摘" 要: 無(wú)人機(jī)作為中繼節(jié)點(diǎn),具有通信距離遠(yuǎn)、可靈活移動(dòng)、部署成本低廉等優(yōu)勢(shì)。為了提高無(wú)人機(jī)輔助中繼通信性能,同時(shí)為了有效利用無(wú)人機(jī)有限的機(jī)載能量,以最大化所有目標(biāo)節(jié)點(diǎn)最小可獲得吞吐量為目標(biāo),研究了一個(gè)能量受限的無(wú)人機(jī)輔助中繼通信網(wǎng)絡(luò),提出一種聯(lián)合任務(wù)調(diào)度、無(wú)人機(jī)軌跡規(guī)劃的多元優(yōu)化方案。由于原始問(wèn)題為非凸優(yōu)化問(wèn)題難以直接解決,首先將原始問(wèn)題解耦為兩個(gè)子問(wèn)題,然后利用連續(xù)凸逼近方法、松弛變量法和塊坐標(biāo)下降法,將非凸優(yōu)化問(wèn)題轉(zhuǎn)化為標(biāo)準(zhǔn)凸問(wèn)題,進(jìn)而得到兩個(gè)子問(wèn)題的次優(yōu)解。在解決兩個(gè)子問(wèn)題的基礎(chǔ)上,提出一種多元迭代優(yōu)化算法從而得到原始問(wèn)題的次優(yōu)解。數(shù)值仿真結(jié)果表明,所提算法具有良好的收斂性,可以有效提高系統(tǒng)的通信性能。
關(guān)鍵詞: 無(wú)人機(jī); 任務(wù)調(diào)度; 軌跡規(guī)劃; 能量受限; 中繼通信; 多元迭代優(yōu)化算法
中圖分類號(hào): TN929.5?34" " " " " " " " " " " " "文獻(xiàn)標(biāo)識(shí)碼: A" " " " " " " " " " " " 文章編號(hào): 1004?373X(2024)17?0035?06
Performance optimization of energy?constrained UAV?assisted relay communication
XU Jiangwei, XIE Xie, LI Xufei, XU Peng, ZHANG Peng
(Northwest Institute of Mechanical and Electrical Engineering, Xianyang 712099, China)
Abstract: As a relay node, the UAV (unmanned aerial vehicle) has the advantages of long communication distance, flexible mobility and low deployment cost. To improve the performance of UAV auxiliary relay communication and utilize the limited onboard energy of UAV effectively, an energy?constrained UAV?assisted relay communication network is studied and a multivariate optimization scheme for joint task scheduling and UAV trajectory planning is proposed to maximize the minimum available throughput of all nodes. Because the original problem is a non?convex optimization problem which is difficult to solve directly, the original problem is decoupled into two sub?problems first, and then the non?convex optimization problems are transformed into two standard convex problems by successive convex approximation (SCA) technique, slack variable method and block coordinate descent (BCD) method, and the sub?optimal solutions of the two sub?problems are obtained. On the basis of solving the two sub?problems, a multivariate iterative optimization algorithm is proposed to obtain the suboptimal solution of the original problem. The results of numerical simulation show that the proposed algorithm has a desirable convergence performance and can improve the communication performance of the system effectively.
