亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        一類帶非齊次記憶項(xiàng)拋物方程解的整體存在性和爆破

        2024-10-31 00:00:00王政慧祝雪楊晗

        摘要:該文研究一類帶非齊次記憶項(xiàng)拋物方程的柯西問題,討論非線性項(xiàng)和非齊次項(xiàng)對整體解存在性的影響。當(dāng)非線性項(xiàng)指數(shù)增長高于某一值時(shí),利用壓縮映射原理,證明了整體解的存在唯一性;當(dāng)非線性項(xiàng)指數(shù)增長低于某一值時(shí),利用測試函數(shù)法,證明了解在有限時(shí)刻爆破。

        關(guān)鍵詞:柯西問題;壓縮映射原理;測試函數(shù)法;整體解;爆破

        中圖分類號:O175.29 文獻(xiàn)標(biāo)志碼:A 文章編號:0253-2395(2024)05-0901-11

        0 引言

        本文研究如下非線性熱傳導(dǎo)方程的柯西問題

        其中γ∈(0,1), pgt;1, α∈R, a( t )為( 0,∞ )→[ 0,∞ )連續(xù)且局部可積的函數(shù),w( x ) 為RN → R 連續(xù)且全局可積的函數(shù)。上述模型可以用于表示生物物種理論以及諸多物理現(xiàn)象[1-5],如生物物種的種群密度、流體的擴(kuò)散濃度、熱傳導(dǎo)現(xiàn)象等。u (t,x) 表示化學(xué)反應(yīng)過程中的質(zhì)量密度或熱傳導(dǎo)過程中的溫度,記憶項(xiàng)∫0t (t - s)-γ| u (s) |p ds 可以描述過去一段時(shí)間內(nèi)的物理現(xiàn)象及反應(yīng)狀態(tài),具有一定的“記憶”效應(yīng)。注意到記憶項(xiàng)具有如下性質(zhì)

        參考文獻(xiàn):

        [1] HU B. Blow-up Theories for Semilinear Parabolic Equations[M]. Heidelberg: Springer, 2011.

        [2] GALAKTIONOV V A, VáZQUEZ J L. The Problem ofBlow-up in Nonlinear Parabolic Equations[J]. DiscreteContinuous Dyn Syst A, 2002, 8(2): 399-433. DOI: 10.3934/dcds.2002.8.399.

        [3] QUITTNER P, SOUPLET P. Superlinear Parabolic Problems[M]. Birkh?user Basel: Springer Verlag, 2007. DOI:10.1007/978-3-7643-8442-5.

        [4] MARTYNENKO A V, TEDEEV A F. Cauchy Problem fora Quasilinear Parabolic Equation with a Source Term andan Inhomogeneous Density[J]. Comput Math and MathPhys, 2007, 47(2): 238-248. DOI: 10.1134/S096554250702008X.

        [5] MARTYNENKO A V, TEDEEV A F. On the Behavior ofSolutions to the Cauchy Problem for a Degenerate ParabolicEquation with Inhomogeneous Density and a Source[J].Comput Math and Math Phys, 2008, 48(7): 1145-1160.DOI: 10.1134/S0965542508070087.

        [6] 閆瑞, 王靜玉. 具有時(shí)空時(shí)滯的反應(yīng)擴(kuò)散方程行波解的穩(wěn)定性[J]. 山西大學(xué)學(xué)報(bào)(自然科學(xué)版), 2019, 42(3): 13-28.DOI: 10.13451/j.cnki.shanxi.univ(nat.sci.).2018.12.29.001.

        YAN R, WANG J Y. Stability of Traveling Waves for aReaction-diffusion Equation with Spatio-temporal Delays[J]. J Shanxi Univ Nat Sci Ed, 2019, 42(3): 13-28. DOI:10.13451/j.cnki.shanxi.univ(nat.sci.).2018.12.29.001.

        [7] SLIMENE B B, TAYACHI S, WEISSLER F B. Wellposedness,Global Existence and Large Time Behavior forHardy-Hénon Parabolic Equations[J]. Nonlinear Anal,2017, 152: 116-148. DOI: 10.1016/j.na.2016.12.008.

        [8] PHAN Q H. Singularity and Blow-up Estimates viaLiouville-type Theorems for Hardy-Hénon ParabolicEquations[J]. J Evol Equ, 2013, 13(2): 411-442. DOI:10.1007/s00028-013-0185-3.

