亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        花崗巖石粉蒸壓加氣混凝土的制備及性能

        2024-09-28 00:00:00劉鳳利羅娜謝煌王文慧王亞光水哲韜
        中國(guó)粉體技術(shù) 2024年4期
        關(guān)鍵詞:力學(xué)性能

        摘要:【目的】實(shí)現(xiàn)以大摻量(質(zhì)量分?jǐn)?shù),下同)低品位硅質(zhì)固廢制備蒸壓加氣混凝土(autoclaved aerated concrete,AAC)。【方法】研究不同摻量花崗巖石粉對(duì)AAC料漿發(fā)氣、抗壓強(qiáng)度和干密度等的影響,確定優(yōu)化摻量配比;通過(guò)X射線衍射(X-ray diffractometer,XRD)、傅里葉轉(zhuǎn)換紅外光譜(fourier transform infrared spectrometer,F(xiàn)TIR)、場(chǎng)發(fā)射掃描電鏡(scan-ning electron microscope,SEM)等表征手段對(duì)AAC微觀性能進(jìn)行分析?!窘Y(jié)果】花崗巖石粉摻量為60%時(shí),AAC抗壓強(qiáng)度為3.02 MPa,干密度為523 kg/m3,性能較優(yōu);主要礦物成分為托貝莫來(lái)石、水化硅酸鈣和殘留的石英等;托貝莫來(lái)石、水化硅酸鈣等水化產(chǎn)物與未反應(yīng)的石英相互交織形成堅(jiān)固的網(wǎng)狀結(jié)構(gòu),使AAC致密并具有強(qiáng)度?!窘Y(jié)論】花崗巖石粉主要含低活性SiO?,屬于低品位硅質(zhì)固廢,以花崗巖石粉60%替代黃河特細(xì)砂制備AAC,物理力學(xué)性能可滿足GB11968—2020中混凝土砌塊抗壓強(qiáng)度A3.5、B05級(jí)的性能要求。

        關(guān)鍵詞:花崗巖石粉;蒸壓加氣混凝土;力學(xué)性能;微觀結(jié)構(gòu)

        中圖分類號(hào):TB4;TU528.2文獻(xiàn)標(biāo)志碼:A

        引用格式:

        劉鳳利,羅娜,謝煌,等.花崗巖石粉蒸壓加氣混凝土的制備及性能[J].中國(guó)粉體技術(shù),2024,30(4):15-25.LIU Fengli,LUONa,XIEHuang,etal.Preparation and properties of granite powder autoclaved aerated concrete [J].ChinaPowder Science and Technology,2024,30(4):15-25.

        蒸壓加氣混凝土(autoclaved aerated concrete,AAC)通常是以水泥和石灰為鈣質(zhì)材料,天然砂或粉煤灰為硅質(zhì)材料,鋁粉為發(fā)氣劑制備而成的一種具有多孔結(jié)構(gòu)的硅酸鹽制品,具有質(zhì)輕、保溫、防火、隔音、防震等特點(diǎn),廣泛應(yīng)用于各類建筑的隔墻、樓板或屋面板中[1-2]。在AAC生產(chǎn)中常以SiO?含量較高的天然砂或粉煤灰作為硅質(zhì)原料,而且硅質(zhì)原料在鈣硅質(zhì)原料中占比超過(guò)60%。隨著我國(guó)經(jīng)濟(jì)的高速發(fā)展,資源被過(guò)度開(kāi)采和消耗,天然砂逐步限采,粉煤灰成本也逐年提高,尋找新的硅質(zhì)原料迫在眉睫[3]。同時(shí),我國(guó)固體廢棄物儲(chǔ)量巨大,破壞生態(tài)環(huán)境,存在利用困難等問(wèn)題,固廢資源化利用已成為研究熱點(diǎn)[4-5]。國(guó)內(nèi)外大量學(xué)者開(kāi)展了利用固體廢棄物制備AAC的相關(guān)研究[6-8]。Chen等9采用鋼渣粉替代部分生石灰和石英砂制備AAC,制品抗壓強(qiáng)度符合混凝土砌塊抗壓強(qiáng)度A 6.0級(jí)要求,但是蒸壓養(yǎng)護(hù)后體積膨脹,易產(chǎn)生裂紋;Song等10利用赤泥部分替代粉煤灰制備AAC,結(jié)果表明,赤泥對(duì)AAC性能有負(fù)面影響,最佳摻量(質(zhì)量分?jǐn)?shù),下同)為22.5%,此時(shí)可通過(guò)添加外加劑調(diào)整抗壓強(qiáng)度達(dá)到A 3.5、B06級(jí)的要求。Gencel等1研究了稻殼灰和大理石粉分別替代水泥和砂對(duì)免蒸壓加氣混凝土性能的影響,抗壓強(qiáng)度最高為13.39 MPa,干密度為2038.7 kg/m3?,F(xiàn)有文獻(xiàn)研究結(jié)果表明,固體廢棄物的種類繁多,成分復(fù)雜,特點(diǎn)不一,對(duì)AAC性能影響機(jī)制并不明晰。

        花崗巖石粉是花崗巖切割加工以及生產(chǎn)機(jī)制砂時(shí)產(chǎn)生的粉末狀廢棄物,容易被人體和動(dòng)物吸入,嚴(yán)重污染環(huán)境?;◢弾r石粉的主要礦物成分為石英,理論上可以作為硅質(zhì)原料的替代材料,提高固廢資源的綜合利用水平。Zafar等14利用花崗巖石粉部分替代AAC中的砂,花崗巖石粉的添加可以有效改善制品力學(xué)性能,并提高制品抗酸腐蝕性,當(dāng)摻量為20%時(shí),制品抗壓強(qiáng)度值達(dá)到最大;任衛(wèi)崗等15采用花崗巖石粉部分取代了高韌性水泥基復(fù)合材料中的磨細(xì)砂,當(dāng)摻量為25%時(shí),制品的力學(xué)性能最佳;楊冬升等采用花崗巖石粉代替陳積粉煤灰,并利用SPSS軟件分析各影響因素對(duì)AAC性能的影響,確定了最優(yōu)配比,花崗巖石粉的摻量可占膠凝材料的20%。然而,目前普遍存在花崗巖石粉利用率偏低,而且大多僅局限于制品配比優(yōu)化以及對(duì)力學(xué)性能等方面的影響,大摻量花崗巖石粉AAC制備及性能微觀機(jī)制研究鮮有報(bào)道。