Keywords: UAV; task scheduling; trajectory planning; energy constrainment; relay communication; multivariate iterative optimization algorithm
0" 引" 言
無(wú)人機(jī)由于具有移動(dòng)靈活、可快速部署、成本低廉等優(yōu)勢(shì),在眾多領(lǐng)域得到了廣泛的應(yīng)用,例如消防救災(zāi)[1?2]、應(yīng)急通信[3]、目標(biāo)定位[4?5]等。尤其近年來(lái),隨著5G技術(shù)的興起和物聯(lián)網(wǎng)技術(shù)的發(fā)展,網(wǎng)絡(luò)通信時(shí)延、可靠性、數(shù)據(jù)吞吐量等關(guān)鍵指標(biāo)得到了進(jìn)一步優(yōu)化,以無(wú)人機(jī)作為核心的非地面移動(dòng)通信網(wǎng)絡(luò)已經(jīng)成為一個(gè)研究熱點(diǎn)[6]。
相比于傳統(tǒng)無(wú)線通信,無(wú)人機(jī)輔助通信網(wǎng)絡(luò)具有以下優(yōu)勢(shì):通信鏈路以視距傳播(Line of Sight, LoS)為主,可以有效繞開遮擋物,具有較高通信質(zhì)量;在需要提供臨時(shí)應(yīng)急通信的場(chǎng)景下,可以快速部署;成本低廉,相較于傳統(tǒng)固定基站具有價(jià)格優(yōu)勢(shì)。
無(wú)人機(jī)作為空中節(jié)點(diǎn)的一個(gè)重要應(yīng)用就是中繼通信。文獻(xiàn)[7]研究了一種基于放大轉(zhuǎn)發(fā)(Amplifier and Forward, AF)協(xié)議的中繼模型,通過(guò)聯(lián)合優(yōu)化無(wú)人機(jī)位置和信號(hào)傳輸功率從而最小化網(wǎng)絡(luò)通信的誤碼率。對(duì)于多節(jié)點(diǎn)中繼通信場(chǎng)景,文獻(xiàn)[8]提出一種有效的迭代優(yōu)化算法,通過(guò)聯(lián)合優(yōu)化通信時(shí)間、通信功率和無(wú)人機(jī)軌跡從而最小化系統(tǒng)總能耗?;诮獯a轉(zhuǎn)發(fā)協(xié)議,文獻(xiàn)[9]通過(guò)聯(lián)合優(yōu)化帶寬、無(wú)人機(jī)軌跡和信號(hào)傳輸功率從而有效提高頻譜利用效率。針對(duì)雙向中繼網(wǎng)絡(luò),文獻(xiàn)[10]分別研究了全雙工和半雙工通信模式,通過(guò)設(shè)計(jì)合理的帶寬分配和功率優(yōu)化方案進(jìn)而提高了系統(tǒng)的通信性能。
在無(wú)人機(jī)輔助通信現(xiàn)有的相關(guān)研究和應(yīng)用中,能耗是一個(gè)關(guān)鍵問(wèn)題[11]。受現(xiàn)有研究工作的啟發(fā),本文考慮了一個(gè)能量受限的無(wú)人機(jī)中繼網(wǎng)絡(luò),針對(duì)多個(gè)地面用戶存在的情況,提出一種聯(lián)合任務(wù)調(diào)度和無(wú)人機(jī)軌跡規(guī)劃的迭代算法,利用連續(xù)凸逼近方法、松弛變量法和塊坐標(biāo)下降法得到原始問(wèn)題的次優(yōu)解。仿真結(jié)果對(duì)比表明,本文所提算法具有良好的收斂性,可以有效提高所有地面用戶最小可獲得吞吐量。
1" 系統(tǒng)模型
1.1" 信道模型
考慮如圖1所示的無(wú)人機(jī)輔助中繼通信場(chǎng)景。網(wǎng)絡(luò)中包含一架無(wú)人機(jī)(Unmanned Aerial Vehicle, UAV)、[K]個(gè)源節(jié)點(diǎn)(Source Nodes, SNs)和目標(biāo)節(jié)點(diǎn)(Destination Nodes, DNs)用戶對(duì)。由于用戶對(duì)之間的通信鏈路被障礙物阻斷,因此,需要部署無(wú)人機(jī)作為空中中繼提供緊急通信服務(wù)。
