【摘要】缺血性心臟病是全球范圍內導致死亡的主要病因之一。哺乳動物雷帕霉素靶蛋白(mTOR)是一種調控蛋白質合成、細胞生長、增殖和自噬的絲氨酸/蘇氨酸蛋白激酶。近年來研究證實mTOR在缺血性心臟病的發(fā)生及發(fā)展過程中起重要作用。現就mTOR及其相關信號通路在缺血性心臟病藥物研究進展方面進行綜述,旨在為臨床治療及藥物研發(fā)提供新的思路。
【關鍵詞】哺乳動物雷帕霉素靶蛋白;缺血性心臟病;缺血再灌注;缺血性心力衰竭;心臟重構
【DOI】10.16806/j.cnki.issn.1004-3934.2024.04.009
Drug Regulated mTOR Related Signaling Pathways
In Ischemic Heart Disease
PANG Zihao1,3,JIA Qingqing2,3,HAN Bowen1,3,ZHANG Li3
(1. Graduate School of Hebei North University,Zhangjiakou 075000,Hebei,China;2.Graduate School of Hebei Medical University,Shijiazhuang 050017,Hebei,China;3.Department of Cardiovascular Medicine,Hebei General Hospital,Shijiazhuang 050051,Hebei,China)【Abstract】Ischemic heart disease is a prominent global cause of mortality.The mammalian target of rapamycin (mTOR) is a serine/threonine protein kinase that regulates protein synthesis,cell growth,proliferation,and autophagy.Recent research has substantiated the significant role played by mTOR in the pathogenesis and progression of ischemic heart disease.This article provides an overview of the advancements made in understanding mTOR and its associated signaling pathways in relation to ischemic heart disease,aiming to offer novel insights for clinical treatment strategies and drug development.
【Keywords】Mammalian target of rapamycin;Ischemic heart disease;Ischemia reperfusion;Ischemic heart failure;Cardiac remodeling
缺血性心臟病(ischemic heart disease,IHD)是心血管疾病中的常見病、多發(fā)病,據2020年數據統計,在全球約1.26億人受IHD影響,約占世界人口的1.72%[1]。IHD是心肌血液供需失衡引起的以心肌缺血為特征的臨床疾病,其主要表現為心肌梗死(myocardial infarction,MI)、心肌缺血再灌注損傷(myocardial ischemia reperfusion injury,MIRI)、MI后心臟重構和心力衰竭(heart failure,HF)等,傳統研究認為IHD的發(fā)生主要由于冠狀動脈粥樣硬化斑塊阻礙了冠狀動脈血流的通過,導致心肌缺血。隨著對IHD研究的深入,發(fā)現IHD具有復雜的病理生理學機制,是多種途徑共同作用的結果[2]。
哺乳動物雷帕霉素靶蛋白(mammalian target of rapamycin,mTOR)是一種絲氨酸/蘇氨酸蛋白激酶,在蛋白質合成、細胞生長、增殖、自噬、溶酶體功能和細胞代謝等過程中發(fā)揮關鍵作用,已被證實與心血管疾病、腫瘤、代謝性疾病等多種疾病關系密切[3]。大量研究結果表明,mTOR在IHD不同階段表達量存在差異?,F對藥物調控mTOR及相關信號通路在IHD治療方面的研究進展做一綜述,以期為IHD的治療提供新的干預靶點和理論依據。
