeting TGF- βand PD-L1, in patients with human papillomavirusassociatedmalignancies[J]. J Immunother Cancer,2020, 8(2): e001395.
[49] Tsai YT, Strauss J, Toney NJ, et al. Immune correlatesof clinical parameters in patients with HPV-associatedmalignancies treated with bintrafusp alfa[J]. J Immunother Cancer, 2022, 10(4): e004601.
[50] Dodagatta-Marri E, Meyer DS, Reeves MQ, et al. α-PD-1 therapy elevates Treg/Th balance and increasestumor cell pSmad3 that are both targeted by α?TGFβ antibody to promote durable rejection and immunityin squamous cell carcinomas[J]. J ImmunotherCancer, 2019, 7(1): 62.
[51] Cho BC, Daste A, Ravaud A, et al. Bintrafusp alfa, abifunctional fusion protein targeting TGF-β and PDL1,in advanced squamous cell carcinoma of thehead and neck: results from a phase Ⅰ cohort[J]. JImmunother Cancer, 2020, 8(2): e000664.
( 本文編輯 吳愛華 )
[基金項(xiàng)目] 河北省衛(wèi)生健康委員會(huì)老年病防治項(xiàng)目(13000022PO0860-410186E);河北省醫(yī)學(xué)科學(xué)研究課題計(jì)劃(20190695)