在該場(chǎng)景中,為了抑制高斯白噪聲對(duì)通信性能的影響,設(shè)置無(wú)人機(jī)工作在解碼中繼模式,并設(shè)置無(wú)人機(jī)沿著優(yōu)化后的軌跡執(zhí)行中繼任務(wù),從而提高通信效果。此外,由于網(wǎng)絡(luò)中包含多個(gè)節(jié)點(diǎn),因此,通信用戶對(duì)采用時(shí)分多址[12](Time Division Multiple Access, TDMA)的方式接入無(wú)人機(jī),從而保證無(wú)人機(jī)在不同的時(shí)隙服務(wù)于不同的用戶。
為了描述本文所提的通信網(wǎng)絡(luò)模型,首先引入三維直角坐標(biāo)系。將源節(jié)點(diǎn)和目標(biāo)節(jié)點(diǎn)的坐標(biāo)表示為:
[wSk=(xSk,ySk,0)]" (1)
[wDk=(xDk,yDk,0)]" (2)
式中[k∈K=1,2,…,K],其三維坐標(biāo)位置可以通過(guò)GPS或慣導(dǎo)等方式獲得。
對(duì)于執(zhí)行中繼任務(wù)的無(wú)人機(jī),可以設(shè)置其飛行軌跡為:
[q[t]=(x[t],y[t], z)," " 0≤t≤T]" (3)
式中:[z]為無(wú)人機(jī)滿足視距通信的最低飛行高度;[x[t]]和[y[t]]為無(wú)人機(jī)水平坐標(biāo)。此外,需要設(shè)置無(wú)人機(jī)的起始位置和終止位置為:
[q[1]=qstart]" "(4)
[q[T]=qend]" "(5)
無(wú)人機(jī)在飛行過(guò)程中需要滿足最大速度約束,可以表示為:
[q[t]≤vmax," " 0≤t≤T]" "(6)
式中:[·]表示二范數(shù);[q[t]]為軌跡關(guān)于時(shí)間的一階導(dǎo)。
定義無(wú)人機(jī)的轉(zhuǎn)向角為[?[t]],那么,無(wú)人機(jī)在飛行過(guò)程中轉(zhuǎn)向角需要滿足:
[cos(?[t])≤cos(?max)," " ?t]" "(7)
式中[?max]為最大轉(zhuǎn)向角。
為了便于分析,需要將上述連續(xù)時(shí)間內(nèi)的軌跡進(jìn)行離散化處理。具體過(guò)程如下:將連續(xù)時(shí)間[T]離散為[N]個(gè)均等的時(shí)隙[δ],即[δ=TN]。于是,連續(xù)時(shí)間內(nèi)無(wú)人機(jī)的軌跡可以等價(jià)離散為在任意時(shí)隙[nn∈N=1,2,…,N]無(wú)人機(jī)位置坐標(biāo)的集合,即:
[q[n]=(x[n],y[n], z)," "?n]" "(8)
根據(jù)圖1可知,該中繼網(wǎng)絡(luò)信息傳輸包含兩條鏈路:源節(jié)點(diǎn)到無(wú)人機(jī)的鏈路;無(wú)人機(jī)到目標(biāo)節(jié)點(diǎn)的鏈路。對(duì)于源節(jié)點(diǎn)到無(wú)人機(jī)的鏈路可以表示為:
[h2SkU[n]=βsuq[n]-wSk2," "?k,n]" (9)
式中[βsu]表示參考距離為1 m時(shí)的路徑損耗。同理,無(wú)人機(jī)到目標(biāo)節(jié)點(diǎn)之間的信道可以表示為:
[h2UDk[n]=βudq[n]-wDk2," "?k,n]" " " (10)
式中[βud]表示參考距離為1 m時(shí)的路徑損耗。此外,需要特別指明的是,無(wú)人機(jī)的運(yùn)動(dòng)會(huì)造成多普勒效應(yīng),本文假設(shè)多普勒效應(yīng)可以得到良好補(bǔ)償。
至此,建立了系統(tǒng)的信道模型。
1.2" 中繼模型
由于解碼轉(zhuǎn)發(fā)可以有效抑制噪聲、改善通信效果,本文采用解碼轉(zhuǎn)發(fā)的方式執(zhí)行中繼任務(wù)。首先,源節(jié)點(diǎn)向無(wú)人機(jī)節(jié)點(diǎn)發(fā)送信息,此時(shí),考慮到系統(tǒng)內(nèi)部自干擾,該條鏈路的信息傳輸速率可以表示為:
[RSk[n]=log21+PSk[n]h2SkU[n]aPu+σ2]" " " (11)