        本文中利用花崗巖石粉替代黃河特細(xì)砂作為硅質(zhì)原料制備大摻量花崗巖石粉基AAC,研究花崗巖石粉摻量對(duì)AAC料漿發(fā)氣、物理力學(xué)性能和干密度的影響,揭示大摻量花崗巖石粉對(duì)AAC性能影響微觀機(jī)制。以期一舉多得,既解決花崗巖石粉類低品位固廢處置困難、占地、污染等問(wèn)題,同時(shí)為天然砂資源尋求綠色、可持續(xù)替代原料,也為石材加工廢棄物開(kāi)拓再資源化途徑,為大摻量花崗巖石粉制備AAC提供參考。

        1材料與方法

        1.1原材料和儀器設(shè)備

        試劑材料:花崗巖石粉(河南南陽(yáng)),比表面積為328 m2/kg,具體礦物組成、微觀形貌分別如圖1、2所示。由圖可知,花崗巖石粉的主要礦物成分為石英,呈不規(guī)則的棱角狀與片狀;水泥(P·042.5級(jí),河南新鄉(xiāng)天瑞水泥有限公司);石灰(鞏義市元亨凈水材料廠);黃河特細(xì)砂(SiO?質(zhì)量分?jǐn)?shù)為90.21%,比表面積為342 m2/kg,河南開(kāi)封);鋁粉膏(活性鋁質(zhì)量分?jǐn)?shù)≥90%,河南開(kāi)封加氣混凝土廠);脫硫石膏(平均粒徑為45 μm,主要物相組成為CaSO?·2H?O,河南開(kāi)封電廠);穩(wěn)泡劑由油酸、三乙醇胺和水按質(zhì)量比為1:3:7配制而成;水(實(shí)驗(yàn)室自來(lái)水)。原材料化學(xué)成分的質(zhì)量分?jǐn)?shù)如表1所示。

        儀器設(shè)備:D8 ADVANCE型X射線衍射儀(X-ray diffractometer,XRD,德國(guó)Bruker公司);Carl Zeiss場(chǎng)發(fā)射掃描電子顯微鏡(scanning electron microscope,SEM,德國(guó)蔡司公司);INVENIOS型傅立葉紅外光譜儀(Fourier transform infrared spectrometer,F(xiàn)TIR,德國(guó)Bruker公司)。

        1.2 AAC的制備

        以花崗巖石粉替代黃河特細(xì)砂制備AAC,探究摻量對(duì)制品性能與微觀結(jié)構(gòu)的影響,不同花崗巖石粉摻量制品實(shí)驗(yàn)配比如表2所示。其中GP-0為基準(zhǔn)組制品,GP-20、GP-40、GP-60、GP-80、GP-100制品分別摻入占黃河特細(xì)砂質(zhì)量分?jǐn)?shù)為20%、40%、60%、80%、100%的花崗巖石粉。水料質(zhì)量比為0.6。鋁粉膏和穩(wěn)泡劑按表2取粉體總質(zhì)量的百分比外摻。

        分別稱量花崗巖石粉、水泥、生石灰、黃河特細(xì)砂和石膏,并倒入攪拌鍋中混合均勻;分別稱取鋁粉膏、穩(wěn)泡劑和拌合水;將穩(wěn)泡劑溶于體積分?jǐn)?shù)70%的拌合水,后與干粉混合均勻,將鋁粉膏與剩余體積分?jǐn)?shù)30%的水充分混勻后,倒入混合料漿中快速攪拌120s;將攪拌好的料漿澆注至模具高度的70%左右,放入溫度為60℃的烘箱中進(jìn)行靜停發(fā)氣,養(yǎng)護(hù)3h后脫模;然后將坯體放入壓蒸釜中,養(yǎng)護(hù)溫度為195 ℃,升壓時(shí)間2 h,恒溫時(shí)間8h,自然降溫后獲得AAC制品。

        1.3測(cè)試方法

        AAC料漿流動(dòng)性參照《混凝土外加劑勻質(zhì)性試驗(yàn)方法》(GB/T 8077—2012)規(guī)定方法進(jìn)行;將料漿倒入容積為250 mL的量筒中,初始注滿100 mL刻度線,每5min記錄1次料漿體積值,直至體積不再增加;制品抗壓強(qiáng)度與干密度參照《蒸壓加氣混凝土性能測(cè)試方法》(GB/T 11969—2020)進(jìn)行,每組測(cè)試3次,取平均值作為實(shí)驗(yàn)結(jié)果。

        將制品養(yǎng)護(hù)28 d后破碎,從中心部位取樣,利用無(wú)水乙醇終止水化,放入溫度為60℃烘箱中烘干至恒重備用。采用SEM對(duì)花崗巖石粉與AAC制品進(jìn)行微觀形貌分析,將烘干的制品研磨至粒徑為75 μm以下,采用XRD進(jìn)行物相分析,采用FTIR進(jìn)行制品水化產(chǎn)物分析。

