【摘要】 病理性疼痛是一種嚴(yán)重的慢性疾病,包括炎癥性疼痛、神經(jīng)病理性疼痛和癌性疼痛。大量研究證實(shí),雌激素及其受體與病理性疼痛之間密切相關(guān),對其發(fā)生和發(fā)展有著不可忽視的作用。結(jié)合近幾年國內(nèi)外相關(guān)文獻(xiàn),本文闡述了雌激素及其受體在病理性疼痛中作用機(jī)制的相關(guān)研究進(jìn)展,旨在為病理性疼痛的防治和治療提供理論依據(jù)并指導(dǎo)未來研究方向。
【關(guān)鍵詞】 雌激素;雌激素受體;炎癥性疼痛;神經(jīng)病理性疼痛;癌性疼痛
【中圖分類號】 R 441.1 【文獻(xiàn)標(biāo)識(shí)碼】 A DOI:10.12114/j.issn.1007-9572.2023.0377
Mechanism of Estrogen and Estrogen Receptors in Pathologic Pain
HE Bangjing1,ZHOU Mingwang2*,ZHANG Pengwei1
1.Gansu University of Chinese Medicine,Lanzhou 730000,China
2.Department of Orthopaedics,Gansu Hospital of Traditional Chinese Medicine,Lanzhou 730000,China
*Corresponding authors:ZHOU Mingwang,Professor;E-mail:zmw@126.com
【Abstract】 Pathologic pain is a serious chronic disease,including inflammatory pain,neuropathic pain and cancer pain. Previous studies have proved a close correlation of estrogen and its receptors with pathologic pain,which plays an important role in its occurrence and development,therefore,it has attracted the attention of many researchers at home and abroad. Combining the relevant literature at home and abroad in recent years,this paper reviews the relevant research progress of the mechanism of estrogen and its receptors in pathologic pain,in order to provide a theoretical basis for the prevention and treatment of pathologic pain,as well as the guidance for future research.
【Key words】 Estrogens;Estrogen receptor;Inflammatory pain;Neuropathic pain;Cancer pain
在2020年,國際疼痛學(xué)會(huì)再次修定對疼痛的定義,即“疼痛是一種與實(shí)際或潛在的組織損傷相關(guān)的不愉快的感覺和情緒情感體驗(yàn),或與此相似的經(jīng)歷[1]?!碧弁葱盘柋煌从X感受器檢測后產(chǎn)生興奮,經(jīng)由神經(jīng)纖維傳遞,接收到神經(jīng)纖維傳輸信號的背根神經(jīng)節(jié)(dorsal ganglia root,DRG),再將其輸送到中樞神經(jīng)系統(tǒng)而產(chǎn)生痛覺。病理性疼痛是臨床上常見的疼痛類型之一,分為炎癥性疼痛、神經(jīng)病理性疼痛和癌性疼痛,因其發(fā)生、發(fā)展過程中復(fù)雜的作用機(jī)制,使得在今后研究中尋找有價(jià)值的疼痛調(diào)控靶標(biāo)具有重要意義。