        [9] PINSKY R G. Existence and Nonexistence of Global Solutionsfor ut = Δu+a(x)up in Rd [J]. J Differ Equ, 1997, 133(1): 152-177. DOI: 10.1006/jdeq.1996.3196.

        [10] CAZENAVE T, DICKSTEIN F, WEISSLER F B. AnEquation Whose Fujita Critical Exponent is not Given byScaling[J]. Nonlinear Anal, 2008, 68(4): 862-874. DOI:10.1016/j.na.2006.11.042.

        [11] FUJITA H. On the Blowing up of Solutions of the CauchyProblem for ut - Δu = u1 + α[J]. J Fac Sci Univ Tokyo,1966, 13(2): 109-124. DOI: 10.15083/00039873.

        [12] KOBAYASHI K, SIRAO T, TANAKA H. On the Growingup Problem for Semilinear Heat Equations[J]. JMath Soc Japan, 1977, 29(3): 407-424. DOI: 10.2969/jmsj/02930407.

        [13] HAYAKAWA K. On Nonexistence of Global Solutions ofsome Semilinear Parabolic Differential Equations[J]. ProcJapan Acad Ser A Math Sci, 1973, 49(7): 503-505. DOI:10.3792/pja/1195519254.

        [14] JLELI M, KAWAKAMI T, SAMET B. Critical Behaviorfor a Semilinear Parabolic Equation with Forcing Term Dependingon Time and Space[J]. J Math Anal Appl, 2020,486(2): 123931. DOI: 10.1016/j.jmaa.2020.123931.

        [15] MAJDOUB M. Well-posedness and Blow-up for an InhomogeneousSemilinear Parabolic Equation[J]. Differ EquAppl, 2021(1): 85-100. DOI: 10.7153/dea-2021-13-06.

        [16] ALSHEHRI A, ALJABER N, ALTAMIMI H, et al. Nonexistenceof Global Solutions for a Nonlinear ParabolicEquation with a Forcing Term[J]. Opuscula Math, 2023, 43(6): 741-758. DOI: 10.7494/opmath.2023.43.6.741.

        [17] SUN, F Q, SHI P H. Global Existence and Non-existencefor a Higher-order Parabolic Equation with Time-fractionalTerm[J]. Nonlinear Anal Theory Methods Appl, 2012, 75(10): 4145-4155. DOI: 10.1016/j.na.2012.03.005.

        [18] CHEN W H, FINO A Z. A Competition on Blow-up forSemilinear Wave Equations with Scale-invariant Dampingand Nonlinear Memory Term[J]. Discrete Cont Dyn-S,2023, 16(6): 1264-1285. DOI: 10.3934/dcdss.2022169.

        基金項(xiàng)目:國家自然科學(xué)基金(11701477;11971394)

        久久久久久久亚洲av无码| 美女极度色诱视频国产免费| 国产精品亚洲精品日韩动图| 亚洲国产精品亚洲高清| 亚洲素人av在线观看| 亚洲香蕉av一区二区三区| 九九久久99综合一区二区| 国产成人一区二区三区影院动漫 | 男女上床视频免费网站| 亚洲毛片免费观看视频| 午夜性色一区二区三区不卡视频 | 精品国产三级a∨在线| 污污内射在线观看一区二区少妇| 国产久视频国内精品999| 亚洲成av人片在线天堂无| 国产在线观看黄片视频免费| 成年av动漫网站18禁| 国产熟人av一二三区| 暖暖免费 高清 日本社区在线观看| 中文字幕亚洲综合久久| 中文字幕一区二区在线看| 亚洲中文字幕久久精品色老板| 精品国产av一区二区三区| 少妇的丰满3中文字幕| 加勒比亚洲视频在线播放| 国产日本精品一二三四区| 精品国品一二三产品区别在线观看 | 国产av精国产传媒| 国产视频在线一区二区三区四区| 亚洲传媒av一区二区三区| 手机av在线中文字幕| 99久久久无码国产精品秋霞网| 亚洲日韩乱码中文无码蜜桃臀 | 国产成人国产三级国产精品| 久久久精品中文字幕麻豆发布| 97se亚洲精品一区| 亚洲人成影院在线高清| 国产色av一区二区三区| 亚洲精品久久区二区三区蜜桃臀| 色婷婷七月| 国产高清一级毛片在线看|