        2結(jié)果與討論

        2.1花崗巖石粉摻量對(duì)料漿性能的影響

        2.1.1流動(dòng)度

        花崗巖石粉摻量對(duì)料漿流動(dòng)度的影響如圖3所示。由圖可知,隨著花崗巖石粉摻量的增加,料漿流動(dòng)度呈下降趨勢(shì)。摻量從0增大到100%,料漿流動(dòng)度從245 mm下降至205 mm。與黃河特細(xì)砂相比,花崗巖石粉對(duì)料漿流動(dòng)度有負(fù)面影響,這主要是由于花崗巖石粉的粒型大多為不規(guī)則的棱角狀與片狀,表面粗糙含孔,而黃河特細(xì)砂多為圓球型顆粒且表面光滑致密[17-18]?;◢弾r石粉不規(guī)則的粒形和粗糙的表面增大了顆粒間的運(yùn)動(dòng)阻力和摩擦力,隨著花崗巖石粉摻量的增加,水料比固定時(shí),料漿塑性黏度增大,表現(xiàn)為流動(dòng)度下降。同時(shí),黏度增大有利于提高料漿內(nèi)液膜強(qiáng)度,使大氣泡不容易破裂,表現(xiàn)為制品硬化后有害大孔占比增大,進(jìn)而影響制品抗壓強(qiáng)度和干密度等指標(biāo)。

        2.1.2發(fā)氣速率與發(fā)氣量

        原料在攪拌、澆注過(guò)程中已開(kāi)始發(fā)生反應(yīng)。首先水泥水化,生石灰與水反應(yīng)均生成氫氧化鈣,使料漿堿性增強(qiáng)。鋁粉膏與堿性溶液反應(yīng)生成氫氣,料漿逐漸發(fā)氣膨脹,具體發(fā)氣反應(yīng)19如式(1)所示

        隨著發(fā)氣反應(yīng)持續(xù)進(jìn)行,氣泡內(nèi)壓力逐漸增大,料漿不斷膨脹,直至發(fā)氣充分完成。固化后制品內(nèi)部形成細(xì)小、均勻的孔洞,使AAC具有多孔結(jié)構(gòu)。料漿發(fā)氣效果直接影響漿體流變性和硬化體孔結(jié)構(gòu),發(fā)氣速率與稠化速度的協(xié)同性是影響AAC性能的關(guān)鍵因素[20-21]。

        花崗巖石粉摻量對(duì)料漿發(fā)氣量的影響如圖4所示。由圖可知,花崗巖石粉的摻入對(duì)料漿發(fā)氣完成時(shí)間和發(fā)氣趨勢(shì)無(wú)明顯影響,替代與否均在50 min左右發(fā)氣完成。前15 min內(nèi)料漿發(fā)氣反應(yīng)迅速,隨后所有制品發(fā)氣速率趨于平緩并逐漸停止。隨著花崗巖石粉摻量逐漸增加,料漿發(fā)氣量逐漸減少,但是減少率較小。摻量由20%增大至100%時(shí),5 min時(shí)料漿發(fā)氣體積由112 mL減少至108 mL,總發(fā)氣生成體積由230 mL減少至223 mL。原因在于摻入花崗巖石粉僅通過(guò)改變料漿黏度影響氣泡的生成和穩(wěn)定性,而料漿的發(fā)氣效果主要取決于鈣質(zhì)材料與引氣劑,受硅質(zhì)材料影響較小[22]。

        2.2花崗巖石粉摻量對(duì)AAC干密度和抗壓強(qiáng)度的影響

        抗壓強(qiáng)度和干密度是AAC的2個(gè)重要指標(biāo)。此外,AAC在滿足輕質(zhì)、保溫等功能的同時(shí),還需要滿足一定的強(qiáng)度要求。比強(qiáng)度是指材料抗壓強(qiáng)度與表觀密度的比值,是表征材料輕質(zhì)、高強(qiáng)的重要指標(biāo)。對(duì)AAC而言,比強(qiáng)度越高,AAC綜合性能越好。以抗壓強(qiáng)度與干(表觀)密度計(jì)算得到AAC的比強(qiáng)度?;◢弾r石粉摻量對(duì)制品物理力學(xué)性能的影響如圖5所示。

        由圖可知,未摻花崗巖石粉時(shí),AAC制品抗壓強(qiáng)度為3.22 MPa,干密度為520 kg/m3。隨著花崗巖石粉摻量的增加,AAC制品的干密度在520~523 kg/m3之間呈現(xiàn)波動(dòng)性變化,總體變化很小,均符合GB/T 11968—2020《蒸壓加氣混凝土砌塊》B05級(jí)別。隨著花崗巖石粉摻量的增加,制品抗壓強(qiáng)度呈下降趨勢(shì)。摻量從0增加到20%、40%、60%、80%、100%,制品抗壓強(qiáng)度分別降低了2.2%、4.0%、6.2%17.1%、19.9%。摻量從60%增加到80%,強(qiáng)度下降幅度急劇增加。隨著花崗巖石粉摻量的增加,制品比強(qiáng)度亦呈減少趨勢(shì)?;◢弾r石粉摻量在60%以內(nèi),制品比強(qiáng)度下降較緩慢,摻量超過(guò)60%后,制品比強(qiáng)度顯著減少。