既往針對動(dòng)物模型的研究發(fā)現(xiàn),與雄鼠相比,雌鼠常表現(xiàn)出痛覺過敏,補(bǔ)充雌激素可逆轉(zhuǎn)這一癥狀[2]。同時(shí),抑制或敲除雌激素受體可降低疼痛閾值[3]。在臨床研究中,疼痛引起的性別差異是眾所周知的,流行病學(xué)調(diào)查發(fā)現(xiàn),相比于男性,女性對痛覺的敏感度更高,耐受性更低,痛閾值更低[4-5],這種痛覺感受差異可能與性激素的不同有關(guān),而雌激素被認(rèn)為是影響感覺處理和轉(zhuǎn)導(dǎo)的重要因素。隨著對病理性疼痛研究的深入,雌激素相關(guān)性疼痛備受關(guān)注,但有關(guān)機(jī)制尚未明確,研究雌激素在病理性疼痛中的作用機(jī)制,可能為臨床制訂性別差異化診療方案提供依據(jù),以提高臨床治療效果,改善疼痛患者的生活質(zhì)量。故本文旨在闡述雌激素及其受體在病理性疼痛中的最新認(rèn)識(shí),對其在病理性疼痛發(fā)生、發(fā)展中的疼痛調(diào)控機(jī)制進(jìn)行綜述,以期為深入研究病理性疼痛提供思路。
1 雌激素及其受體概述
雌激素是一種類固醇激素,主要包括雌酮(Estrone,E1)、17β-雌二醇(17β-estradiol,E2)和雌三醇(Estriol,E3)。E1在體內(nèi)含量最少,主要由卵巢顆粒細(xì)胞合成;E2在體內(nèi)含量豐富,作用最強(qiáng),對周圍細(xì)胞和組織具有調(diào)控作用,主要由卵巢顆粒細(xì)胞產(chǎn)生。絕經(jīng)后卵巢停止產(chǎn)生E2,性腺外位點(diǎn)可產(chǎn)生E2,如乳腺的間充質(zhì)細(xì)胞、成骨細(xì)胞、軟骨細(xì)胞等。睪酮和雄烯二酮通過芳香化酶催化而產(chǎn)生的E1和E2是雌激素的重要來源之一,此外神經(jīng)元和星形膠質(zhì)細(xì)胞也可通過表達(dá)芳香化酶而產(chǎn)生雌激素[6];E3是體內(nèi)E2的代謝物,存在于尿液中,主要在妊娠期女性的胎盤中產(chǎn)生。雌激素同時(shí)也對體內(nèi)其他生理功能有調(diào)節(jié)作用,包括對免疫系統(tǒng)(如中性粒細(xì)胞、巨噬細(xì)胞、肥大細(xì)胞)和神經(jīng)系統(tǒng)(如小膠質(zhì)細(xì)胞、星形膠質(zhì)細(xì)胞)的調(diào)節(jié),以及對感覺、認(rèn)知、情緒等精神活動(dòng)的調(diào)節(jié)[7]。
雌激素與特定的雌激素受體(estrogen receptor,ER)結(jié)合發(fā)揮功能,根據(jù)分布位置被分為核受體(nER)和膜受體(mER)。nER主要包括ERα和ERβ兩種,由不同基因編碼而成,在各個(gè)組織中均有表達(dá),ERα在子宮和垂體中水平最高,ERβ在卵巢(僅在顆粒細(xì)胞)、肺和前列腺中水平最高,這提示ERα和ERβ可能因組織分布不同而存在功能差異,但在腦組織中均參與痛覺傳遞和痛覺抑制[8]。G蛋白偶聯(lián)雌激素受體(G-protein coupled estrogen receptor,GPER)屬于mER,與其他雌激素受體相比,GPER對E2具有較低的結(jié)合親和力,這可能與GPER對雌激素的快速反應(yīng)和第二信使介導(dǎo)的細(xì)胞內(nèi)信號級聯(lián)的激活有關(guān)[9],GPER既可參與炎癥性疼痛介導(dǎo)的外周敏化,又可參與神經(jīng)性疼痛中的神經(jīng)元致敏和神經(jīng)炎癥反應(yīng)[10]。
2 雌激素及其受體對炎癥性疼痛的調(diào)節(jié)作用
2.1 炎癥性疼痛的機(jī)制概述