1 mTOR簡介
mTOR在雷帕霉素耐藥酵母突變體中被首次發(fā)現,其靶點是磷脂酰肌醇3激酶樣激酶(phosphatidylinositol 3-kinase-like kinase,PIKK)家族中的一員,mTOR與特定的銜接蛋白相互作用并形成兩種不同的大分子復合物:mTOR復合物1(mTOR complex 1,mTORC1)和mTOR復合物2(mTOR complex 2,mTORC2)[4]。二者區(qū)別在于其銜接蛋白、雷帕霉素敏感性、上游信號、底物和細胞功能。mTORC1可在不同條件下被激活,包括生長因子、細胞因子、能量狀態(tài)、氧氣和氨基酸等,參與自噬、脂質合成和線粒體代謝等多種生物過程。mTORC2受磷脂酰肌醇3激酶(phosphoinositide 3-kinase,PI3K)及生長因子的調節(jié),促進營養(yǎng)吸收和細胞存活。同時,二者之間存在復雜的串擾,可共同促進合成代謝、抑制分解代謝、對代謝及環(huán)境信號的動態(tài)變化做出響應[5]。
1.1 mTORC1的結構及相關信號通路
mTORC1由mTOR、哺乳動物致死的SEC13蛋白8(mammalian lethal with SEC13 protein 8,mLST8)、mTOR相關調節(jié)蛋白(regulatory associated protein of mTOR,Raptor)、含DEP結構域的mTOR相互作用蛋白(DEP domain containing mTOR interacting protein,DEPTOR)、40 kDa富脯氨酸Akt底物(proline-rich Akt substrate of 40 kDa,PRAS40)組成。mTORC1受PI3K、AMP活化蛋白激酶(AMP-activated protein kinase,AMPK)等信號傳導途徑和生長因子、營養(yǎng)物質、能量、應激等多種刺激而激活。其上游:(1)PI3K及其下游效應因子Akt的激活來調節(jié)mTORC1信號傳導,從而逆轉結節(jié)性硬化復合物1/2(tuberous sclerosis complex 1/2,TSC1/2)對mTORC1的抑制作用[6]。(2)磷酸酶與張力蛋白同源物(phosphatase and tensin homologue,PTEN)是一種成熟的腫瘤抑制基因,可直接抑制PI3K/Akt/mTOR信號通路的激活[7]。(3)AMPK對mTORC1的抑制有兩條途徑,一是通過磷酸化TSC2直接抑制腦Ras同源蛋白(Ras homolog enriched in brain,Rheb)和mTORC1的活性;二是直接磷酸化mTORC1上的Raptor,使復合物結構改變從而抑制其活性[8]。其下游:(1)mTORC1激活后,真核細胞啟動因子4E結合蛋白1(eukaryotic initiation factor 4E-binding protein 1,4EBP1)磷酸化釋放真核細胞翻譯起始因子4E(eukaryotic translation initiation factor 4E,eIF4E),增強5’端帽依賴的mRNAs翻譯,促進細胞代謝、增殖[4];(2)核糖體蛋白S6激酶(ribosomal protein S6 kinase,S6K)被mTORC1激活后可使真核細胞翻譯起始因子4B(eukaryotic translation initiation factor 4B,eIF4B)合成蛋白質的過程增強并促進細胞生長[4];(3)mTORC1通過介導Unc-51樣自噬激活激酶(Unc-51-like kinase,ULK)1和自噬相關蛋白13磷酸化,抑制ULK1復合物的活性從而抑制細胞自噬[9];(4)mTORC1通過抑制轉錄因子EB(transcription factor EB,TFEB)調節(jié)自噬[10]。見圖1。
注:FAT,黏著斑定位結構域;FRB,FKBP12-雷帕霉素結合結構域;Kinase,激酶結構域;FATC,C-末端黏著靶結構域;FKBP12-rapa,FKBP12與雷帕霉素復合物;PIP2,磷脂酰肌醇4,5-二磷酸;PIP3,磷脂酰肌醇3,4,5-三磷酸?!硎炯せ睿弧獆表示抑制。
1.2 mTORC2的結構及相關信號通路