        抗壓強(qiáng)度主要取決于水化產(chǎn)物的種類與數(shù)量,以及孔隙率和孔結(jié)構(gòu)。摻入花崗巖石粉使制品抗壓強(qiáng)度下降的原因如下:AAC在靜停養(yǎng)護(hù)階段的早期強(qiáng)度主要是由水泥、生石灰等水化生成的水化硅酸鈣凝膠和少量的水化鋁酸鹽提供。而在蒸壓養(yǎng)護(hù)階段,隨著溫度與壓強(qiáng)的升高,SiO?的溶解度變大,與水化硅酸鈣凝膠反應(yīng)生成托貝莫來(lái)石23?;◢弾r石粉中SiO?含量低于黃河特細(xì)砂,經(jīng)過(guò)水熱反應(yīng)后,由于SiO?含量的降低,決定水化產(chǎn)物強(qiáng)度的托貝莫來(lái)石生成量減少,宏觀上表現(xiàn)為制品抗壓強(qiáng)度的下降。同時(shí),由于花崗巖石粉的加入降低了料漿的流動(dòng)度,影響了料漿的發(fā)氣過(guò)程,造成大孔體積的增加,孔隙趨向于扁平并降低了孔壁的厚度,從而削弱了AAC抵抗荷載的能力。此外,當(dāng)花崗巖石粉摻量較高時(shí),顆粒之間團(tuán)聚傾向增加,導(dǎo)致制品內(nèi)部孔隙缺陷等的增加,綜合表現(xiàn)為花崗巖石粉摻量增加,制品抗壓強(qiáng)度下降。摻量小于60%時(shí),抗壓強(qiáng)度降低率僅為6.2%,影響較小。

        此外,AAC的許多性能如抗折強(qiáng)度、導(dǎo)熱性等都與其抗壓強(qiáng)度和干密度密切相關(guān),抗折強(qiáng)度是內(nèi)在韌性的外在表現(xiàn),與抗壓強(qiáng)度之間存在一定的線性關(guān)系,抗壓強(qiáng)度降低,抗折強(qiáng)度也隨之降低。一般來(lái)說(shuō),導(dǎo)熱系數(shù)很大程度上取決于干密度與孔隙結(jié)構(gòu),隨著干密度的減小而減小。由實(shí)驗(yàn)結(jié)果可知,隨著花崗巖石粉摻量的增加,AAC干密度總體變化很小,抗壓強(qiáng)度逐漸降低??梢灶A(yù)見(jiàn),隨著花崗巖石粉摻量的增加,AAC抗折強(qiáng)度逐漸降低,對(duì)導(dǎo)熱系數(shù)影響較小,因此,考慮經(jīng)濟(jì)性并兼顧制品綜合性能,花崗巖石粉摻量取60%。

        2.3微觀分析

        2.3.1 XRD

        基于上述實(shí)驗(yàn)結(jié)果,花崗巖石粉最優(yōu)摻量確定為60%。取對(duì)照組GP-0與GP-60分別進(jìn)行水化產(chǎn)物物相分析,GP-0與GP-60的XRD物相分析圖如圖6所示。由圖可知,AAC制品中水化產(chǎn)物均主要為石英、托貝莫來(lái)石、水化硅酸鈣凝膠、少量的水石榴子石與方解石。托貝莫來(lái)石是由氫氧化鈣與石英通過(guò)水熱合成反應(yīng)生成的一種晶體完整的單堿型水化硅酸鈣25。晶體呈薄板狀,晶粒度小于2 μm時(shí),具有良好的力學(xué)性能,制品的強(qiáng)度較高,是AAC中最重要的水化產(chǎn)物,結(jié)晶度對(duì)AAC各性能均有顯著影響。水化硅酸鈣凝膠主要起膠凝作用,未反應(yīng)的石英作為骨料存在,并與托貝莫來(lái)石和水化硅酸鈣凝膠相互交錯(cuò)形成網(wǎng)狀結(jié)構(gòu),使制品致密并具有強(qiáng)度。隨著蒸壓過(guò)程的繼續(xù),體系中的Al3+與水化硅酸鈣反應(yīng)生成水石榴石子。此外,還觀察到少量方解石,表明原料中存在未參與反應(yīng)的礦物成分。

        相比而言,GP-0組制品的石英特征峰明顯強(qiáng)于GP-60組,表明隨著花崗巖石粉摻量的增加,結(jié)晶良好的晶態(tài)SiO?的含量降低。硅質(zhì)材料中的SiO?以石英或其他礦物形式存在。GP-0組中石英特征峰的強(qiáng)度較高,表明存在部分硅質(zhì)材料未參與水化反應(yīng),在固相中起到骨架作用,表現(xiàn)在空白組制品抗壓強(qiáng)度更高。托貝莫來(lái)石的特征峰強(qiáng)度也隨著花崗巖石粉摻量的增加而降低,說(shuō)明托貝莫來(lái)石晶體含量也隨之減少。原因在于本實(shí)驗(yàn)中花崗巖石粉中SiO?質(zhì)量分?jǐn)?shù)為67.91%,而黃河特細(xì)砂SiO?質(zhì)量分?jǐn)?shù)為90.21%,花崗巖石粉摻量越高,有效SiO?含量越低,蒸壓養(yǎng)護(hù)階段可通過(guò)水熱反應(yīng)生成托貝莫來(lái)石的硅質(zhì)原料減少,宏觀上表現(xiàn)為制品物理力學(xué)性能降低。

        2.3.2 FTIR

        GP-0與GP-60水化產(chǎn)物紅外光譜分析如圖7所示。由圖可知,2組試樣所含基團(tuán)或鍵基本相同。波數(shù)為667、1459、3445 cm1處的吸收峰分別為石英族中Si—0—Si的振動(dòng)伸縮、0—C—O的伸縮振動(dòng)、水化硅酸鈣中—OH的不對(duì)稱伸縮振動(dòng)。波數(shù)為453、734、772、974 cm1處的特征峰是由托貝莫來(lái)石晶體內(nèi)部硅氧四面體中的Si—O非對(duì)稱振動(dòng)引起的。其中波數(shù)為1459 cm1處0—C—O的伸縮振動(dòng)峰歸屬于原料中殘余方解石中CO?-的特征峰,也可能是在靜停養(yǎng)護(hù)階段樣品中的Ca(OH)?和水化硅酸鈣凝膠與空氣中的CO?發(fā)生碳化反應(yīng)生成了碳酸鈣,與XRD圖中存在方解石的測(cè)試結(jié)果一致。波數(shù)為1638 cm1處的特征峰是由H?O的彎曲振動(dòng)引起的,可能是由水化產(chǎn)物中難以完全去除的層間水引起的。紅外吸收峰的相對(duì)強(qiáng)度是各種基團(tuán)含量的一個(gè)重要指標(biāo),峰值越大基團(tuán)含量越高。與GP-0組相比,GP-60組波數(shù)為974 cm1處托貝莫來(lái)石的特征峰強(qiáng)度變?nèi)?。原因可能在于花崗巖石粉中有效SiO?含量相較于黃河特細(xì)砂的低,導(dǎo)致反應(yīng)生成的托貝莫來(lái)石結(jié)晶度下降,與XRD測(cè)試結(jié)果變化趨勢(shì)一致。

