[摘要] 代謝重編程是惡性腫瘤的重要特征之一,是促使腫瘤細(xì)胞在營養(yǎng)匱乏的情況下存活并促進(jìn)其惡性進(jìn)展的重要原因。近些年研究發(fā)現(xiàn),胱氨酸-谷氨酸反向轉(zhuǎn)運(yùn)體(system Xc-) 不僅是誘導(dǎo)鐵死亡的關(guān)鍵靶點(diǎn),同時(shí)對(duì)腫瘤代謝起重要調(diào)控作用,該轉(zhuǎn)運(yùn)體是導(dǎo)致腫瘤細(xì)胞對(duì)葡萄糖高度依賴的原因之一,這提示對(duì)于高表達(dá)system Xc-的腫瘤,抑制葡萄糖攝取及糖代謝是一種有效的治療策略。本文從system Xc-的表達(dá)調(diào)控、功能及其對(duì)腫瘤代謝的影響等方面進(jìn)行綜述,以期為抗腫瘤代謝治療提供新思路。
[關(guān)鍵詞] 代謝重編程; 胱氨酸-谷氨酸反向轉(zhuǎn)運(yùn)體; 谷氨酰胺; 還原型煙酰胺腺嘌呤二核苷酸磷酸
[中圖分類號(hào)] R782 [文獻(xiàn)標(biāo)志碼] A [doi] 10.7518/gjkq.2024019
胱氨酸-谷氨酸反向轉(zhuǎn)運(yùn)體(antiporter of cystineand glutamate,system Xc-) 在向細(xì)胞外轉(zhuǎn)運(yùn)一分子谷氨酸的同時(shí),向細(xì)胞內(nèi)轉(zhuǎn)運(yùn)一分子胱氨酸,胱氨酸進(jìn)一步被還原成半胱氨酸進(jìn)而參與谷胱甘肽(glutathione,GSH) 的合成,因此systemXc- 對(duì)細(xì)胞內(nèi)氧化還原穩(wěn)態(tài)的維持至關(guān)重要[1]。2012年,Dixon等[2]發(fā)現(xiàn)system Xc-抑制劑愛拉斯汀(erastin) 可導(dǎo)致細(xì)胞內(nèi)活性氧(reactive oxygenspecies,ROS) 大量聚集,最終導(dǎo)致細(xì)胞死亡,且能被鐵螯合劑挽救,于是將system Xc-抑制劑誘發(fā)的細(xì)胞死亡定義為鐵死亡(ferroptosis)。此后,system Xc-在腫瘤化療、缺血再灌注損傷及神經(jīng)退行性變等領(lǐng)域中備受關(guān)注[3]。近年來,研究[4]發(fā)現(xiàn)system Xc-對(duì)腫瘤代謝重塑也有重要調(diào)控作用,即system Xc-會(huì)降低腫瘤代謝調(diào)節(jié)的靈活性。
代謝重塑是惡性腫瘤的特征之一,指腫瘤細(xì)胞在內(nèi)在信號(hào)傳導(dǎo)網(wǎng)絡(luò)的調(diào)控下以及外在微環(huán)境壓力的驅(qū)動(dòng)下,其代謝表型發(fā)生變化,且在時(shí)間及空間上均表現(xiàn)出高度異質(zhì)性,以適應(yīng)養(yǎng)分匱乏的腫瘤內(nèi)環(huán)境。部分促癌基因?qū)δ[瘤代謝表型有深刻影響,如MYC、KRAS和TP53基因突變已經(jīng)在多種腫瘤中被證實(shí)對(duì)其代謝表型起關(guān)鍵調(diào)控作用[5-7]。以上促癌基因與其他多種基因突變共同啟動(dòng)了腫瘤細(xì)胞的代謝重塑,并受外界環(huán)境壓力的調(diào)控,形成復(fù)雜的信號(hào)傳導(dǎo)網(wǎng)絡(luò)。本文不對(duì)這些經(jīng)典信號(hào)通路進(jìn)行贅述,而是對(duì)近年來關(guān)于systemXc-調(diào)控腫瘤代謝穩(wěn)態(tài)的相關(guān)研究作一介紹。
1 system Xc-的結(jié)構(gòu)及表達(dá)調(diào)控
system Xc-由一個(gè)多次跨膜的輕鏈xCT和一個(gè)單次跨膜的重鏈CD98構(gòu)成,分別由溶質(zhì)載體家族蛋白成員SLC7A11 (solute carrier family 7 member11,SLC7A11) 和SLC3A2 (solute carrier family 3member 2, SLC3A2) 編碼, 其中xCT 是systemXc-的特異性亞基,而CD98主要起穩(wěn)定作用,并能輔助xCT向細(xì)胞膜表面轉(zhuǎn)移,二者之間通過二硫鍵結(jié)合[8]。xCT和CD98在多種腫瘤包括頭頸鱗狀細(xì)胞癌中被證實(shí)其表達(dá)水平顯著上調(diào),且與患者生存率呈負(fù)相關(guān)[9],CD98同時(shí)也是大型中性氨基酸轉(zhuǎn)運(yùn)蛋白1 (large neutral amino acid transporter1,LAT1) 等的亞基[10],因此本文主要介紹xCT的表達(dá)調(diào)控和研究進(jìn)展。
1.1 xCT的表達(dá)調(diào)控
1.1.1 xCT 的轉(zhuǎn)錄調(diào)控
多種應(yīng)激會(huì)誘導(dǎo)xCT的表達(dá),包括氨基酸剝奪、氧化應(yīng)激、代謝壓力及過度自噬等。激活轉(zhuǎn)錄因子4 (activating transcriptionfactor 4,ATF4) 和核因子E2相關(guān)因子2 (nuclearfactor erythroid 2 related factor 2,NRF2) 是激活xCT轉(zhuǎn)錄的兩大經(jīng)典轉(zhuǎn)錄因子,因此,任何影響ATF4和NRF2表達(dá)的因素都會(huì)影響細(xì)胞膜表面system Xc-的表達(dá)水平[11-12]。已有研究表明ATF4主要感應(yīng)代謝壓力[13-14],在正常情況下,細(xì)胞內(nèi)ATF4蛋白很快被泛素化進(jìn)而被溶酶體降解[15],因此細(xì)胞內(nèi)ATF4蛋白水平表達(dá)極低,而當(dāng)細(xì)胞外環(huán)境中缺乏谷氨酰胺、亮氨酸等氨基酸時(shí),一般性調(diào)控阻遏蛋白激酶2 (general control nonderepressible2,GCN2) 被激活并進(jìn)一步磷酸化其下游的真核翻譯起始因子2α (eukaryotic initiation factor 2α,eIF2α),活化的eIF2α對(duì)大多數(shù)蛋白翻譯起抑制性作用,但能選擇性促進(jìn)內(nèi)質(zhì)網(wǎng)應(yīng)激相關(guān)蛋白的翻譯,包括ATF4[16]。近年來,研究發(fā)現(xiàn)葡萄糖剝奪也能夠通過誘發(fā)內(nèi)質(zhì)網(wǎng)應(yīng)激促進(jìn)ATF4的翻譯[17],且多數(shù)研究認(rèn)為葡萄糖剝奪所導(dǎo)致的ATF4蛋白翻譯上調(diào)是由eIF2α 的另一上游激酶PERK 啟動(dòng)的[18-19],有些研究則認(rèn)為葡萄糖剝奪和氨基酸剝奪類似,都可通過GCN2/eIF2α促進(jìn)ATF4的翻譯[20]。筆者認(rèn)為,由于葡萄糖剝奪會(huì)影響氨基酸代謝等多個(gè)代謝途徑,且伴隨大量ROS釋放,因此葡萄糖剝奪可能通過激活多種激酶活化eIF2α并促進(jìn)ATF4的翻譯。由于ATF4是xCT的重要轉(zhuǎn)錄因子,因此,理論上剝奪氨基酸或葡萄糖時(shí),xCT的表達(dá)會(huì)隨ATF4的表達(dá)上調(diào)而增強(qiáng),實(shí)際上以上推斷已被部分研究[21-22] 證實(shí)。通過DNA pull-down 和ChIP實(shí)驗(yàn)發(fā)現(xiàn),在口腔鱗狀細(xì)胞癌細(xì)胞中,葡萄糖剝奪導(dǎo)致xCT啟動(dòng)子區(qū)ATF4的富集明顯增強(qiáng),且xCT的mRNA水平顯著上調(diào)。反之,當(dāng)用小干擾RNA抑制ATF4的表達(dá)時(shí),葡萄糖剝奪不再能促進(jìn)xCT的轉(zhuǎn)錄。