mTORC2的結構與mTORC1相似,包含mTOR、mLST8、雷帕霉素不敏感性mTOR伴侶蛋白(rapamycin insensitive companion of mTOR,RICTOR)、RICTOR結合蛋白1/2(protein observed with RICTOR 1/2,PROTOR1/2)、哺乳動物應激激活蛋白激酶反應蛋白1(mammalian stress-actived protein kinase interacting protein 1,mSIN1)[3]。由于mTORC2缺乏特異性抑制劑,因此對mTORC2的了解較mTORC1少。目前已知mTORC2主要磷酸化AGC激酶家族,其包含Akt、蛋白激酶C(protein kinase C,PKC)、血清和糖皮質激素調節(jié)激酶1(serum and glucocorticoid regulated kinase 1,SGK1)。mTORC2調節(jié)生長因子信號傳導和細胞代謝等過程并在心血管疾病、代謝性疾病、癌癥的病理生理學中發(fā)揮重要作用[11-12]。見圖2。
2 mTOR與急性心肌缺血再灌注和慢性心肌缺血
目前對于急性MI有效的治療方法是經皮冠狀動脈介入治療或溶栓治療,使心肌細胞快速恢復灌注。然而,再灌注可矛盾地導致心肌細胞死亡,稱之為MIRI[13]。在急性心肌缺血早期,誘導自噬水平升高可保護缺氧心肌細胞免于凋亡。mTOR在自噬過程中發(fā)揮重要的調節(jié)作用,并與線粒體的細胞內氧化和還原密切相關[3]。既往研究[14]顯示,在MIRI期間,胱天蛋白酶-3(caspase-3)和B細胞淋巴瘤-2相關X蛋白(Bcl-2 assaciated X protein,Bax)等促凋亡途徑在心肌細胞中的表達水平顯著增加,細胞保護途徑抗凋亡蛋白B細胞淋巴瘤-2(B-cell lymphoma-2,Bcl-2)的表達降低。Qin等[15]研究發(fā)現,人參皂苷Rb1(ginsenoside Rb1,GRb1)處理后的急性心肌缺血再灌注小鼠,其mTOR表達顯著上調,caspase-3和Bax等蛋白表達減少,Bcl-2表達增加。說明GRb1通過激活mTOR增強抗凋亡蛋白Bcl-2的表達及抑制凋亡相關蛋白Bax、caspase-3的表達,抑制心肌細胞自噬,發(fā)揮對MIRI的保護作用。mTOR不僅可調節(jié)自噬,還可通過促進細胞增殖加速新生血管形成,抑制MIRI的發(fā)展。大蒜素是一種活性硫化物,研究[16]表明其可改善動脈硬化、高血壓等。Liu等[17]研究顯示,與缺血再灌注組小鼠相比,大蒜素治療組的新生血管數量顯著增加,Akt、PI3K、mTOR的磷酸化水平及環(huán)氧合酶-2、血管內皮生長因子表達水平均增加。而環(huán)氧合酶-2可通過調節(jié)血管內皮生長因子和成纖維細胞等的表達促進新生血管形成。研究結果表明大蒜素可通過PI3K/Akt/mTOR信號通路促進新生血管的形成,抑制MIRI。此外,有多項研究證明多種藥物可通過mTOR相關信號通路減輕MIRI,發(fā)揮心肌保護作用。見表1。
對于慢性冠狀動脈疾病患者盡管外科手術和基于導管的血運重建可提供明顯獲益,但仍有1/3的患者不適合或接受了不良的血運重建方案,目前對于此類患者可選擇的治療方案仍有限[25]。慢性缺血缺氧心肌細胞的凋亡水平顯著升高,目前研究[26]認為抑制缺氧誘導的心肌細胞凋亡是改善慢性心肌缺血預后的重要方法。煙酰胺是煙酸的酰胺化合物,參與細胞呼吸和能量合成[27]。Li等[28]通過離體建立心肌缺血缺氧細胞模型發(fā)現,應用煙酰胺后心肌細胞凋亡水平顯著下降,自噬水平升高。對其調控機制研究發(fā)現,煙酰胺抑制缺氧心肌細胞mTOR信號通路的活性,逆轉缺氧所致的Bcl-2低表達及Bax高表達,誘導自噬水平升高,從而保護缺氧心肌細胞。近年來研究[29]表明慢性IHD患者主要不良心臟事件與整體動脈粥樣硬化(atherosclerosis,AS)負荷有關,而與限制血流的冠狀動脈腔內病變關系不大。因此,可通過減輕AS負荷來改善慢性心肌缺血。Zhou等[30]研究發(fā)現青蒿素和原花青素共載納米復合物可通過AMPK/mTOR/ULK1信號通路,下調炎癥因子、抑制脂質內流、增強膽固醇外排、減輕AS病變,進而可改善慢性心肌缺血。
3 mTOR與MI后心臟重構