式中:[PSk[n]]為源節(jié)點(diǎn)在第[n]時(shí)隙的信號(hào)發(fā)射功率;[Pu]為無(wú)人機(jī)的信號(hào)發(fā)射功率;[a]為自干擾系數(shù);[σ2]為高斯白噪聲的功率。在第二階段,中繼無(wú)人機(jī)節(jié)點(diǎn)需要將信息轉(zhuǎn)發(fā)給目標(biāo)節(jié)點(diǎn),該條鏈路的信息傳輸速率可以表示為:
[RUk[n]=log21+Puh2UDk[n]σ2]" " " (12)
根據(jù)上文可知,本文采用DF的方式進(jìn)行中繼,于是,該網(wǎng)絡(luò)系統(tǒng)的信息傳輸速率可以表示為:
[Rk[n]=min(RSk[n],RUk[n])]" " " (13)
在本文建立的模型中,用戶以TDMA的方式接入無(wú)人機(jī)中繼。為了描述每個(gè)時(shí)隙的任務(wù)調(diào)度,引入二值變量[αk[n]]表示不同用戶對(duì)的通信請(qǐng)求,即:
[k=1Kαk[n]≤1," "?n]" " " "(14)
[αk[n]∈0,1," "?k,n]" " "(15)
于是在整個(gè)任務(wù)時(shí)間內(nèi),每個(gè)用戶對(duì)可獲得的總數(shù)據(jù)吞吐量為:
[Gk=12n=1Nαk[n]Rk[n]]" " " "(16)
至此,建立了系統(tǒng)的中繼模型。
1.3" 能耗模型
根據(jù)已有研究分析[13],旋翼無(wú)人機(jī)在二維水平飛行時(shí)所需功率為:
[PUAV(v)=PB1+3v2v2tipblade profile+PI1+v44v40-v22v4012induced+12d0ρsA0v3parasite] (17)
式中:[v]為無(wú)人機(jī)的飛行速度;[PB]為無(wú)人機(jī)剖面功率,[PI]為誘導(dǎo)功率,這兩個(gè)參數(shù)與無(wú)人機(jī)自身重量、空氣密度、葉片面積有關(guān);[vtip]為無(wú)人機(jī)葉片轉(zhuǎn)動(dòng)端點(diǎn)處的速度;[v0]為轉(zhuǎn)子的平均誘導(dǎo)速度;[d0]為無(wú)人機(jī)自身飛行時(shí)的阻力比;[ρ]為飛行時(shí)的大氣密度;[s]表示無(wú)人機(jī)轉(zhuǎn)子的堅(jiān)固度;[A0]為旋翼轉(zhuǎn)盤面積。于是,可以得到飛行總能耗為:
[Efly(v)=0TPUAVdt=0TPI1+v44v40-v22v4012dt+0TPB1+3v2v2tip+12d0ρsA0v3dt] (18)
根據(jù)時(shí)間離散化分析,無(wú)人機(jī)在離散時(shí)間域的飛行能耗可以表示為:
[Efly(Δq)=n=2NPIδ4+Δq44v40-Δq22v4012+" " " " " " " " " " "n=2NPBδ+3Δq2δv2tip+12d0ρsA0Δq3δ2≤EFmax] (19)
式中:[Δq=q[n]-q[n-1],n=2,3,…,N];[EFmax]為無(wú)人機(jī)的飛行能量預(yù)算。
至此,建立了系統(tǒng)的能耗模型。
1.4" 問(wèn)題公式化
本文的目標(biāo)是通過(guò)優(yōu)化無(wú)人機(jī)的飛行軌跡以及任務(wù)調(diào)度從而最大化所有用戶對(duì)可獲得的最小數(shù)據(jù)吞吐量。于是,引入變量[μ]表示所有用戶對(duì)可獲得的最小吞吐量,即[μ=minGk,?k],可以將本節(jié)提出的網(wǎng)絡(luò)模型公式化表示為:
[" " " " " " "P1:" " "maxα,Q, μ μs.t." " " "C1: μ≤Gk," " ?k" " " " " " C2: k=1Kαk[n]≤1," " ?n" " " " " " C3: αk[n]∈0,1," " ?k,n" " " " " " C4: q[n]-q[n-1]≤vmaxδ," " n=2,3,…,N" " " " " " C5: q[1]=qstart, q[N]=qend" " " " " " C6: Efly(Δq)≤EFmax" " " " " " C7: cos(?[n])≤cos(?max)," " ?n] (20)
2" 原問(wèn)題解決方案
2.1" 網(wǎng)絡(luò)節(jié)點(diǎn)任務(wù)調(diào)度規(guī)劃