不同于ATF4,NRF2則主要感應(yīng)氧化應(yīng)激[23],并通過與細(xì)胞核內(nèi)小Maf蛋白形成異源二聚體進(jìn)一步識(shí)別并結(jié)合DNA抗氧化反應(yīng)元件(antioxidantresponse element,ARE),促進(jìn)細(xì)胞內(nèi)抗氧化劑如谷胱甘肽轉(zhuǎn)硫酶(glutathione S-transferase,GST)、(還原型) 煙酰胺腺嘌呤二核苷酸-醌脫氫酶1等的表達(dá),進(jìn)而清除氧自由基,保護(hù)細(xì)胞免受氧化應(yīng)激損傷。正常情況下,細(xì)胞內(nèi)NRF2的蛋白水平極低,因其翻譯后被Kelch樣環(huán)氧氯丙烷相關(guān)蛋白1(Kelch-like epichlorohydrin-associated protein 1,KEAP1) 結(jié)合,使其活性受抑,進(jìn)而通過泛素連接酶cullin-3,導(dǎo)致NRF2被泛素-蛋白酶體系統(tǒng)降解[24]。在氧化應(yīng)激反應(yīng)中,KEAP1的活性則會(huì)被親電子代謝物抑制,致使NRF2脫離KEAP1并向細(xì)胞核轉(zhuǎn)移。由于xCT啟動(dòng)子近轉(zhuǎn)錄起始點(diǎn)側(cè)有ARE元件,因此在細(xì)胞遭受氧化應(yīng)激時(shí),xCT啟動(dòng)子區(qū)NRF2顯著富集,使其轉(zhuǎn)錄活性明顯上調(diào)[19]。
此外,P53突變[25]和K-Ras[26-27]都可能通過上調(diào)ATF4和NRF2的表達(dá)促進(jìn)xCT的表達(dá),如在胰腺導(dǎo)管腺癌(pancreatic ductal adenocarcinoma,PDAC)中,研究人員發(fā)現(xiàn)攜帶KRAS-STK11突變的PDAC腫瘤細(xì)胞會(huì)伴隨KEAP1突變,KEAP1的突變則會(huì)進(jìn)一步激活NRF2從而上調(diào)xCT的表達(dá);而野生型P53[28] 和ATF3 (activating transcription factor 3,ATF3) [29]卻能抑制xCT的表達(dá),有趣的是,愛拉斯汀作用于細(xì)胞后會(huì)導(dǎo)致ATF3的表達(dá)上調(diào),ATF3進(jìn)而作用于xCT 的啟動(dòng)子區(qū)并抑制其轉(zhuǎn)錄活性[30] (圖1)。
1.1.2 xCT 的表觀調(diào)控
表觀遺傳學(xué)調(diào)控包括DNA和mRNA的甲基化修飾,組蛋白的甲基化、乙?;头核鼗刃揎?。其中,DNA啟動(dòng)子區(qū)的甲基化和mRNA的甲基化會(huì)抑制基因表達(dá);組蛋白的修飾則視具體情況而定。一般情況下,H3K4的甲基化、H3K27的乙酰化是轉(zhuǎn)錄激活的標(biāo)志,H3K9、H3K27的甲基化則會(huì)抑制基因轉(zhuǎn)錄,而有關(guān)組蛋白泛素化的研究發(fā)現(xiàn),大多數(shù)情況下H2A的泛素化修飾起轉(zhuǎn)錄抑制作用[31],H2B的泛素化修飾則能激活轉(zhuǎn)錄[32]。Zhang等[33]發(fā)現(xiàn),當(dāng)多梳蛋白抑制復(fù)合物1 (polycomb repressive complex 1,PRC1) 作用于xCT啟動(dòng)子區(qū)時(shí),H2Aub的泛素化水平增高,進(jìn)而抑制了xCT的表達(dá);當(dāng)核去泛素化酶作用于xCT組蛋白H2AK119位點(diǎn)時(shí),會(huì)導(dǎo)致xCT啟動(dòng)子區(qū)H2Aub去泛素化,然而xCT的轉(zhuǎn)錄活性同樣受到抑制。根據(jù)上述研究結(jié)果,筆者認(rèn)為組蛋白H2A泛素化水平的穩(wěn)態(tài)決定了xCT基因的轉(zhuǎn)錄活性,而非泛素化修飾本身。xCT啟動(dòng)子區(qū)H2B賴氨酸殘基的泛素化則會(huì)促進(jìn)xCT的轉(zhuǎn)錄,研究表明,system Xc-抑制劑愛拉斯汀也可通過抑制組蛋白H2B單泛素化(histone H2B monoubiquitination,H2Bub1) 抑制xCT的表達(dá)[34]。此外,研究[34-37] 表明P53 介導(dǎo)的xCT的轉(zhuǎn)錄抑制也可能與H2Bub1 有關(guān), 當(dāng)P53 過表達(dá)時(shí), xCT啟動(dòng)子區(qū)H2Bub1的泛素化水平明顯降低,而其他組蛋白修飾則沒有明顯改變。且P53能通過誘導(dǎo)去泛素化酶——泛素特異性肽酶7 (ubiquitin specific peptidase7,USP7) 的核向轉(zhuǎn)移,促使xCT啟動(dòng)子區(qū)H2Bub1去泛素化。而組蛋白甲基化修飾及乙?;揎棇?duì)xCT的表達(dá)調(diào)控則符合一般規(guī)律[38],例如,組蛋白乙?;摹伴喿x器”溴結(jié)構(gòu)域蛋白4 (bromodomain-containing protein 4, BRD4) 能激活xCT的轉(zhuǎn)錄[39]。在一些腫瘤中,染色體重塑復(fù)合體家族成員SWI/SNF可通過改變?nèi)旧|(zhì)構(gòu)象促進(jìn)xCT的轉(zhuǎn)錄,進(jìn)而上調(diào)xCT的表達(dá)[40-41]。
1.1.3 xCT 的翻譯后調(diào)控
system Xc-的另外一個(gè)亞基CD98與xCT結(jié)合后可抑制后者的泛素化,從而避免xCT被泛素-蛋白酶體系統(tǒng)降解,并且促使xCT向細(xì)胞膜表面轉(zhuǎn)移。同樣地,CD44v、表皮生長(zhǎng)因子受體(epidermal growth factor receptor,EGFR) 亦可通過抑制xCT蛋白的泛素化增強(qiáng)其穩(wěn)定性[42],但介導(dǎo)xCT泛素化修飾的泛素連接酶目前仍不明確。有趣的是,Yamaguchi等[43]發(fā)現(xiàn)細(xì)胞密度會(huì)影響xCT蛋白的穩(wěn)定性,增加細(xì)胞密度會(huì)促使xCT被溶酶體降解,這一過程依賴于哺乳動(dòng)物雷帕霉素蛋白復(fù)合體1 (mammalian target of rapamycincomplex 1,mTORC1),但目前仍缺乏細(xì)胞密度或mTORC1調(diào)控xCT翻譯后修飾的機(jī)制研究。