        2.3.3 SEM

        GP-0與GP-60微觀形貌分析如圖8所示。由圖可知,2組樣品均顯示AAC內(nèi)部分布有宏觀孔和微觀孔,其中宏觀孔主要為圓形發(fā)氣孔,孔徑在幾十微米到幾毫米之間,孔洞分布不均,孔壁厚度不一。微觀孔主要位于宏觀孔孔壁上,包括凝膠孔和毛細(xì)孔,孔型不規(guī)則。大量宏、微觀孔隙的存在是制品干密度較小,強(qiáng)度不高,并具有輕質(zhì)、保溫等性能的主要原因。

        對(duì)比圖8(a)、(c)可知,圖8(a)中未摻花崗巖石粉的GP-0組AAC內(nèi)部。宏觀孔多為微米級(jí)小孔,而圖8(c)中GP-60組AAC內(nèi)部,宏觀孔中毫米級(jí)大孔占比增多??紫堵氏嗤瑫r(shí),大孔數(shù)量越多,材料力學(xué)性能越差,與抗壓強(qiáng)度實(shí)驗(yàn)結(jié)果一致。原因在于AAC料漿發(fā)氣過(guò)程中,決定氣泡穩(wěn)定性的關(guān)鍵因素是液膜強(qiáng)度,而液膜強(qiáng)度又與料漿黏度密切相關(guān)?;◢弾r石粉的摻入降低了料漿的流動(dòng)度,使料漿黏度增大,較大的料漿黏度阻礙了大氣泡的破裂,而GP-0組未摻加花崗巖石粉時(shí),料漿黏度相對(duì)較小,液膜強(qiáng)度較低,大氣泡更容易破裂,表現(xiàn)為大孔含量少,力學(xué)性能較好。

        AAC水化產(chǎn)物主要為托貝莫來(lái)石,晶體呈板片狀且排列分布較為規(guī)則,托貝莫來(lái)石表面附著有少量絮凝狀水化硅酸鈣凝膠,未反應(yīng)的石英顆粒交織在托貝莫來(lái)石和水化硅酸鈣凝膠中共同形成致密的網(wǎng)狀結(jié)構(gòu),為制品提供宏觀力學(xué)強(qiáng)度。對(duì)比圖8(b)、(d)可知,與GP-0組相比,以花崗巖石粉替代60%黃河特細(xì)砂時(shí),GP-60組制品內(nèi)部托貝莫來(lái)石晶體形狀由寬板狀轉(zhuǎn)變?yōu)獒樔~狀,體系中有效SiO?含量減少,托貝莫來(lái)石結(jié)晶度變差,而AAC水化產(chǎn)物的結(jié)晶度決定了其水化產(chǎn)物的膠凝性能與強(qiáng)度。同時(shí),由圖8(d)可知,針葉狀托貝莫來(lái)石表面附著的石英數(shù)量增多,在外力作用下容易引起應(yīng)力集中,導(dǎo)致制品孔壁結(jié)構(gòu)破壞,宏觀上表現(xiàn)為抗壓強(qiáng)度降低,與力學(xué)性能實(shí)驗(yàn)結(jié)果一致。

        2.4文獻(xiàn)對(duì)比分析

        將本文中所研究的花崗巖石粉基AAC與已有的相關(guān)文獻(xiàn)進(jìn)行對(duì)比分析,花崗巖石粉AAC相關(guān)文獻(xiàn)對(duì)比分析如表3所示。由表可知,花崗巖石粉在AAC中的利用率普遍偏低,多數(shù)摻量低于20%14,16,26-27。

        趙更歧等(28以花崗巖石粉完全取代粉煤灰作為生產(chǎn)AAC砌塊的硅質(zhì)材料,最優(yōu)摻量可達(dá)72%,但是干密度等級(jí)為B06級(jí),高于本文中的抗壓強(qiáng)度B 05級(jí)。Mishra等采用花崗巖石粉與水泥制備AAC,抗壓強(qiáng)度僅為2.75 MPa,干密度為1217 kg/m3,并且相關(guān)文獻(xiàn)多數(shù)僅局限于制品性能優(yōu)化以及對(duì)力學(xué)性能等宏觀性能的影響研究。本文中利用花崗巖石粉替代黃河特細(xì)砂制備花崗巖石粉基AAC,最優(yōu)摻量可達(dá)60%,不僅研究了花崗巖石粉摻量對(duì)AAC宏觀性能的影響,還通過(guò)XRD、FTIR、SEM等表征手段對(duì)其微觀性能進(jìn)行分析,揭示了大摻量花崗巖石粉對(duì)AAC性能影響微觀機(jī)制,研究結(jié)果為大摻量花崗巖石粉在AAC中的資源化利用提供了參考依據(jù)。

        3結(jié)論

        1)花崗巖石粉摻量增大使料漿流動(dòng)度降低,但是對(duì)坯體形成過(guò)程影響較小。摻量由20%增大至100%,對(duì)料漿發(fā)氣速率和發(fā)氣量無(wú)明顯影響,料漿均在50 min左右完成發(fā)氣,5 min時(shí)料漿發(fā)氣量和發(fā)氣總量?jī)H分別下降了3.57%和3.04%。