首先需要給定軌跡[Q],解決網(wǎng)絡(luò)節(jié)點(diǎn)任務(wù)調(diào)度規(guī)劃問(wèn)題。分析原始問(wèn)題P1與網(wǎng)絡(luò)節(jié)點(diǎn)任務(wù)調(diào)度規(guī)劃有關(guān)的變量約束為C1、C2、C3。因此,忽略其余無(wú)關(guān)約束,可以得到任務(wù)調(diào)度規(guī)劃子問(wèn)題P2如下所示:
[P2:" " " " maxα, μ μs.t." " " "C1:" μ≤Gk," " ?k" " " " " " C2: k=1Kαk[n]≤1," " ?n" " " " " " C3: αk[n]∈0,1," " ?k,n] (21)
分析研究子問(wèn)題P2,由于優(yōu)化變量為0?1二值整數(shù)變量,子問(wèn)題P2非凸,直接全局遍歷搜索求解該問(wèn)題,時(shí)間復(fù)雜度高、難以實(shí)現(xiàn)。為此,可以將0?1整數(shù)變量松弛為連續(xù)變量,進(jìn)而可以將子問(wèn)題P2重寫為P3:
[P3:" " " maxα, μ μs.t." " " "C1: μ≤Gk," "?k" " " " " " C2: k=1Kαk[n]≤1," "?n" " " " " " C3: 0≤αk[n]≤1," "?k,n" " " " " " C4: Efly(Δq)≤EFmax] (22)
分析子問(wèn)題P3可發(fā)現(xiàn),P3的目標(biāo)函數(shù)及所有約束條件都關(guān)于[μ]和[α]線性相關(guān)。于是,P3為一個(gè)標(biāo)準(zhǔn)的線性規(guī)劃問(wèn)題,可以利用現(xiàn)有的優(yōu)化工具直接進(jìn)行求解。
2.2" 無(wú)人機(jī)軌跡規(guī)劃
分析原問(wèn)題P1,給定任務(wù)調(diào)度變量[α],無(wú)人機(jī)軌跡規(guī)劃子問(wèn)題可以表示為:
[P4:" " " "maxQ, μ μs.t." " " "C1: μ≤Gk," " ?k" " " " " " C2: q[n]-q[n-1]≤vmaxδ," " n=2,3,…,N" " " " " " C3: q[1]=qstart," " q[N]=qend" " " " " " C4: Efly(Δq)≤EFmax" " " " " " C5:cos(?[n])≤cos(?max)," ?n] (23)
分析子問(wèn)題P4,由于約束C1、C4和C5的存在,該問(wèn)題是關(guān)于軌跡的非凸問(wèn)題,難以直接求解。
首先,對(duì)于約束[C1],定義[β1k]如下:
[β1k[n]=βsuPSk[n]αPu+σ2," " ?k,n]" "(24)
由于任意凸函數(shù)的下界為其一階泰勒展開,任意凹函數(shù)的上界為其一階泰勒展開,于是,考慮使用連續(xù)凸逼近方法,可以將非凸約束近似為凸約束,從而解決該問(wèn)題。以一階泰勒展開式為下界,可以得到:
[RSk[n]=log21+β1k[n]q[n]-wSk2" ≥Aik[n]-Bik[n]q[n]-wSk2-qi[n]-wSk2" =RlbSk[n]] (25)
其中:
[Aik[n]=log21+β1k[n]qi[n]-wSk2]" " (26)
[Bik[n]=β1k[n]log2eqi[n]-wSk2qi[n]-wSk2+β1k[n]] (27)
式中[qi[n]]為第[i]次迭代得到的軌跡值。同理,定義[β2k]如下:
[β2k=βsuPuσ2," "?k]" "(28)
利用連續(xù)凸逼近的方法,以一階泰勒展開式為下界,可以得到:
[RUk[n]=log21+β2kq[n]-wDk2 ≥Cik[n]-Dik[n]q[n]-wDk2-qi[n]-wDk2 =RlbUk[n]] (29)
其中:
[Cik[n]=log21+β2kqi[n]-wDk2]" " (30)
[Dik[n]=β2klog2eqi[n]-wDk2qi[n]-wDk2+β2k] (31)
至此,非凸約束[C1]近似為凸約束。
對(duì)于無(wú)人機(jī)飛行能耗非凸約束C4,引入松弛變量[E=E[n],?n]如下所示:
[E2[n]+Δq2[n]v20≥δ4E2[n]," " n=2,3,…,N] (32)
那么,無(wú)人機(jī)的總飛行能耗約束C4可以重新表示為:
[EFmax≥Efly(Δq[n],E[n])=n=2NPBδ+3Δq2[n]δv2tip+12d0ρsA0Δq3[n]δ2+n=2NPIE[n]] (33)
對(duì)式(32)進(jìn)行二元函數(shù)的一階泰勒展開,可以得到:
[δ4E2[n]≤Ei[n]2+Δqi[n]2v20+2Ei[n](E[n]-Ei[n])+" " " " " " " " "2Δqi[n]v20(Δq[n]-Δqi[n])," " n=2,3,…,N] (34)
對(duì)轉(zhuǎn)向角約束,定義[z[n]=q[n]-q[n-1]]。于是,約束C5可以重寫為:
[z[n]zT[n-1]-cos(?max)z[n]z[n-1]≥0," " " " " " " " " " " " " " " " " " " "n=2,3,…,N] (35)
定義[ω]如下:
[ω=zi[n-1]zi[n]]" (36)
進(jìn)一步,利用楊氏不等式和一階泰勒展開,可以得到:
[aibT+abiT-aibiT-12a-ai2-12b-bi2-12cos(?max)(ωa2+ω-1b2)≥0," "n=2,3,…,N] (37)
式中:[a=z[n]];[b=z[n-1]]。
于是,非凸子問(wèn)題P4可以近似為凸問(wèn)題如下:
[P5:" " "maxQ, μ,E μs.t." " " C1: μ≤12n=1Nαk[n]RlbSk[n], μ≤RlbUk[n]" " " " " "C2: q[n]-q[n-1]≤vmaxδ," "n=2,3,…,N" " " " " "C3: q[1]=qstart," " q[N]=qend" " " " " "C4: 式(33)、式(34)、式(37)] (38)
2.3" 算法分析
根據(jù)上文研究,分別得到了任務(wù)調(diào)度子問(wèn)題和軌跡規(guī)劃子問(wèn)題的解。解決原始問(wèn)題P1需要交替求解兩個(gè)子問(wèn)題直至收斂,具體算法流程如下:
算法1:" 聯(lián)合優(yōu)化任務(wù)調(diào)度、無(wú)人機(jī)軌跡交替迭代算法
1:" "輸入:系統(tǒng)參數(shù);
2:" "輸出:[αi→α?],[Qi→Q?];
3:" "初始化:[{α1,Q1}];
4:" "設(shè)置:[i=1];
5:" " "Do
6:" " " "給定[Qi],計(jì)算標(biāo)準(zhǔn)凸問(wèn)題P3,得到[αi+1];
7:" " " "給定[αi+1],計(jì)算標(biāo)準(zhǔn)凸問(wèn)題P5,得到[Qi+1];
8:" " " "更新:[i=i+1];
9:" " "Until [igt;imax]
10:" 結(jié)束
具體來(lái)說(shuō),首先固定初始化軌跡[Q],得到任務(wù)調(diào)度變量[α];然后固定任務(wù)調(diào)度變量[α],計(jì)算得到軌跡[Q],將該次輸出的值作為下一次迭代輸入的值,不斷迭代,直至算法收斂。此外,由于子問(wèn)題P2和子問(wèn)題P4在每次迭代后的目標(biāo)值總會(huì)不差于前一次迭代結(jié)果,又因?yàn)樵紗?wèn)題的解為子問(wèn)題解的上界,因此該算法的收斂性可以得到保證。該算法的時(shí)間計(jì)算復(fù)雜度為[O((KN)3.5log(1ε))],其中,[ε]為收斂精度。
3" 數(shù)值仿真
本節(jié)主要通過(guò)數(shù)值仿真從而驗(yàn)證所提算法的有效性。主要參數(shù)設(shè)置如下:高斯白噪聲[σ2=-110 dBm];無(wú)人機(jī)最大飛行速度[vmax=30 m/s];系統(tǒng)帶寬[W=1 MHz];信道增益[βsu=-20 dB];無(wú)人機(jī)剖面功率[PB=79.86 W];誘導(dǎo)功率[PI=88.63 W];葉片端點(diǎn)速度[vtip=120 m/s];大氣密度[ρ=1.225 kg/m3];時(shí)隙總數(shù)[N=50]。