1.2 CD98 的表達(dá)調(diào)控
在頭頸腫瘤中,CD98與放射治療抵抗密切相關(guān)。CD98可能通過激活mTORC信號(hào)通路、上調(diào)氨基酸代謝等機(jī)制增強(qiáng)腫瘤細(xì)胞對(duì)代謝壓力及氧化應(yīng)激的抵抗力,且大量研究證實(shí)CD98的過表達(dá)與頭頸腫瘤的預(yù)后呈負(fù)相關(guān)[44-45]。且CD98的表達(dá)同樣受ATF4的調(diào)控[46],因此,任何促使ATF4表達(dá)上調(diào)的因素同樣會(huì)促進(jìn)CD98 的表達(dá)。例如,mTORC1可能通過增強(qiáng)mRNA的穩(wěn)定性或啟動(dòng)蛋白翻譯上調(diào)ATF4的表達(dá)[47],進(jìn)而激活CD98的轉(zhuǎn)錄[46]。由于mTORC1是細(xì)胞內(nèi)多種氨基酸的感受器,因此當(dāng)氨基酸供應(yīng)不足時(shí),mTORC1被激活并進(jìn)一步促進(jìn)ATF4及CD98的表達(dá)。類似的,筆者在口腔鱗狀細(xì)胞癌中發(fā)現(xiàn)前述葡萄糖剝奪所致的ATF4表達(dá)上調(diào)也能促進(jìn)CD98的轉(zhuǎn)錄。此外,在T淋巴細(xì)胞中,CD98的轉(zhuǎn)錄受癌基因c-Myc的調(diào)控[48],但c-Myc是否也調(diào)控腫瘤細(xì)胞中CD98的表達(dá)仍需進(jìn)一步實(shí)驗(yàn)驗(yàn)證。在一項(xiàng)對(duì)肺腺泡癌的研究[49]中發(fā)現(xiàn)癌基因Homeo box A13 (HOXA13) 同時(shí)是CD98的轉(zhuǎn)錄因子,N6甲基腺苷(N6-methyladenosine,m6A) 修飾的識(shí)別器YTHDC2蛋白(YT521-B homologycontaining 2, YTHDC2) 能通過促進(jìn)HOXA13降解進(jìn)而抑制CD98的轉(zhuǎn)錄(圖2) 。
2 system Xc-對(duì)氧化還原穩(wěn)態(tài)的影響
2.1 system Xc-與谷胱甘肽穩(wěn)態(tài)
雖然半胱氨酸可以通過甲硫氨酸轉(zhuǎn)硫途徑產(chǎn)生[50],但在大多數(shù)細(xì)胞中,system Xc-從細(xì)胞外攝取的胱氨酸是半胱氨酸的主要來源。半胱氨酸和谷氨酸在谷胺酰半胱氨酸連接酶的催化下生成γ-谷胺酰半胱氨酸是谷胱甘肽生物合成的限速步驟[51]。因此,system Xc-對(duì)細(xì)胞內(nèi)半胱氨酸及谷胱甘肽穩(wěn)態(tài)的維持至關(guān)重要。谷胱甘肽是迄今為止發(fā)現(xiàn)的最強(qiáng)大的抗氧化劑,能夠清除超氧自由基及羥自由基,保護(hù)細(xì)胞膜免受脂質(zhì)過氧化物的攻擊。抑制system Xc-會(huì)破壞細(xì)胞內(nèi)氧化還原穩(wěn)態(tài),在鐵離子的參與下發(fā)生芬頓反應(yīng),誘發(fā)鐵死亡[52]。愛拉斯汀和柳氮磺砒啶(sulfasalazine,SAS) 是system Xc-的兩大經(jīng)典抑制劑,前者應(yīng)用于治療攜帶RAS基因突變的惡性腫瘤[53],后者是FDA批準(zhǔn)用于治療類風(fēng)濕性關(guān)節(jié)炎的藥物[54]。大量研究表明,愛拉斯汀或SAS會(huì)導(dǎo)致細(xì)胞內(nèi)脂質(zhì)過氧化反應(yīng)終產(chǎn)物丙二醛的含量顯著增高, 同時(shí)BODIPY581/591 C11 脂質(zhì)熒光探針的光譜顯著右移[9,55], 而還原型GSH和氧化型谷胱甘肽(oxidizedglutathione,GSSG) 的比值明顯減小。
2.2 system Xc-與還原型煙酰胺腺嘌呤二核苷酸磷酸(reduced nicotinamide adenine dinucleotidephosphate,NADPH) 穩(wěn)態(tài)
NADPH是細(xì)胞重要的還原劑,參與脂肪合成、GSSG-GSH循環(huán)等多個(gè)重要代謝途徑,而磷酸戊糖途徑(pentose phosphate pathway,PPP) 是細(xì)胞內(nèi)NADPH產(chǎn)生的主要途徑。此外,蘋果酸脫羧和檸檬酸脫氫等過程中也會(huì)產(chǎn)生NADPH[56],尤其在葡萄糖供應(yīng)不足的情況下,這兩種代謝對(duì)維持細(xì)胞NADPH穩(wěn)態(tài)有重大意義[57]。Liu等[58]通過同位素標(biāo)記法發(fā)現(xiàn)xCT過表達(dá)時(shí)葡萄糖向磷酸戊糖代謝途徑的流量增加,同時(shí),細(xì)胞內(nèi)NADPH的產(chǎn)量亦增加,并通過挖掘TCGA數(shù)據(jù)庫,發(fā)現(xiàn)xCT的編碼基因SLC7A11在大多數(shù)腫瘤中與PPP途徑關(guān)鍵酶的表達(dá)成正相關(guān)。由此推斷,高表達(dá)system Xc-的腫瘤對(duì)NADPH的依賴性增強(qiáng),研究者[58]認(rèn)為其主要原因是胱氨酸被system Xc-轉(zhuǎn)運(yùn)到細(xì)胞內(nèi)后,迅速被還原成半胱氨酸,而這一過程需要消耗NADPH,為了維持細(xì)胞內(nèi)NADPH穩(wěn)態(tài),高表達(dá)system Xc-的腫瘤細(xì)胞往往磷酸戊糖途徑關(guān)鍵酶及葡萄糖轉(zhuǎn)運(yùn)體表達(dá)相對(duì)較高,以促進(jìn)NADPH的生成。但是目前對(duì)催化胱氨酸向半胱氨酸轉(zhuǎn)化的還原酶仍不清楚,且雖然SLC7A11與PPP途徑的關(guān)鍵酶表達(dá)成正比且此二者都受NRF2 的調(diào)控, 但SLC7A11過表達(dá)導(dǎo)致的PPP途徑關(guān)鍵酶的表達(dá)上調(diào)與NRF2無明顯相關(guān)性[58] (圖3)。一項(xiàng)研究[59]表明,高表達(dá)system Xc-的腫瘤細(xì)胞對(duì)胱氨酸的攝取明顯增加,而在剝奪葡萄糖后NADPH產(chǎn)量急劇下降導(dǎo)致胱氨酸不能有效地還原成半胱氨酸,胱氨酸的堆積進(jìn)而誘發(fā)二硫化物應(yīng)激,導(dǎo)致細(xì)胞壞死,這種由二硫化物應(yīng)激引起的細(xì)胞死亡被定義為雙硫死亡(disulfidoptosis),是高表達(dá)xCT或system Xc-的腫瘤細(xì)胞在遭受葡萄糖饑餓時(shí)特有的一種死亡方式。至于system Xc-促進(jìn)細(xì)胞內(nèi)NADPH耗竭的原因,目前仍無定論,除了胱氨酸轉(zhuǎn)變成半胱氨酸過程中消耗NADPH以外,谷氨酸的流失導(dǎo)致細(xì)胞經(jīng)蘋果酸脫羧途徑產(chǎn)生的NADPH急劇下降,進(jìn)一步促進(jìn)了NADPH的耗竭。