        2)隨著花崗巖石粉摻量的增加,制品抗壓強(qiáng)度和比強(qiáng)度呈下降趨勢(shì),而干密度變化很小。摻量小于60%時(shí),制品抗壓強(qiáng)度和比強(qiáng)度均下降較緩慢,摻量超過(guò)60%后,制品抗壓強(qiáng)度和比強(qiáng)度均顯著下降?;◢弾r石粉摻量取60%時(shí),制品的抗壓強(qiáng)度為3.02 MPa,干密度為523 kg/m3,滿足抗壓強(qiáng)度A 3.5、B 05級(jí)制品性能要求,為大摻量低品位硅質(zhì)固廢制備AAC提供參考。

        3)在蒸壓養(yǎng)護(hù)條件下,鈣質(zhì)材料水化形成的Ca(OH)?與硅質(zhì)原料提供的SiO?反應(yīng)生成托貝莫來(lái)石。水化產(chǎn)物的晶簇與未反應(yīng)礦物骨料相互交織,形成良好的網(wǎng)絡(luò)致密結(jié)構(gòu),對(duì)提高制品強(qiáng)度有積極作用。花崗巖石粉SiO?含量低于黃河特細(xì)砂,隨著花崗巖石粉摻量的增加,蒸壓反應(yīng)后制品中托貝莫來(lái)石含量減少、結(jié)晶度下降,是制品抗壓強(qiáng)度降低的主要原因。

        利益沖突聲明(Conflict of Interests)

        所有作者聲明不存在利益沖突。

        All authors disclose no relevant conflict of interests.

        作者貢獻(xiàn)(Author's Contributions)

        劉鳳利、謝煌、王亞光和水哲韜進(jìn)行了方案設(shè)計(jì)與指導(dǎo),劉鳳利和羅娜參與了論文的寫作和修改,羅娜和王文慧對(duì)實(shí)驗(yàn)過(guò)程給予幫助。所有作者均閱讀并同意了最終稿件的提交。

        The study was designed and guidance by LIU Fengli,XIE Huang ,WANG Yaguang and SHUI Zhetao.Themanuscript was written and revised by LIU Fengli and LUO Na.The experiment was helped by LUO Na andWANGWenhui.All authors have read the last version of paper and consented for submission.

        參考文獻(xiàn)(References)

        [1]MICHELINIE,F(xiàn)ERRETTID,MICCOLI L,etal.Autoclaved aerated concrete masonry for energy efficient buildings:stateof the art and future developments[J].Construction and Building Materials,2023,402:132996.

        [2]VOLKR,STEINS JJ,KREFT O,etal.Life cycle assessment of post-demolition autoclaved aerated concrete(AAC)recy-cling options[J].Resources,Conservation and Recycling,2023,188:106716.

        [3]PENGYZ,LIU YJ,ZHAN BH,etal.Preparation of autoclaved aerated concrete by using graphite tailings as an alterna-tive silica source[J].Construction and Building Materials,2021,267:121792.

        [4]SUN DS,HUANG NN,LIUKW,etal.Effect of recycled fine powder on autoclaved aerated concrete:gas-foaming,physic-mechanical property and hydration products[J].Journal of Building Engineering,2023,67:106013.

        [5]ZHAOQx,GAO YS,GUO WC,etal.Whole solid waste inorganic lightweight material:preparation and effects of variousparameters on its properties[J].Construction and Building Materials,2024,411:134104.

        [6]CHENYL,KOMS,CHANGJE,etal.Recycling of desulfurization slag for the production of autoclaved aerated concrete[J].Construction and Building Materials,2018,158:132-140.

        [7]JIANG J,LUXL,NIU T,etal.Performance optimization and hydration characteristics of BOF slag-based autoclaved aeratedconcrete(AAC)[J].Cement and Concrete Composites,2022,134:104734.

        [8]WEIC,LIUXM,ZHANGZQ,etal.Utilization of solid wastes for aerated concrete preparation:mechanical properties andmicrostructural analysis[J].Journal of Building Engineering,2024,82:108235.

        [9]CHEN Y L,CHANG JE,LAI Y C,etal.Recycling of steel slag fines for the production of autoclaved aerated concrete(AAC)[J].CE/Papers,2018,2(4):445-449.

        [10]SONG YF,DONG MH,WANGZG,etal.Effects of red mud on workability and mechanical properties of autoclaved aer-ated concrete(AAC)[J].Journal ofBuilding Engineering,2022,61:105238.

        [11]GENCELO,BENLIA,BAYRAKTAR O Y,etal.Effect of waste marble powder and rice husk ash on the microstructural,physico-mechanical and transport properties of foam concretes exposed to high temperatures and freeze-thaw cycles[J].Con-struction and Building Materials,2021,291:123374.

        [12]JAINKL,SANCHETIG,GUPTALK.Durability performance of waste granite and glass powder added concrete[J].Con-struction and Building Materials,2020,252:119075.

        [13]NAKAYENGAJ,INUI M,GUHARAY A,etal.Effect of limestone and granite stone powder on properties of cement-treated clay composites and their socioeconomic and environmental impacts [J].Construction and Building Materials,2023,393:132064.

        [14]ZAFAR MS,JAVED U,KHUSHNOOD R A,etal.Sustainable incorporation of waste granite dust as partial replacementof sand in autoclave aerated concrete[J].Construction and Building Materials,2020,250:118878.

        [15]任衛(wèi)崗,莊一舟,于麗雪.花崗巖石粉-高韌性水泥基復(fù)合材料的制備與性能[J].科學(xué)技術(shù)與工程,2016,16(17):269-274.

        REN WG,ZHUANGYZ,YULX.Preparation and properties of granite stone powder-high toughness cementitious comp-site[J].Science Technology and Engineering,2016,16(17):269-274.