隨著再灌注治療技術的發(fā)展,目前急性MI患者的死亡率明顯下降,但MI后HF發(fā)生率逐年上升,心臟重構被認為是HF發(fā)生的重要因素,是目前治療的重要靶點[31]。MI后在炎癥因子刺激、氧化應激、能量代謝改變、參與鈣轉運的蛋白質的改變、神經激素系統持續(xù)激活等的作用下引起細胞死亡和進行性心肌細胞丟失,成纖維細胞增殖和細胞外基質重組最終導致心臟重構發(fā)生[32]。
MI發(fā)生后,梗死壁變薄進而瘢痕形成,而非梗死心肌因壓力增加以及神經內分泌和生長因子等因素增生肥大[33]。蛋白質合成在心臟重構和心肌細胞凋亡中發(fā)揮重要作用。如前所述,mTOR激活后可促進S6K及eIF4B表達,從而增加蛋白質合成并促進細胞增殖。而心肌細胞中mTOR激活失調通常會導致病理性肥大及心肌纖維化的發(fā)生[34]。Wang等[35]的研究表明,從意大利牛舌草中提取的總黃酮(total flavonoids from Anchusa Italica Retz.,TFAI)可明顯減小MI面積、改善心臟功能,并抑制心肌細胞肥大和心臟纖維化。該研究顯示,與MI組小鼠相比,TFAI治療組小鼠PI3K、Akt和mTOR的磷酸化水平明顯降低,TFAI抑制了PI3K/Akt/mTOR信號通路的激活,同時TFAI也降低了MI小鼠血清中腫瘤壞死因子-α、白細胞介素-1β、白細胞介素-6等炎癥因子水平,發(fā)揮了抑制心肌重構的作用。Sun等[36]研究了黃腐酚(xanthohumol,Xn)在體內對異丙腎上腺素(isoprenaline,ISO)誘導的心肌肥厚和纖維化的影響。ISO誘導后出現PTEN下調和Akt/mTOR磷酸化,導致心肌肥厚和纖維化。而Xn上調了PTEN表達,導致Akt/mTOR失活。PTEN抑制劑消除了Xn對ISO誘導的心臟功能障礙、心臟肥大和心肌纖維化的保護作用。說明Xn通過PTEN/Akt/mTOR途徑減輕ISO誘導的心肌肥厚和纖維化。綜上,在MI后期可通過mTOR,抑制蛋白合成,減少MI后心臟重構的發(fā)生。
既往Buss等[37]已證實,依維莫司通過抑制mTORC1信號通路發(fā)揮抑制心肌細胞肥大和心臟重構的作用。但近期一項隨機對照研究[38]證明,接受經皮冠狀動脈介入治療的急性ST段抬高型MI早期患者,口服mTOR抑制劑依維莫司后與安慰劑組相比,并未如動物實驗一般發(fā)揮良好的改善MI面積、心臟重構的作用,這可能與研究的樣本量不足、隨訪時間短或其他新的信號通路在心臟重構過程中發(fā)揮作用等因素相關。因此,抑制mTOR信號通路雖然在動物實驗中表現出明顯抑制心臟重構的作用,但仍需臨床試驗進一步證實。
4 mTOR與缺血性HF
HF是各種心臟疾病導致心功能不全并逐漸進展的綜合征。缺血性HF由MI發(fā)展而來,遵循慢性病程,緩慢且持續(xù)的心肌細胞凋亡是進行性心功能不全的主要病理生理機制[39]。因此,通過調節(jié)心肌細胞死亡,對MI后HF的治療有重要意義。最近的研究[40]表明,抑制心肌細胞凋亡和促進自噬是HF的兩種潛在治療策略。
養(yǎng)心氏片是一種中藥制劑,在臨床上常用于治療胸悶、冠心病、心絞痛,并對MIRI有保護作用[41]。Wu等[42]通過構建慢性缺血性心力衰竭(chronic ischemic heart failure,CIHF)大鼠模型發(fā)現,養(yǎng)心氏片能降低CIHF心肌耗氧量,減小MI面積,改善心臟功能。實驗表明,養(yǎng)心氏片通過增加PI3K、Akt、mTOR的磷酸化來促進下游低氧誘導因子(hypoxia-inducible factor,HIF)-1α的表達。說明養(yǎng)心氏片可激活CIHF大鼠相關的PI3K/Akt/mTOR/rpS6/HIF-1α信號通路,而HIF-1α可促進紅細胞及血管生成,抑制氧氣消耗、促進氧氣輸送,使細胞適應新的缺氧環(huán)境[43],最終表現出改善CIHF大鼠的心臟功能,減少心肌耗氧量及MI面積,達到治療CIHF目的。