3 system Xc-對(duì)能量代謝穩(wěn)態(tài)的調(diào)控
眾所周知,實(shí)體瘤微環(huán)境是一個(gè)缺乏營養(yǎng)物質(zhì)、代謝產(chǎn)物蓄積且缺氧的內(nèi)環(huán)境,當(dāng)腫瘤發(fā)展到一定程度后,瘤體中心區(qū)域細(xì)胞往往因遭受劇烈的能量應(yīng)激而發(fā)生壞死。利用質(zhì)譜分析和核磁共振技術(shù),可以檢測(cè)腫瘤微環(huán)境中的代謝物含量,以往的研究普遍認(rèn)為腫瘤微環(huán)境缺乏葡萄糖、谷氨酰胺等營養(yǎng)物質(zhì),而代謝廢物乳酸、犬尿氨酸等大量堆積。在這一惡劣的微環(huán)境下,多數(shù)腫瘤細(xì)胞發(fā)生壞死,一些腫瘤細(xì)胞則在代謝壓力下發(fā)生代謝重塑,如宮頸癌細(xì)胞、肺癌細(xì)胞[57]及頭頸鱗狀細(xì)胞癌細(xì)胞[60]可以利用微環(huán)境中的乳酸逆向合成丙酮酸,為三羧酸(tricarboxylic acid,TCA)循環(huán)提供碳源。
3.1 system Xc-增強(qiáng)腫瘤細(xì)胞對(duì)谷氨酰胺/谷氨酸的依賴性
谷氨酸是腫瘤生長(zhǎng)的重要氨基酸,它通過谷氨酰胺裂解而來并進(jìn)一步脫羧基產(chǎn)生α-酮戊二酸,后者進(jìn)入TCA循環(huán)以維持線粒體呼吸,這種代謝方式被稱作谷氨酰胺回補(bǔ)[61],在腫瘤中普遍存在。而system Xc-在向細(xì)胞內(nèi)轉(zhuǎn)運(yùn)胱氨酸的同時(shí),需要消耗一分子谷氨酸,導(dǎo)致細(xì)胞需要從外界攝取更多的谷氨酰胺以維持細(xì)胞內(nèi)谷氨酸代謝穩(wěn)態(tài),即高表達(dá)system Xc-的細(xì)胞對(duì)谷氨酰胺代謝的依賴性增強(qiáng)。例如非小細(xì)胞肺癌中xCT的表達(dá)明顯上調(diào),使得腫瘤細(xì)胞對(duì)谷氨酰胺代謝的依賴性增強(qiáng)[62],且xCT的轉(zhuǎn)錄因子NRF2高表達(dá)的肺腺癌細(xì)胞對(duì)谷氨酰胺代謝的依賴性亦增強(qiáng)[63];在頭頸腫瘤如口腔鱗狀細(xì)胞癌中,細(xì)胞分化越差,xCT的表達(dá)則越高,導(dǎo)致腫瘤細(xì)胞對(duì)谷氨酰胺分解代謝的依賴性越強(qiáng),相應(yīng)地,細(xì)胞膜表面谷氨酰胺轉(zhuǎn)運(yùn)載體如ASC系統(tǒng)轉(zhuǎn)運(yùn)蛋白2 (ASC type amino-acid transporter2,ASCT2) 的表達(dá)則明顯上調(diào),而患者的生存預(yù)后則越差[64]。此外,Muir等[65]發(fā)現(xiàn)當(dāng)細(xì)胞培養(yǎng)體系中胱氨酸含量較高時(shí),細(xì)胞對(duì)谷氨酰胺的需求量增加,同時(shí)對(duì)谷氨酰胺酶抑制劑CB-839的敏感性亦增強(qiáng),這一發(fā)現(xiàn)從代謝產(chǎn)物層面說明systemXc-能上調(diào)腫瘤細(xì)胞對(duì)谷氨酰胺代謝的依賴性。
3.2 system Xc-使腫瘤細(xì)胞對(duì)葡萄糖代謝的依賴性增強(qiáng)
大多數(shù)腫瘤細(xì)胞對(duì)葡萄糖的攝取明顯增加,糖代謝也異?;钴S[66]。一方面相比于脂肪酸,糖酵解能更迅速地產(chǎn)生丙酮酸并進(jìn)一步在丙酮酸羧化酶的作用下生成草酰乙酸,后者是TCA循環(huán)的關(guān)鍵底物[66];另一方面,糖酵解的旁路途徑如磷酸戊糖途徑、絲氨酸合成途徑對(duì)細(xì)胞維持正常生理功能至關(guān)重要[67]。因此,腫瘤細(xì)胞中糖代謝速率往往較高,這既滿足了快速生長(zhǎng)增殖的要求,又增強(qiáng)了腫瘤細(xì)胞的抗氧化應(yīng)激能力,但同時(shí)也使得糖代謝成為腫瘤代謝薄弱的一環(huán),干擾糖酵解將導(dǎo)致腫瘤細(xì)胞因劇烈的氧化應(yīng)激和能量應(yīng)激而死亡。近年來,研究發(fā)現(xiàn)在葡萄糖饑餓情況下,多種腫瘤細(xì)胞內(nèi)xCT的表達(dá)顯著上調(diào),起初科學(xué)家認(rèn)為這是細(xì)胞的一種反應(yīng)性自我保護(hù)機(jī)制,通過促進(jìn)GSH的生成以抵御氧化應(yīng)激。然而進(jìn)一步的研究發(fā)現(xiàn),xCT的上調(diào)并沒有保護(hù)細(xì)胞,反而是葡萄糖剝奪導(dǎo)致細(xì)胞死亡的主要原因[21,68-69]:當(dāng)細(xì)胞外基質(zhì)中缺乏葡萄糖時(shí),一方面細(xì)胞需要增強(qiáng)谷氨酰胺代謝以維持TCA循環(huán)和線粒體呼吸,xCT表達(dá)增強(qiáng)后反而促進(jìn)了谷氨酸的消耗,阻礙了腫瘤細(xì)胞代謝表型從葡萄糖代謝向谷氨酰胺代謝轉(zhuǎn)變,抑制了腫瘤代謝調(diào)節(jié)的靈活性[4];另一方面糖剝奪導(dǎo)致磷酸戊糖途徑趨于停滯,此時(shí),細(xì)胞需要減少NADPH的消耗以維持一定的NADPH水平,從而維持氧化還原反應(yīng)的進(jìn)行。而當(dāng)systemXc-過表達(dá)時(shí),細(xì)胞對(duì)NADPH的消耗增加,致使細(xì)胞因NADPH迅速耗竭而壞死[70],若剝奪葡萄糖的同時(shí)限制胱氨酸的攝取或利用2-脫氧-D-葡萄糖(2-deoxy-D-glucose,2DG) 補(bǔ)充細(xì)胞內(nèi)NADPH的含量,則會(huì)顯著抑制細(xì)胞死亡[58]。綜上所述,過表達(dá)system Xc-的腫瘤細(xì)胞之所以對(duì)葡萄糖的依賴性增強(qiáng),是因?yàn)閟ystem Xc-過表達(dá)時(shí)腫瘤細(xì)胞對(duì)谷氨酸和NADPH的消耗量增加[71],在剝奪葡萄糖時(shí),system Xc-進(jìn)一步促使細(xì)胞內(nèi)ATP和NADPH含量下降,細(xì)胞內(nèi)能量代謝穩(wěn)態(tài)和氧化還原穩(wěn)態(tài)嚴(yán)重失衡,劇烈的代謝應(yīng)激最終導(dǎo)致細(xì)胞死亡;相反,研究表明system Xc-抑制劑能顯著抑制葡萄糖剝奪所致的大腦皮質(zhì)細(xì)胞壞死[72],此外,在口腔鱗狀細(xì)胞癌中也發(fā)現(xiàn)了類似的現(xiàn)象[73]。