炎癥性疼痛主要由有毒化學(xué)物質(zhì)和機(jī)械、熱刺激激活外周傷害感受器引起,主要表現(xiàn)為痛覺過敏和異常疼痛。外周組織損傷通過觸發(fā)免疫細(xì)胞釋放一系列炎癥介質(zhì)誘導(dǎo)炎癥反應(yīng),這些介質(zhì)與傷害性神經(jīng)元上表達(dá)的受體結(jié)合,導(dǎo)致神經(jīng)元過度興奮,從而進(jìn)一步將傷害性信號傳遞給DRG、脊髓背角和大腦,有助于感知疼痛的誘導(dǎo)和維持。此外,炎癥介質(zhì)誘導(dǎo)瞬態(tài)電壓感受器相關(guān)離子通道敏化而導(dǎo)致周圍敏化。雌激素可通過ER參與炎癥介質(zhì)(如營養(yǎng)因子、細(xì)胞因子、趨化因子)和相關(guān)離子通道的表達(dá)來調(diào)控炎癥性疼痛的形成、產(chǎn)生、維持及緩解。
2.2 雌激素通過ER參與炎癥介質(zhì)的表達(dá)調(diào)控炎癥性疼痛
神經(jīng)生長因子(nerve growth factor,NGF)是一種在外周組織中產(chǎn)生的神經(jīng)營養(yǎng)因子,也是參與炎癥性疼痛的重要炎癥介質(zhì)。E2通過細(xì)胞外調(diào)節(jié)蛋白激酶(MEK/ERK)1/2信號通路顯著降低NGF的表達(dá)和釋放,調(diào)節(jié)痛覺過敏的形成,即使在轉(zhuǎn)化生長因子β1或白細(xì)胞介素1β的刺激下也是如此[11]?;ㄉ南┧岜画h(huán)氧化酶(COX)2代謝成為前列腺素E2(PGE2)以促進(jìn)炎性細(xì)胞的活化和遷移,并通過其受體直接觸發(fā)痛覺感受器,E2可通過上調(diào)COX-2的表達(dá)來增加PGE2的轉(zhuǎn)化以維持炎癥性疼痛的產(chǎn)生[12]。雌激素缺乏可激活NOD樣受體熱蛋白結(jié)構(gòu)域相關(guān)蛋白3(NOD-like receptor thermoprotein domain 3,NLRP3)炎癥小體,促進(jìn)炎癥因子產(chǎn)生,增強(qiáng)痛感[13]。趨化因子(CCL)可通過直接激活傷害感受性感覺神經(jīng)元而參與炎癥性疼痛的啟動(dòng)和維持。在ER或芳香化酶的敲除小鼠模型中,雌激素轉(zhuǎn)導(dǎo)途徑中的擾動(dòng)降低了趨化因子配體(CXCL)13/趨化因子受體(CXCR)5的表達(dá),削弱了p38磷酸化,減少Nav1.8電流密度進(jìn)而不能維持炎癥性疼痛[14-15]。雌激素通過下調(diào)P物質(zhì)、促炎細(xì)胞因子(IL-1β、腫瘤壞死因子α和IL-6等)在椎間盤中的表達(dá)而起到抗炎和抗痛覺過敏作用[16]。雌激素通過作用于ER以削弱IL-23對雌性小鼠DRG中誘導(dǎo)的p38磷酸化,進(jìn)而抑制炎癥因子級聯(lián)反應(yīng)減輕疼痛[17-18]。
2.3 雌激素通過ER參與相關(guān)離子通道的表達(dá)調(diào)控炎癥性疼痛
瞬時(shí)受體電位香草酸亞型1(transient receptor potential vanilloid subfamily 1,TRPV1)是在感覺神經(jīng)元上表達(dá)的陽離子通道,在炎癥性疼痛發(fā)生機(jī)制中起到重要作用。E2以劑量依賴性方式上調(diào)TRPV1的表達(dá)來參與炎癥性疼痛的產(chǎn)生[19]。外周5-羥色胺(5-hydroxytryptamine,5-HT)可增加炎癥反應(yīng),從而發(fā)揮傷害性作用,5-HT受體可以作用于表達(dá)TRPV1通道的感覺神經(jīng)元,促進(jìn)該通道的磷酸化而增強(qiáng)外周敏化[20]。研究發(fā)現(xiàn),E2通過ERβ和信號調(diào)節(jié)激酶(MAPK/ERK)信號通路下調(diào)質(zhì)膜單胺轉(zhuǎn)運(yùn)蛋白的基因表達(dá)以減少5-HT再攝取從而緩解痛覺[21]。另有研究表明,PGE2還可增強(qiáng)TRPV1的表達(dá)、細(xì)胞表面和軸突運(yùn)輸,從而增強(qiáng)該受體的活性[22]。
3 雌激素及其受體與神經(jīng)病理性疼痛
3.1 神經(jīng)病理性疼痛的機(jī)制概述