圖2為不同飛行能量預(yù)算下的無(wú)人機(jī)軌跡。在此,本文分別對(duì)比了能量預(yù)算為[EFmax=5 500 J]、[EFmax=6 000 J]和[EFmax=6 500 J]三種情況。如圖2所示,無(wú)人機(jī)首先從起點(diǎn)出發(fā)靠近源節(jié)點(diǎn),當(dāng)靠近至一定程度時(shí)保持此水平方向繼續(xù)前進(jìn);當(dāng)任務(wù)臨近結(jié)束時(shí),又遠(yuǎn)離源節(jié)點(diǎn)返回任務(wù)終點(diǎn)。此外,可以觀察到,飛行能量預(yù)算越多時(shí),無(wú)人機(jī)飛行過(guò)的軌跡越長(zhǎng),能量預(yù)算越少時(shí),無(wú)人機(jī)飛行過(guò)的軌跡越短。這是因?yàn)槟芰款A(yù)算增大,無(wú)人機(jī)有充足的能量保證其飛行至較遠(yuǎn)距離從而提高通信質(zhì)量。
圖3為不同能量預(yù)算下的無(wú)人機(jī)速度。由圖3可知,無(wú)人機(jī)的速度呈波浪線形狀。任務(wù)開始時(shí),無(wú)人機(jī)需要以較快速度飛行至最優(yōu)中繼點(diǎn)從而服務(wù)于用戶1,之后低速飛行以保證該用戶的通信質(zhì)量;用戶1任務(wù)結(jié)束時(shí)便以較快速度飛行至用戶2的最優(yōu)中繼位置,從而為該用戶提供通信服務(wù);以此類推直至為所有用戶完成通信中繼服務(wù)。需要注意的是,能量預(yù)算越高,無(wú)人機(jī)在任務(wù)初始時(shí)刻和結(jié)束時(shí)刻的飛行速度越高,從而保證無(wú)人機(jī)在更短時(shí)間內(nèi)靠近最優(yōu)中繼點(diǎn)。
圖4為無(wú)人機(jī)系統(tǒng)的任務(wù)調(diào)度。由圖4可知,無(wú)人機(jī)在50個(gè)時(shí)隙內(nèi)分別服務(wù)于5個(gè)用戶對(duì),并為每個(gè)用戶對(duì)提供了均等的通信時(shí)間。需要注意的是,在解決子問(wèn)題P2的過(guò)程中,本文將整數(shù)變量松弛為連續(xù)變量,因此可能出現(xiàn)任務(wù)調(diào)度為小數(shù)的情況,為此,需要將結(jié)果進(jìn)行二值重構(gòu),即若出現(xiàn)小數(shù),根據(jù)時(shí)間的連續(xù)性,將時(shí)間按照小數(shù)比例分割從而分配給不同的用戶。
圖5為不同時(shí)隙的信息傳輸速率。由圖5可知,用戶對(duì)1和用戶對(duì)5的通信質(zhì)量最低。這是因?yàn)槿蝿?wù)開始時(shí)無(wú)人機(jī)距離最優(yōu)中繼位置最遠(yuǎn),而在任務(wù)即將結(jié)束時(shí),無(wú)人機(jī)又要遠(yuǎn)離最優(yōu)中繼位置以返回終點(diǎn),因此,信息傳輸速率較低。
圖6顯示不同方案下的數(shù)據(jù)吞吐量。本文分別對(duì)比了圓形軌跡方案和靜態(tài)部署方案,由圖6可知,本文所提方案具有最高的數(shù)據(jù)吞吐量,這體現(xiàn)了本文所提方案算法的優(yōu)越性。
4" "結(jié)" 論
針對(duì)能量受限影響無(wú)人機(jī)作為空中中繼提供緊急通信服務(wù),本文研究了一個(gè)能量受限的無(wú)人機(jī)中繼通信網(wǎng)絡(luò)。以最大化所有用戶最小數(shù)據(jù)吞吐量為目標(biāo),通過(guò)聯(lián)合優(yōu)化任務(wù)調(diào)度和無(wú)人機(jī)軌跡從而提高通信性能。基于任務(wù)調(diào)度和軌跡規(guī)劃子問(wèn)題,本文設(shè)計(jì)了一種多項(xiàng)式時(shí)間復(fù)雜度的迭代優(yōu)化算法,通過(guò)數(shù)值仿真驗(yàn)證了所提算法的有效性和優(yōu)越性。
注:本文通訊作者為許江偉。
參考文獻(xiàn)
[1] 路世昌,邵旭倫,李丹.卡車?無(wú)人機(jī)協(xié)同救災(zāi)物資避障配送問(wèn)題研究[J].計(jì)算機(jī)工程與應(yīng)用,2023,59(2):289?298.