由于代謝表型的異質(zhì)性,system Xc-促進(jìn)葡萄糖剝奪下細(xì)胞死亡的機(jī)制在不同腫瘤中并不完全相同。例如,有些腫瘤中system Xc-促進(jìn)糖剝奪導(dǎo)致的細(xì)胞死亡的原因以谷氨酸流失為主,而在另一些腫瘤中葡萄糖剝奪導(dǎo)致細(xì)胞死亡的主要原因是NADPH的耗竭,或者二者同時(shí)存在。
4 靶向腫瘤代謝的精準(zhǔn)治療
腫瘤代謝因其具有高度可塑性和靈活性而備受關(guān)注,自19世紀(jì)60年代Warburg教授提出腫瘤的“有氧糖酵解”代謝特點(diǎn)以來,科學(xué)家們?cè)谀[瘤代謝領(lǐng)域已經(jīng)進(jìn)行了大量較為深入的研究,學(xué)界對(duì)腫瘤代謝的認(rèn)識(shí)也在不斷更新。研究[74]發(fā)現(xiàn)腫瘤細(xì)胞往往對(duì)某些特定的營養(yǎng)物質(zhì)顯著依賴,如Murphy等利用13C同位素標(biāo)記法和質(zhì)譜分析法發(fā)現(xiàn)高表達(dá)MYC的B細(xì)胞淋巴瘤對(duì)糖代謝的依賴性明顯增強(qiáng),因此,以干擾腫瘤代謝為基礎(chǔ)的化學(xué)療法有廣闊的發(fā)展前景。
正如前文所述,高表達(dá)xCT或CD98的惡性腫瘤(如頭頸腫瘤) 預(yù)后較差[44,64],且對(duì)放化療耐受。根據(jù)system Xc-對(duì)腫瘤代謝的調(diào)控特點(diǎn),對(duì)此類腫瘤的治療,與其誘導(dǎo)鐵死亡,不如阻斷其葡萄糖代謝或谷氨酰胺代謝,例如抑制葡萄糖轉(zhuǎn)運(yùn)體GLUT的活性, 抑制谷氨酰胺轉(zhuǎn)運(yùn)體LAT1和ASCT2的活性或阻斷谷氨酰胺的分解代謝(圖4)。但由于GLUT、LAT1等在正常組織中也存在顯著表達(dá),因此如何實(shí)現(xiàn)精準(zhǔn)的腫瘤靶向抗代謝治療是亟待解決的主要難題。
近年來,大量研究致力于設(shè)計(jì)腫瘤特異性的納米載藥系統(tǒng)以實(shí)現(xiàn)特異性阻斷腫瘤葡萄糖或谷氨酰胺代謝、促進(jìn)腫瘤微環(huán)境內(nèi)葡萄糖等的耗竭,從而在干擾腫瘤代謝的同時(shí)減輕對(duì)正常組織的殺傷力。例如,包裹葡萄糖或谷氨酰胺轉(zhuǎn)運(yùn)蛋白抑制劑的納米粒子[75],或包裹磷酸戊糖途徑及谷氨酰胺分解代謝中關(guān)鍵酶抑制劑[76-79]的納米載藥系統(tǒng)。以上納米載藥粒子能顯著地富集在腫瘤組織中,與游離態(tài)相比,其抗腫瘤效果明顯增強(qiáng),而對(duì)正常組織的不良作用明顯減輕。有學(xué)者[80]則通過制備葡萄糖納米顆粒,使其靶向腫瘤細(xì)胞膜表面葡萄糖轉(zhuǎn)運(yùn)體,受納米粒大小、親和力的影響,該葡萄糖納米顆粒不能被轉(zhuǎn)運(yùn)到細(xì)胞內(nèi),反而與癌細(xì)胞表面葡萄糖轉(zhuǎn)運(yùn)體緊密結(jié)合,阻礙了游離葡萄糖的攝取,最終導(dǎo)致腫瘤細(xì)胞壞死,這一研究為設(shè)計(jì)靶向葡萄糖轉(zhuǎn)運(yùn)體的納米顆粒提供了新思路;此外,研究發(fā)現(xiàn)葡萄糖氧化酶(glucoseoxidase,GOx) 能將葡萄糖轉(zhuǎn)化為葡萄糖酸從而達(dá)到耗竭細(xì)胞外葡萄糖的目的,同時(shí)生成的過氧化氫具有強(qiáng)氧化性和殺細(xì)胞毒性[81],因此GOx被視作一種“明星酶”負(fù)載到摻錳或摻銅等金屬納米顆粒上,該納米顆粒在耗竭葡萄糖的同時(shí)可以通過錳(銅) 離子等介導(dǎo)的脂質(zhì)過氧化反應(yīng)(類似于芬頓反應(yīng)) 誘導(dǎo)腫瘤細(xì)胞壞死[82],是一項(xiàng)有廣闊發(fā)展前景的納米醫(yī)療技術(shù);有趣的是,以上納米粒子介導(dǎo)的葡萄糖饑餓療法能通過激活腺苷酸依賴性蛋白激酶(adenosine monophosphate-activatedprotein kinase,AMPK) 促進(jìn)細(xì)胞的巨吞噬作用,從而增強(qiáng)了腫瘤細(xì)胞攝取納米顆粒的能力[83],因此,通過構(gòu)建負(fù)載靶向化療藥物的GOx納米顆粒,能一定程度上增強(qiáng)化療藥物對(duì)耐藥細(xì)胞的毒性,且根據(jù)高表達(dá)system Xc-的腫瘤同時(shí)伴隨谷氨酰胺轉(zhuǎn)運(yùn)體或葡萄糖轉(zhuǎn)運(yùn)體的表達(dá)上調(diào)這一特點(diǎn)[64],可以設(shè)計(jì)靶向GLUTs或者LAT-1、ASCT2等的GOx納米載藥顆粒[84]。
5 總結(jié)
腫瘤代謝因其高度可塑性而十分復(fù)雜,目前仍有很多科學(xué)問題亟待解決。腫瘤靈活的代謝調(diào)節(jié)能力使得癌細(xì)胞能夠適應(yīng)營養(yǎng)匱乏的微環(huán)境,也是惡性腫瘤發(fā)生遠(yuǎn)處轉(zhuǎn)移并在宿主器官中得以生存的主要原因。近年來研究發(fā)現(xiàn),雖然systemXc-可以增強(qiáng)細(xì)胞的抗氧化能力,抑制鐵死亡的發(fā)生,但system Xc-卻顯著降低了腫瘤代謝調(diào)節(jié)的靈活性,使腫瘤細(xì)胞對(duì)葡萄糖及谷氨酰胺/谷氨酸高度依賴,成為抗腫瘤代謝治療的靶點(diǎn)。根據(jù)現(xiàn)有研究可以總結(jié)出高表達(dá)system Xc-的惡性腫瘤是葡萄糖及谷氨酰胺饑餓療法的納入指標(biāo),其理論基礎(chǔ)是system Xc-的過表達(dá)顯著加速了腫瘤細(xì)胞對(duì)谷氨酸和NADPH的消耗,使得腫瘤細(xì)胞對(duì)葡萄糖和谷氨酰胺高度依賴;當(dāng)腫瘤發(fā)展到晚期階段,腫瘤微環(huán)境往往缺乏葡萄糖、谷氨酰胺等的供應(yīng)從而導(dǎo)致細(xì)胞壞死,此時(shí)不宜選擇system Xc-抑制劑誘導(dǎo)腫瘤細(xì)胞鐵死亡或使用愛拉斯汀抑制攜帶KRAS突變的腫瘤,否則會(huì)增強(qiáng)腫瘤細(xì)胞對(duì)代謝壓力的抵抗力,促使腫瘤細(xì)胞在惡劣的內(nèi)環(huán)境下存活、突變,進(jìn)而發(fā)生遠(yuǎn)處轉(zhuǎn)移。
利益沖突聲明:作者聲明本文無利益沖突。
6 參考文獻(xiàn)
[1] Parker JL, Deme JC, Kolokouris D, et al. Molecularbasis for redox control by the human cystine/glutamateantiporter system xc[J]. Nat Commun, 2021,12(1): 7147.
[2] Dixon SJ, Lemberg KM, Lamprecht MR, et al. Ferroptosis:an iron-dependent form of nonapoptoticcell death[J]. Cell, 2012, 149(5): 1060-1072.