        [16]楊冬升,岳廷旭,全川正,等.沉積粉煤灰花崗巖石粉加氣混凝土的抗折性能研究[J].混凝土,2019(11):83-85,89.

        YANG DS,YUETX,QUAN CZ,etal.Study on the flexural property of the sedimentary fly ash and granite stone powderaerated concrete[J].Concrete,2019(11):83-85,89.

        [17]ZHAO GQ,GAO XG,ZHANG XH,etal.The regulation of mechanical properties and freeze-thaw properties of con-crete hollow block with granite waste[J].Journal of Asian Architecture and Building Engineering,2023(4):1-15.

        [18]WANG JH,XUE CZ,ZHANG Y,etal.Study of early-age hydration,mechanical properties development,and micro-structure evolution of manufactured sand concrete mixed with granite stone powder[J].Materials,2023,16(13):4857.

        [19]LIXG,LIU ZL,LVY,etal.Utilization of municipal solid waste incineration bottom ash in autoclaved aerated concrete[J].Construction and Building Materials,2018,178:175-182.

        [20]LIU YQ,LEONG BS,HU ZT,etal.Autoclaved aerated concrete incorporating waste aluminum dust as foaming agent[J].Construction and Building Materials,2017,148:140-147.

        [21]JIANG J,CAI Q,MA B,etal.Effect of ZSM-5 waste dosage on the properties of autoclaved aerated concrete[J].Con-struction and Building Materials,2021,278:122114.

        [22]梁寶瑞,王長(zhǎng)龍,平浩巖,等.鉛鋅尾礦-電石渣基加氣混凝土的組成及結(jié)構(gòu)究[J].材料導(dǎo)報(bào),2024,38(14):23040266

        LIANG BR,WANGCL,PINGHY,etal.Composition and structure of autoclaved aerated concrete containing leadingzinctailings and carbide slag[J].Materials Reports,2024,38(14):23040266

        [23]SCHREINER J,JANSEN D,ECTORS D,etal.New analytical possibilities for monitoring the phase development duringthe production of autoclaved aerated concrete[J].Cement and Concrete Research,2018,107:247-252.

        [24]SONG Y M,LIBL,YANGEH,etal.Feasibility study on utilization of municipal solid waste incineration bottom ash asaerating agent for the production of autoclaved aerated concrete[J].Cement and Concrete Composites,2015,56:51-58.

        [25]DONG MH,RUANSQ,ZHAN SL,etal.Utilization of red mud with high radiation for preparation of autoclaved aeratedconcrete(AAC):Performances and microstructural analysis[J].Journal of Cleaner Production,2022,347:131293.

        [26]石齊.銅尾礦與石材加工廢棄石粉制備蒸壓加氣混凝土應(yīng)用試驗(yàn)研究[J].江西建材,2021(6):7-8,11.

        SHI Q.experimental study on preparation of autoclaved aerated concrete from copper tailings and waste stone powder fromstone processing[J].Jiangxi Building Materials,2021(6):7-8.

        [27]劉江.花崗巖石粉和磷化渣的資源化利用研究[D].鞍山:遼寧科技大學(xué),2022.

        LIUJ.Research on the resource utilization of granite powder and phosphated residue[D].Anshan:University of Science andTechnology Liaoning,2022.

        [28]趙更歧,杜慧瑩,魯淵.花崗巖礦石廢料加氣混凝土砌塊試驗(yàn)研究[J].混凝土與水泥制品,2017(1):88-90.

        ZHAOGQ,DUHY,LU Y.Experimental research on aerated concrete block with granite ore waste[J].China Concreteand Cement Products,2017(1):88-90.

        [29]KUMAR GS,MISHRA A K.Influence of granite fine powder on the performance of cellular light weight concrete[J].Journal of Building Engineering,2021,40:102707.

        Preparation and properties of granite powder autoclaved aerated concrete

        LIU Fengli1,LUO Na1,XIE Huang2,WANG Wenhui1,WANG Yagung1,SHUI Zhetao3

        1.School of Civil Engineering and Architecture,Henan University,Kaifeng,475004,China;

        2.CCCCSHEC Chengdu Urban Construction Engineering Co.,Ltd.,Chengdu 610218,China;

        3.Faculty of Engineering,The University of Sydney,New South Wales,Sydney 2006,Australia

        Abstract

        Objective The production of autoclaved aerated concrete requires large quantities of siliceous raw materials.Due to the gradualrestriction of natural river sand and the escalating cost of fly ash,it is essential to find new siliceous raw materials.At the sametime,there are huge reserves of solid wastes in our country,which damage the ecological environment and cause problems suchas utilization dificulties.Therefore,the resource utilization of solid wastes has become a research hotspot.Granite powder is abyproductgeneratedduring cutting ang grinding processes of granite stone.Given that quartz is the primary mineral constituent ofgranitepowder,it theoretically holds potential as a substitute material for siliceous raw materials.The use of granite powderinstead of natural sand to prepare autoclaved aerated concrete holds significant importance in developing AAC raw materialsources,reducing production costs,and efficiently utilizing solid waste in bulk,thereby offering notable social and economicbenefits.Moreover,investigating the mechanistic influence of granite powder on the properties of autoclaved aerated concreteholds considerable research value.

        Methods Most of the literature primarily focuses on optimizing product properties and studying the influence of macroscopicproperties,such as mechanical properties,with limited attention paid to microscopic mechanisms.In this paper,firstly,theeffects of different dosages of granite stone powder on autoclaved aerated concrete sluryaerating,fluidity,compressivestrengthand dry density were investigated to determine the optimal dosage ratio.Secondly,for exploring the effect of granite stone pow-der on the physical and mechanical properties and microscopic properties of autoclaved aerated concrete,the products were char-acterized by X-ray diffraction,Scanning Electron Microscope and Fourier Transform Infrared.This paper not only studies theinfluence of granite powder content on the macroscopic properties of AAC,but also analyzes its microscopic properties throughXRD,F(xiàn)TIR,SEM and other characterization methods.This approach reveals the microscopic mechanism underlying the influ-ence of large granite powder content on AAC properties,with the research results offering insights into the resource utilization ofsignificant granite powder content in AAC production and serving as a reference for future studies in this field.