達格列凈(dapagliflozin,DAPA)是一種新型降血糖藥,其抑制腎小管中鈉-葡萄糖共轉運蛋白2,增加尿糖排出。除具有降血糖作用外,還可發(fā)揮心臟保護作用。一項大型隨機對照研究[44]顯示,DAPA能降低射血分數輕度降低或保留的HF患者中HF和心血管事件的發(fā)生率。Wang等[45]實驗發(fā)現,DAPA通過抑制PI3K/Akt/mTOR通路,顯著增加MI小鼠的射血分數和短軸縮短率等指標,減少炎癥因子釋放及細胞凋亡,改善心臟重構,發(fā)揮治療HF的作用。既往研究[46]發(fā)現慢性HF患者心臟組織中Beclin-1和微管相關蛋白1輕鏈3(microtubule associated protein 1 light chain 3,LC3)-Ⅱ等介導自噬的蛋白水平升高。Ma等[47]通過結扎大鼠的冠狀動脈前降支來構建HF模型發(fā)現,與對照組相比,模型組大鼠心肌組織LC3-Ⅱ和Beclin-1蛋白表達水平下降,在DAPA治療后出現升高。由此可知,DAPA可激活自噬途徑。該實驗還發(fā)現,模型大鼠心肌組織中AMPK蛋白磷酸化水平下降、mTOR蛋白磷酸化水平相對于對照組升高,上述情況在應用DAPA后被逆轉。由此可知,DAPA通過AMPK/mTOR途徑對HF大鼠的心肌細胞自噬產生促進作用,而自噬激活可特異性去除活性氧和炎癥因子,減少心肌細胞凋亡,防止心臟功能進一步惡化。
綜上,缺血性HF患者可通過抑制PI3K/Akt/mTOR或激活AMPK/mTOR信號通路的方式來調節(jié)心肌細胞凋亡和自噬,改善心臟功能,從而獲益。
5 總結與展望
本文主要討論了mTOR相關信號通路在IHD治療藥物中的研究進展。根據目前的研究進展,mTOR相關信號通路的機制及作用復雜,在心肌缺血再灌注期應促進mTOR信號通路激活,抑制細胞過度自噬,減少細胞損傷及凋亡;而在心臟重構及缺血性HF階段應適當通路抑制,可減輕心臟重構,改善心臟功能。目前雖已有基于mTOR相關信號通路的調節(jié)劑應用于臨床,但還存在對于特殊靶點的選擇特異性不足,且副作用較為明顯的問題,因此,新型藥物的問世迫在眉睫。未來應著眼于優(yōu)化原有藥物,加快新型藥物研制,為進一步深入研究mTOR相關信號通路在IHD發(fā)生發(fā)展中的作用機制提供更有力的研究證據。
參考文獻
[1]Khan MA,Hashim MJ,Mustafa H,et al.Global epidemiology of ischemic heart disease:results from the Global Burden of Disease Study[J].Cureus,2020,12(7):e9349.
[2]Severino P,D’Amato A,Pucci M,et al.Ischemic heart disease pathophysiology paradigms overview:from plaque activation to microvascular dysfunction[J].Int J Mol Sci,2020,21(21):8118.
[3]Liu GY,Sabatini DM.mTOR at the nexus of nutrition,growth,ageing and disease[J].Nat Rev Mol Cell Biol,2020,21(4):183-203.
[4]Yang M,Lu Y,Piao W,et al.The translational regulation in mTOR pathway[J].Biomolecules,2022,12(6):802.
[5]Vakrakou AG,Alexaki A,Brinia ME,et al.The mTOR signaling pathway in multiple sclerosis;from animal models to human data[J].Int J Mol Sci,2022,23(15):8077.
[6]Mao B,Zhang Q,Ma L,et al.Overview of research into mTOR inhibitors[J].Molecules,2022,27(16):5295.
[7]Glaviano A,Foo ASC,Lam HY,et al.PI3K/AKT/mTOR signaling transduction pathway and targeted therapies in cancer[J].Mol Cancer,2023,22(1):138.
[8]Xia C,Wang G,Chen L,et al.Trans-gnetin H isolated from the seeds of Paeonia species induces autophagy via inhibiting mTORC1 signalling through AMPK activation[J].Cell Prolif,2023,56(3):e13360.