[3] Jiang XJ, Stockwell BR, Conrad M. Ferroptosis:mechanisms, biology and role in disease[J]. Nat RevMol Cell Biol, 2021, 22(4): 266-282.
[4] Shin CS, Mishra P, Watrous JD, et al. The glutamate/cystine xCT antiporter antagonizes glutamine metabolismand reduces nutrient flexibility[J]. Nat Commun,2017, 8: 15074.
[5] Stine ZE, Walton ZE, Altman BJ, et al. MYC, metabolism,and cancer[J]. Cancer Discov, 2015, 5(10): 1024-1039.
[6] Dey P, Kimmelman AC, DePinho RA. Metaboliccodependencies in the tumor microenvironment[J].Cancer Discov, 2021, 11(5): 1067-1081.
[7] Liu Y, Gu W. The complexity of p53-mediated metabolicregulation in tumor suppression[J]. SeminCancer Biol, 2022, 85: 4-32.
[8] Liu J, Xia X, Huang P. xCT: a critical molecule thatlinks cancer metabolism to redox signaling[J]. MolTher, 2020, 28(11): 2358-2366.
[9] Abdullah M, Lee SJ. Extracellular concentration ofL-cystine determines the sensitivity to system xc- inhibitors[J]. Biomol Ther, 2022, 30(2): 184-190.
[10] Yan RH, Zhao X, Lei JL, et al. Structure of the humanLAT1-4F2hc heteromeric amino acid transportercomplex[J]. Nature, 2019, 568(7750): 127-130.
[11] Lewerenz J, Sato H, Albrecht P, et al. Mutation ofATF4 mediates resistance of neuronal cell linesagainst oxidative stress by inducing xCT expression[J]. Cell Death Differ, 2012, 19(5): 847-858.
[12] Fan Z, Wirth AK, Chen D, et al. Nrf2-Keap1 pathwaypromotes cell proliferation and diminishes ferroptosis[J]. Oncogenesis, 2017, 6(8): e371.
[13] Byles V, Cormerais Y, Kalafut K, et al. HepaticmTORC1 signaling activates ATF4 as part of itsmetabolic response to feeding and insulin[J]. MolMetab, 2021, 53: 101309.
[14] Quirós PM, Prado MA, Zamboni N, et al. Multiomicsanalysis identifies ATF4 as a key regulator ofthe mitochondrial stress response in mammals[J]. JCell Biol, 2017, 216(7): 2027-2045.
[15] Feng L, Li M, Hu X, et al. CK1δ stimulates ubiquitination-dependent proteasomal degradation of ATF4to promote chemoresistance in gastric cancer[J].Clin Transl Med, 2021, 11(10): e587.
[16] Longchamp A, Mirabella T, Arduini A, et al. Aminoacid restriction triggers angiogenesis via GCN2/ATF4 regulation of VEGF and H2S production[J].Cell, 2018, 173(1): 117-129.e14.
[17] Chang H, Cai F, Zhang Y, et al. Early-stage autophagyprotects nucleus pulposus cells from glucose deprivation-induced degeneration via the p-eIF2α/ATF4 pathway[J]. Biomed Pharmacother, 2017, 89:529-535.
[18] Loong JH, Wong TL, Tong M, et al. Glucose deprivation-induced aberrant FUT1-mediated fucosylationdrives cancer stemness in hepatocellular carcinoma[J]. J Clin Invest, 2021, 131(11): e143377.
[19] Balsa E, Soustek MS, Thomas A, et al. ER and nutrientstress promote assembly of respiratory chainsuper complexes through the PERK-eIF2α axis[J].Mol Cell, 2019, 74(5): 877-890.e6.
[20] Ye JB, Kumanova M, Hart LS, et al. The GCN2-ATF4 pathway is critical for tumour cell survivaland proliferation in response to nutrient deprivation[J]. EMBO J, 2010, 29(12): 2082-2096.
[21] Koppula P, Zhang YL, Shi JJ, et al. The glutamate/cystine antiporter SLC7A11/xCT enhances cancercell dependency on glucose by exporting glutamate[J]. J Biol Chem, 2017, 292(34): 14240-14249.