        Results and Discussion Slurry fluidity decreased with an increasing replacement rate of granite powder.However,there is nosignificant effect on the slurry gassing process.Calculations revealed that all slurries completed gassing approximately 50 min-utes into the process.The amount of gassing in the slurries at five minutes and the total gassing volume decreased by only 3.57%and 3.04%,respectively.Besides,the compressive strength and specific strength of autoclaved aerated concrete exhibited adecreasing trend with the increase of granite powder,while the dry density showed minimal change.For replacement rates ofgranite powder at 60%or lower,the compressive strength and specific strength of the products decreased slowly.For replace-ment rates of granite powder exceeding 60%,the compressive strength and specific strength of the products decreased signifi-cantly.When the substitution rate of granite powder is 60%,the compressive strength of the product is 3.02 MPa,and the drydensity is 523 kg/m3,which meets the performance requirements of A 2.5 and B 05.This finding provides a reference for thepreparation of autoclaved aerated concrete with large dosage of low-grade siliceous solid waste.Under autoclave curing condi-tions,Ca(OH)?formed by the hydration of calcareous materials reacts with SiO?provided by siliceous raw materials to formtobermorite.The crystal clusters of the hydration products are interwoven with the unreacted mineral aggregate to form a goodnetwork dense structure,which has a positive effect on improving the strength of the product.The content of SiO?ingranitestone powder is lower than that of Yellow River superfine sand,with the increase of granite powder mixing,thetobermorite con-tent in the products decreases after autoclave reaction decreases,thecrystllinity of tobermorite also decreases,which is themain reason for the decrease of the compressive strength of the products.

        Conclusion In this paper,AAC was prepared by granite powder instead of natural sand,and the influence mechanism of granitepowder on AAC properties was discussed.With an increase in granite powder content,both the compressive strength and spe-cific strength of the product decreased,while the dry density remained relatively stable.When the replacement rate was below60%,the compressive strength and specific strength of the product decline slowly,whereas rates exceeding 60%resulted in asignificant decrease in both parameters.The Results show that the optimal mixing amount of granite powder is 60%.Micro-scopic analysis revealed thattheSiO?content of granite stone powder is lower than that of Yellow River super fine sand.Further-more,aninerease in granite stone powder content led to a reduction in tobermorite content and crystallinity in the products afterautoclavereaction,primarily responsible for the observed decrease in compressive strength.At this time,the performance ofautoclaved aerated concrete can meet the national standards.This research not only broadens the way of stone processing wastere-resourcing,but also provides reference for the production of AACby using granite stone powder in large admixture.

        Keywords:granite stone powder;autoclaved aerated concrete;mechanicalproperties;microstructure

        (責(zé)任編輯:武秀娟)

        猜你喜歡
        力學(xué)性能
        反擠壓Zn-Mn二元合金的微觀組織與力學(xué)性能
        Pr對(duì)20MnSi力學(xué)性能的影響
        云南化工(2021年11期)2022-01-12 06:06:14
        Mn-Si對(duì)ZG1Cr11Ni2WMoV鋼力學(xué)性能的影響
        山東冶金(2019年3期)2019-07-10 00:54:00
        采用稀土-B復(fù)合變質(zhì)劑提高ZG30MnSi力學(xué)性能
        碳纖維增強(qiáng)PBT/ABS—g—MAH復(fù)合材料的力學(xué)性能和流變行為
        紡織纖維彎曲力學(xué)性能及其應(yīng)用
        MG—MUF包覆阻燃EPS泡沫及力學(xué)性能研究
        EHA/PE復(fù)合薄膜的力學(xué)性能和阻透性能
        PA6/GF/SP三元復(fù)合材料的制備及其力學(xué)性能研究
        INCONEL625+X65復(fù)合管的焊接組織與力學(xué)性能
        焊接(2015年9期)2015-07-18 11:03:53
        双腿张开被9个男人调教| 亚洲熟女熟妇另类中文| 久久精品国产亚洲av天| 免费看美女被靠的网站| 国产成人免费a在线视频| 人妻少妇av中文字幕乱码免费| 99蜜桃在线观看免费视频| 精品免费看国产一区二区白浆| 美女免费观看一区二区三区| 国产av无码国产av毛片| 亚洲精品国产精品国自产观看| 欧美精品高清在线xxxx| 一本色道久久88加勒比综合| 国产亚洲精品久久久闺蜜| 天堂在线www中文| 亚洲最大av免费观看| 91精品久久久中文字幕| 久久天天躁狠狠躁夜夜2020一| 成人国产精品999视频| 日本一级淫片免费啪啪| 久久国产精品亚洲va麻豆| 国产麻传媒精品国产av| 无码人妻少妇久久中文字幕蜜桃 | 五月激情狠狠开心五月| 98精品国产综合久久| 午夜婷婷国产麻豆精品| 亚洲综合精品中文字幕| 国产真实偷乱视频| 国产成人精品曰本亚洲| 亚洲中文字幕精品久久久 | 伊人久久久精品区aaa片| 国产一区二区三区啪| 香蕉蜜桃av一区二区三区| 欧洲熟妇色xxxx欧美老妇软件| 无码精品a∨在线观看十八禁| 欧美做受视频播放| 国产精品亚洲美女av网站| 国产乱人精品视频av麻豆网站| 国产午夜福利100集发布| 九九九影院| 久久精品亚洲一区二区三区画质|