[2] 蘇立晨,趙浩然,郭通,等.基于動(dòng)態(tài)分治的大規(guī)模多場(chǎng)站無(wú)人機(jī)應(yīng)急救援優(yōu)化方法[J].北京郵電大學(xué)學(xué)報(bào),2024,47(1):65?71.
[3] 陳新穎,盛敏,李博,等.面向6G的無(wú)人機(jī)通信綜述[J].電子與信息學(xué)報(bào),2022,44(3):781?789.
[4] 鄭迪,謝亞琴,谷天園.基于無(wú)人機(jī)5G高空基站的低成本應(yīng)急定位方法[J].無(wú)線電工程,2023,53(11):2607?2618.
[5] 楊璇,尹棟,王惠方,等.雙無(wú)人機(jī)對(duì)地快速移動(dòng)目標(biāo)跟蹤的構(gòu)型設(shè)計(jì)與控制方法[J].火炮發(fā)射與控制學(xué)報(bào),2024,45(2):14?21.
[6] XIAO Z Y, ZHU L P, LIU Y M, et al. A survey on millimeter?wave beamforming enabled UAV communications and networking [J]. IEEE communications surveys amp; tutorials, 2021, 24(1): 557?610.
[7] REN H, PAN C H, WANG K Z, et al. Joint transmit power and placement optimization for URLLC?enabled UAV relay systems [J]. IEEE transactions on vehicular technology, 2020, 69(7): 8003?8007.
[8] SUN Z X, YANG D C, XIAO L, et al. Joint energy and trajectory optimization for UAV?enabled relaying network with multi?pair users [J]. IEEE transactions on cognitive communications and networking, 2021, 7(3): 939?954.
[9] FAN J Y, CUI M, ZHANG G C, et al. Throughput improvement for multi?hop UAV relaying [J]. IEEE access, 2019, 7: 147732?147742.
[10] SHENG Z C, TUAN H D, DUONG T Q, et al. UAV?aided two?way multi?user relaying [J]. IEEE transactions on communications, 2021, 69(1): 246?260.
[11] WU Y, YANG W W, GUAN X R, et al. Energy?efficient trajectory design for UAV?enabled communication under malicious jamming [J]. IEEE wireless communications letters, 2021, 10(2): 206?210.
[12] GUO X Z, LI B, CONG J Y, et al. Throughput maximization in a UAV?enabled two?way relaying system with multi?pair users [J]. IEEE communications letters, 2021, 25(8): 2693?2697.
[13] SUN G, LI J H, LIU Y H, et al. Time and energy minimization communications based on collaborative beamforming for UAV networks: A multi?objective optimization method [J]. IEEE journal on selected areas in communications, 2021, 39(11): 3555?3572.