[22] Sato H, Nomura S, Maebara K, et al. Transcriptionalcontrol of cystine/glutamate transporter gene byamino acid deprivation[J]. Biochem Biophys ResCommun, 2004, 325(1): 109-116.
[23] Ma Q. Role of nrf2 in oxidative stress and toxicity[J]. Annu Rev Pharmacol Toxicol, 2013, 53: 401-426.
[24] Niture SK, Khatri R, Jaiswal AK. Regulation ofNrf2-an update[J]. Free Radic Biol Med, 2014, 66:36-44.
[25] Habib E, Linher-Melville K, Lin HX, et al. Expressionof xCT and activity of system xc(-) are regulatedby NRF2 in human breast cancer cells in responseto oxidative stress[J]. Redox Biol, 2015, 5:33-42.
[26] Lim JKM, Leprivier G. The impact of oncogenicRAS on redox balance and implications for cancerdevelopment[J]. Cell Death Dis, 2019, 10(12): 955.
[27] Lim JKM, Delaidelli A, Minaker SW, et al. Cystine/glutamate antiporter xCT (SLC7A11) facilitates oncogenicRAS transformation by preserving intracellularredox balance[J]. Proc Natl Acad Sci U S A,2019, 116(19): 9433-9442.
[28] Wu C, Shen Z, Lu Y, et al. p53 promotes ferroptosisin macrophages treated with Fe3O4 nanoparticles[J].ACS Appl Mater Interfaces, 2022, 14(38): 42791-42803.
[29] Fu DZ, Wang CX, Yu L, et al. Induction of ferroptosisby ATF3 elevation alleviates cisplatin resistancein gastric cancer by restraining Nrf2/Keap1/xCT signaling[J]. Cell Mol Biol Lett, 2021, 26(1): 26.
[30] Wang LY, Liu YC, Du TT, et al. ATF3 promoteserastin-induced ferroptosis by suppressing systemXc[J]. Cell Death Differ, 2020, 27(2): 662-675.
[31] Liu SJ, Trejo-Arellano MS, Qiu YC, et al. H2Aubiquitination is essential for polycomb repressivecomplex 1-mediated gene regulation in marchantiapolymorpha[J]. Genome Biol, 2021, 22(1): 253.
[32] Fierz B, Chatterjee C, McGinty RK, et al. HistoneH2B ubiquitylation disrupts local and higher-orderchromatin compaction[J]. Nat Chem Biol, 2011, 7(2): 113-119.
[33] Zhang YL, Koppula P, Gan BY. Regulation of H2Aubiquitination and SLC7A11 expression by BAP1and PRC1[J]. Cell Cycle, 2019, 18(8): 773-783.
[34] Wang YF, Yang L, Zhang XJ, et al. Epigenetic regulationof ferroptosis by H2B monoubiquitinationand p53[J]. EMBO Rep, 2019, 20(7): e47563.
[35] Wu C, Cui YQ, Liu XH, et al. The RNF20/40 complexregulates p53-dependent gene transcription andmRNA splicing[J]. J Mol Cell Biol, 2020, 12(2):113-124.
[36] Minsky N, Oren M. The RING domain of Mdm2mediates histone ubiquitylation and transcriptionalrepression[J]. Mol Cell, 2004, 16(4): 631-639.
[37] Cole AJ, Dickson KA, Liddle C, et al. Ubiquitinchromatin remodelling after DNA damage is associatedwith the expression of key cancer genes andpathways[J]. Cell Mol Life Sci, 2021, 78(3): 1011-1027.
[38] Lee SY, Kim HS, Kim MJ, et al. Glutamine metaboliteα-ketoglutarate acts as an epigenetic co-factor tointerfere with osteoclast differentiation[J]. Bone,2021, 145: 115836.
[39] Sui SY, Zhang J, Xu SP, et al. Ferritinophagy is requiredfor the induction of ferroptosis by the bromodomainprotein BRD4 inhibitor (+)-JQ1 in cancercells[J]. Cell Death Dis, 2019, 10(5): 331.
[40] Ogiwara H, Takahashi K, Sasaki M, et al. Targetingthe vulnerability of glutathione metabolism in ARID1A-deficient cancers[J]. Cancer Cell, 2019, 35(2): 177-190.e8.
[41] Sasaki M, Chiwaki F, Kuroda T, et al. Efficacy ofglutathione inhibitors for the treatment of ARID1Adeficientdiffuse-type gastric cancers[J]. BiochemBiophys Res Commun, 2020, 522(2): 342-347.
[42] Ishimoto T, Nagano O, Yae T, et al. CD44 variantregulates redox status in cancer cells by stabilizingthe xCT subunit of system xc(- ) and thereby promotestumor growth[J]. Cancer Cell, 2011, 19(3):387-400.
[43] Yamaguchi I, Yoshimura SH, Katoh H. High celldensity increases glioblastoma cell viability underglucose deprivation via degradation of the cystine/glutamate transporter xCT (SLC7A11)[J]. J BiolChem, 2020, 295(20): 6936-6945.
[44] Digomann D, Linge A, Dubrovska A. SLC3A2/CD98hc, autophagy and tumor radioresistance: a link confirmed[J]. Autophagy, 2019, 15(10): 1850-1851.
[45] Digomann D, Kurth I, Tyutyunnykova A, et al. TheCD98 heavy chain is a marker and regulator of headand neck squamous cell carcinoma radiosensitivity[J]. Clin Cancer Res, 2019, 25(10): 3152-3163.
[46] Nachef M, Ali AK, Almutairi SM, et al. TargetingSLC1A5 and SLC3A2/SLC7A5 as a potential strategyto strengthen anti-tumor immunity in the tumormicroenvironment[J]. Front Immunol, 2021, 12:624324.
[47] Park Y, Reyna-Neyra A, Philippe L, et al. mTORC1balances cellular amino acid supply with demandfor protein synthesis through post-transcriptionalcontrol of ATF4[J]. Cell Rep, 2017, 19(6): 1083-1090.
[48] Verbist KC, Guy CS, Milasta S, et al. Metabolicmaintenance of cell asymmetry following divisionin activated T lymphocytes[J]. Nature, 2016, 532(7599): 389-393.
[49] Ma L, Zhang X, Yu K, et al. Targeting SLC3A2 subunitof system XC- is essential for m6A reader YTHDC2to be an endogenous ferroptosis inducer inlung adenocarcinoma[J]. Free Radic Biol Med,2021, 168: 25-43.
[50] Zhu JJ, Berisa M, Schw?rer S, et al. Transsulfurationactivity can support cell growth upon extracellularcysteine limitation[J]. Cell Metab, 2019, 30(5):865-876.e5.
[51] Deneke SM, Fanburg BL. Regulation of cellular glutathione[J]. Am J Physiol, 1989, 257(4 Pt 1): L163-L173.
[52] Yang WS, Stockwell BR. Ferroptosis: death by lipidperoxidation[J]. Trends Cell Biol, 2016, 26(3): 165-176.
[53] Yagoda N, von Rechenberg M, Zaganjor E, et al.RAS-RAF-MEK-dependent oxidative cell death involvingvoltage-dependent anion channels[J]. Nature,2007, 447(7146): 864-868.
[54] Suarez-Almazor ME, Belseck E, Shea B, et al. Sulfasalazinefor rheumatoid arthritis[J]. Cochrane DatabaseSyst Rev, 2000, 1998(2): CD000958.