[9]Park SH,Choi WH,Lee MJ.Effects of mTORC1 inhibition on proteasome activity and levels[J].BMB Rep,2022,55(4):161-165.
[10]Paquette M,El-Houjeiri L,C Zirden L,et al.AMPK-dependent phosphorylation is required for transcriptional activation of TFEB and TFE3[J].Autophagy,2021,17(12):3957-3975.
[11]Scaiola A,Mangia F,Imseng S,et al.The 3.2-?resolution structure of human mTORC2[J].Sci Adv,2020,6(45):eabc1251.
[12]Fu W,Hall MN.Regulation of mTORC2 Signaling[J].Genes (Basel),2020,11(9):1045.
[13]Yu S,Zhang J.Effects of levosimendan preconditioning on left ventricular remodeling after myocardial reperfusion in acute myocardial infarction patients receiving percutaneous coronary intervention[J].Heart Surg Forum,2022,25(1):E001-E007.
[14]He J,Liu D,Zhao L,et al.Myocardial ischemia/reperfusion injury:mechanisms of injury and implications for management (review)[J].Exp Ther Med,2022,23(6):430.
[15]Qin GW,Lu P,Peng L,et al.Ginsenoside Rb1 inhibits cardiomyocyte autophagy via PI3K/Akt/mTOR signaling pathway and reduces myocardial ischemia/reperfusion injury[J].Am J Chin Med,2021,49(8):1913-1927.
[16]Panyod S,Wu WK,Chen PC,et al.Atherosclerosis amelioration by allicin in raw garlic through gut microbiota and trimethylamine-N-oxide modulation[J].NPJ Biofilms Microbiomes,2022,8(1):4.
[17]Liu M,Yang P,Fu D,et al.Allicin protects against myocardial I/R by accelerating angiogenesis via the miR-19a-3p/PI3K/AKT axis[J].Aging (Albany NY),2021,13(19):22843-22855.
[18]Li Y,Lu R,Niu Z,et al.Suxiao jiuxin pill alleviates myocardial ischemia-reperfusion injury through the ALKBH5/GSK3β/mTOR pathway[J].Chin Med,2023,18(1):31.
[19]Liu J,Liu C,Chen H,et al.Tongguan capsule for treating myocardial ischemia-reperfusion injury:integrating network pharmacology and mechanism study[J].Pharm Biol,2023,61(1):437-448.
[20]Zhao J,Zhang J,Liu Q,et al.Hongjingtian injection protects against myocardial ischemia reperfusion-induced apoptosis by blocking ROS induced autophagic-flux[J].Biomed Pharmacother,2021,135:111205.
[21]Fang B,Liu F,Yu X,et al.Liraglutide alleviates myocardial ischemia-reperfusion injury in diabetic mice[J].Mol Cell Endocrinol,2023,572:111954.
[22]Han X,Cheng J,He F.Cordycepin alleviates myocardial ischemia/reperfusion injury by enhancing autophagy via AMPK-mTOR pathway[J].J Physiol Biochem,2022,78(2):401-413.
[23]Cui ZH,Zhang XJ,Shang HQ,et al.Glutamine protects myocardial ischemiareperfusion injury in rats through the PI3K/Akt signaling pathway[J].Eur Rev Med Pharmacol Sci,2020,24(1):444-451.
[24]Zheng D,Liu Z,Zhou Y,et al.Urolithin B,a gut microbiota metabolite,protects against myocardial ischemia/reperfusion injury via p62/Keap1/Nrf2 signaling pathway[J].Pharmacol Res,2020,153:104655.
[25]Sabe SA,Harris DD,Broadwin M,et al.Sitagliptin therapy improves myocardial perfusion and arteriolar collateralization in chronically ischemic myocardium:a pilot study[J].Physiol Rep,2023,11(11):e15744.
[26]Naryzhnaya NV,Maslov LN,Derkachev IA,et al.The effect of an adaptation to hypoxia on cardiac tolerance to ischemia/reperfusion[J].J Biomed Res,2023,37(4):230-254.
[27]Guo C,Huang Q,Wang Y,et al.Therapeutic application of natural products:NAD+ metabolism as potential target[J].Phytomedicine,2023,114:154768.
[28]Li W,Zhu L,Ruan ZB,et al.Nicotinamide protects chronic hypoxic myocardial cells through regulating mTOR pathway and inducing autophagy[J].Eur Rev Med Pharmacol Sci,2019,23(12):5503-5511.