[55] Yuk H, Abdullah M, Kim DH, et al. Necrostatin-1prevents ferroptosis in a RIPK1- and IDO-independentmanner in hepatocellular carcinoma[J]. Antioxidants(Basel), 2021, 10(9): 1347.
[56] Ju HQ, Lin JF, Tian T, et al. NADPH homeostasis incancer: functions, mechanisms and therapeutic implications[J]. Signal Transduct Target Ther, 2020, 5(1): 231.
[57] Ying MF, You D, Zhu XB, et al. Lactate and glutaminesupport NADPH generation in cancer cells underglucose deprived conditions[J]. Redox Biol,2021, 46: 102065.
[58] Liu XG, Olszewski K, Zhang YL, et al. Cystinetransporter regulation of pentose phosphate pathwaydependency and disulfide stress exposes a targetablemetabolic vulnerability in cancer[J]. Nat Cell Biol,2020, 22(4): 476-486.
[59] Liu XG, Nie LT, Zhang YL, et al. Actin cytoskeletonvulnerability to disulfide stress mediates disulfidptosis[J]. Nat Cell Biol, 2023, 25(3): 404-414.
[60] Richtsmeier WJ, Dauchy R, Sauer LA. In vivo nutrientuptake by head and neck cancers[J]. CancerRes, 1987, 47(19): 5230-5233.
[61] Kodama M, Oshikawa K, Shimizu H, et al. A shiftin glutamine nitrogen metabolism contributes to themalignant progression of cancer[J]. Nat Commun,2020, 11(1): 1320.
[62] Ji XM, Qian J, Rahman SMJ, et al. xCT (SLC7A11)-mediated metabolic reprogramming promotes nonsmallcell lung cancer progression[J]. Oncogene,2018, 37(36): 5007-5019.
[63] Romero R, Sayin VI, Davidson SM, et al. Keap1loss promotes Kras-driven lung cancer and results independence on glutaminolysis[J]. Nat Med, 2017, 23(11): 1362-1368.
[64] Okazaki S, Umene K, Yamasaki J, et al. Glutaminolysis-related genes determine sensitivity to xCT-targetedtherapy in head and neck squamous cell carcinoma[J]. Cancer Sci, 2019, 110(11): 3453-3463.
[65] Muir A, Danai LV, Gui DY, et al. Environmentalcystine drives glutamine anaplerosis and sensitizescancer cells to glutaminase inhibition[J]. Elife,2017, 6: e27713.
[66] Ganapathy-Kanniappan S, Geschwind JF. Tumorglycolysis as a target for cancer therapy: progressand prospects[J]. Mol Cancer, 2013, 12: 152.
[67] Wang HZ, Nicolay BN, Chick JM, et al. The metabolicfunction of cyclin D3-CDK6 kinase in cancercell survival[J]. Nature, 2017, 546(7658): 426-430.
[68] Koppula P, Zhang YL, Zhuang L, et al. Amino acidtransporter SLC7A11/xCT at the crossroads of regulatingredox homeostasis and nutrient dependencyof cancer[J]. Cancer Commun (Lond), 2018, 38(1): 12.
[69] Koppula P, Zhuang L, Gan BY. Cystine transporterSLC7A11/xCT in cancer: ferroptosis, nutrient dependency,and cancer therapy[J]. Protein Cell, 2021,12(8): 599-620.
[70] Lee Y, Itahana Y, Ong CC, et al. Redox-dependentAMPK inactivation disrupts metabolic adaptation toglucose starvation in xCT-overexpressing cancercells[J]. J Cell Sci, 2022, 135(15): jcs259090.
[71] Goji T, Takahara K, Negishi M, et al. Cystine uptakethrough the cystine/glutamate antiporter xCTtriggers glioblastoma cell death under glucose deprivation[J]. J Biol Chem, 2017, 292(48): 19721-19732.
[72] Hsieh CH, Lin YJ, Chen WL, et al. HIF-1α triggerslong-lasting glutamate excitotoxicity via system xc-in cerebral ischaemia-reperfusion[J]. J Pathol, 2017,241(3): 337-349.
[73] Wang M, Li B, Meng W, et al. System Xc- exacerbatesmetabolic stress under glucose depletion inoral squamous cell carcinoma[J]. Oral Dis, 2023.doi: 10.1111/odi.14774.
[74] Murphy TA, Dang CV, Young JD. Isotopically nonstationary13C flux analysis of Myc-induced metabolicreprogramming in B-cells[J]. Metab Eng, 2013,15: 206-217.
[75] Jiang QK, Lu SR, Xu XL, et al. Inhibition of alanine-serine-cysteine transporter 2-mediated auto-enhancedphotodynamic cancer therapy of co-nanoassemblybetween V-9302 and photosensitizer[J]. JColloid Interface Sci, 2023, 629(Pt B): 773-784.
[76] Elgogary A, Xu QG, Poore B, et al. Combinationtherapy with BPTES nanoparticles and metformintargets the metabolic heterogeneity of pancreaticcancer[J]. Proc Natl Acad Sci U S A, 2016, 113(36):E5328-E5336.
[77] Xu YY, Yu ZG, Fu H, et al. Dual inhibitions on glucose/glutamine metabolisms for nontoxic pancreaticcancer therapy[J]. ACS Appl Mater Interfaces,2022, 14(19): 21836-21847.
[78] Zhang M, Liu QY, Zhang MX, et al. Enhanced antitumoreffects of follicle-stimulating hormone receptor-mediated hexokinase-2 depletion on ovarian cancermediated by a shift in glucose metabolism[J]. JNanobiotechnology, 2020, 18(1): 161.
[79] Xu CJ, Yang HL, Xiao ZH, et al. Reduction-responsivedehydroepiandrosterone prodrug nanoparticlesloaded with camptothecin for cancer therapy by enhancingoxidation therapy and cell replication inhibition[J]. Int J Pharm, 2021, 603: 120671.
[80] Abolhasani A, Biria D, Abolhasani H, et al. Investigationof the role of glucose decorated chitosan andPLGA nanoparticles as blocking agents to glucosetransporters of tumor cells[J]. Int J Nanomedicine,2019, 14: 9535-9546.
[81] Fu LH, Qi C, Lin J, et al. Catalytic chemistry of glucoseoxidase in cancer diagnosis and treatment[J].Chem Soc Rev, 2018, 47(17): 6454-6472.
[82] Fu LH, Hu YR, Qi C, et al. Biodegradable manganese-doped calcium phosphate nanotheranostics fortraceable cascade reaction-enhanced anti-tumor therapy[J]. ACS Nano, 2019, 13(12): 13985-13994.
[83] Li R, Ng TSC, Wang SJ, et al. Therapeutically reprogrammednutrient signalling enhances nanoparticulatealbumin bound drug uptake and efficacy inKRAS-mutant cancer[J]. Nat Nanotechnol, 2021, 16(7): 830-839.
[84] Wu ZR, Lim HK, Tan SJ, et al. Potent-by-design:amino acids mimicking porous nanotherapeuticswith intrinsic anticancer targeting properties[J].Small, 2020, 16(34): e2003757.
( 本文編輯 吳愛華 )
[基金項(xiàng)目] 國家自然科學(xué)基金(81972538,82141130)