[29]Stone PH,Libby P,Boden WE.Fundamental pathobiology of coronary atherosclerosis and clinical implications for chronic ischemic heart disease management—The plaque hypothesis[J]. JAMA Cardiol,2023,8(2):192-201.
[30]Zhou H,You P,Liu H,et al.Artemisinin and procyanidins loaded multifunctional nanocomplexes alleviate atherosclerosis via simultaneously modulating lipid influx and cholesterol efflux[J].J Control Release,2022,341:828-843.
[31]Cohn JN,Ferrari R,Sharpe N.Cardiac remodeling—Concepts and clinical implications:a consensus paper from an international forum on cardiac remodeling[J].J Am Coll Cardiol,2000,35(3):569-582.
[32]Schirone L,Forte M,Palmerio S,et al.A review of the molecular mechanisms underlying the development and progression of cardiac remodeling[J].Oxid Med Cell Longev,2017,2017:3920195.
[33]Goldman S,Raya TE.Rat infarct model of myocardial infarction and heart failure[J].J Card Fail,1995,1(2):169-177.
[34]Sciarretta S,Forte M,Frati G,et al.New insights into the role of mTOR signaling in the cardiovascular system[J].Circ Res,2018,122(3):489-505.
[35]Wang S,Zhao Y,Song J,et al.Total flavonoids from Anchusa Italica Retz.Improve cardiac function and attenuate cardiac remodeling post myocardial infarction in mice[J].J Ethnopharmacol,2020,257:112887.
[36]Sun TL,Li WQ,Tong XL,et al.Xanthohumol attenuates isoprenaline-induced cardiac hypertrophy and fibrosis through regulating PTEN/AKT/mTOR pathway[J].Eur J Pharmacol,2021,891:173690.
[37]Buss SJ,Muenz S,Riffel JH,et al.Beneficial effects of Mammalian target of rapamycin inhibition on left ventricular remodeling after myocardial infarction[J].J Am Coll Cardiol,2009,54(25):2435-2446.
[38]Stahli BE,Klingenberg R,Heg D,et al.Mammalian target of rapamycin inhibition in patients with ST-segment elevation myocardial infarction[J].J Am Coll Cardiol,2022,80(19):1802-1814.
[39]Cahill TJ,Choudhury RP,Riley PR.Heart regeneration and repair after myocardial infarction:translational opportunities for novel therapeutics[J].Nat Rev Drug Discov,2017,16(10):699-717.
[40]Gao G,Chen W,Yan M,et al.Rapamycin regulates the balance between cardiomyocyte[J].Int J Mol Med,2019,45(1):195-209.
[41]Zhang H,Zhao Y,Xia Z,et al.Metabolic profiles revealed anti-ischemia-reperfusion injury of Yangxinshi tablet in rats[J].J Ethnopharmacol,2018,214:124-133.
[42]Wu RM,Jiang B,Li H,et al.A network pharmacology approach to discover action mechanisms of Yangxinshi Tablet for improving energy metabolism in chronic ischemic heart failure[J].J Ethnopharmacol,2020,246:112227.
[43]Zheng J,Chen P,Zhong J,et al.HIF-1α in myocardial ischemia-reperfusion injury (Review)[J].Mol Med Rep,2021,23(5):352.
[44]Solomon SD,McMurray JJV,Claggett B.Dapagliflozin in heart failure with mildly reduced or preserved ejection fraction[J].N Engl J Med,2022,387(12):1089-1098.
[45]Wang K,Li Z,Sun Y,et al.Dapagliflozin improves cardiac function,remodeling,myocardial apoptosis,and inflammatory cytokines in mice with myocardial infarction[J].J Cardiovasc Transl Res,2022,15(4):786-796.
[46]Kassiotis C,Ballal K,Wellnitz K,et al.Markers of autophagy are downregulated in failing human heart after mechanical unloading[J].Circulation,2009,120(11 suppl):S191-S197.
[47]Ma H,Ma Y.Dapagliflozin inhibits ventricular remodeling in heart failure rats by activating autophagy through AMPK/mTOR pathway[J].Comput Math Methods Med,2022,2022:6260202.
收稿日期:2023-08-04