神經(jīng)病理性疼痛被定義為由軀體感覺系統(tǒng)病變或疾病引起的疼痛[23],其機(jī)制涉及到外周和中樞兩方面,前者是神經(jīng)纖維末端受到損傷、毒素、藥物、炎癥介質(zhì)等影響后,神經(jīng)纖維密度改變,致使神經(jīng)元興奮而刺激神經(jīng)性疼痛的發(fā)生,并誘導(dǎo)突觸受體通道表達(dá)和組成的改變,導(dǎo)致異常信號傳輸以維持痛覺。此外,有些細(xì)胞(膠質(zhì)細(xì)胞和自主神經(jīng)元)可以通過改變其數(shù)量、通道表達(dá)等來誘導(dǎo)痛覺過敏;后者是在強(qiáng)烈或持續(xù)刺激下,中樞神經(jīng)系統(tǒng)的傷害性感受器離子通道表達(dá)增加而下調(diào)痛閾值和提高疼痛敏感度。此外,小膠質(zhì)細(xì)胞和星形膠質(zhì)細(xì)胞被附近神經(jīng)元釋放的興奮性神經(jīng)遞質(zhì)激活而釋放營養(yǎng)因子和促炎細(xì)胞因子,參與神經(jīng)病理性疼痛的形成和維持[24]。雌激素通過外周和中樞機(jī)制實(shí)現(xiàn)對神經(jīng)病理性疼痛的調(diào)控。
3.2 雌激素通過作用于外周神經(jīng)調(diào)控神經(jīng)病理性疼痛
既往有研究利用多種嚙齒類動(dòng)物模型,探究其啟動(dòng)和維持的外周機(jī)制,如神經(jīng)損傷模型(spared nerve injury,SNI)、坐骨神經(jīng)慢性壓迫模型(chronic construction injury,CCI)和脊神經(jīng)結(jié)扎模型(spinal nerve ligation,SNL)[25-27]。E2通過上調(diào)OVX大鼠DRG中電壓門控氯離子通道3的表達(dá)來減弱SNI誘導(dǎo)的神經(jīng)元興奮性,并顯著改善SNIOVX大鼠的冷痛閾值[25]。E2能顯著降低CCI模型大鼠的機(jī)械和熱痛閾值,且這種增加敏感性的機(jī)制可能與DRG中N-甲基-D-天冬氨酸受體1(NMDAR1)表達(dá)的上調(diào)有關(guān),提示雌激素可能通過調(diào)控NMDAR1的表達(dá)在周圍神經(jīng)疼痛中參與痛覺過敏和異常疼痛的產(chǎn)生和維持[26]。研究證實(shí)ERβ選擇性激動(dòng)劑在神經(jīng)性疼痛的SNL模型中具有抗過敏作用,同時(shí)也緩解了化療(紫杉醇、奧沙利鉑和長春新堿)誘導(dǎo)的神經(jīng)性疼痛異常[27]。
3.3 雌激素通過作用于中樞神經(jīng)調(diào)控神經(jīng)病理性疼痛
中樞神經(jīng)系統(tǒng)內(nèi)的神經(jīng)病理學(xué)變化,包括神經(jīng)炎癥和神經(jīng)元興奮性增加,是由神經(jīng)-神經(jīng)膠質(zhì)細(xì)胞傳輸改變驅(qū)動(dòng)的。脊髓丘腦束損傷后谷氨酸水平顯著增加,伴隨出現(xiàn)異常疼痛和痛覺過敏,施用E2可降低同側(cè)下丘腦腹側(cè)后外側(cè)細(xì)胞核中的谷氨酸水平,并顯著增加機(jī)械性異常痛和熱痛覺過敏閾值以減輕疼痛[28]。神經(jīng)發(fā)生病變后會(huì)影響脊髓神經(jīng)元特性,從而改變其離子通道表達(dá)水平。例如,5-HT受體參與組織受損和神經(jīng)病變后的疼痛促進(jìn)[29],E2通過ERα調(diào)節(jié)5-HT 2A受體和TRPV1共表達(dá),加劇傷害性疼痛行為和疼痛信號傳導(dǎo)[30]。腦源性神經(jīng)營養(yǎng)因子(brain-derived neurotrophic factor,BDNF)是周圍和中樞神經(jīng)系統(tǒng)疼痛傳遞中的關(guān)鍵神經(jīng)調(diào)節(jié)劑,雌激素可增加BDNF的蛋白水平,增強(qiáng)BDNF/TrkB信號傳導(dǎo)參與疼痛反應(yīng)[31]。BDNF除作用于小膠質(zhì)細(xì)胞外,還可抑制突觸前GABAA受體,減少突觸前抑制,引起神經(jīng)元自發(fā)活動(dòng)[32]。在大鼠SNL模型,發(fā)現(xiàn)突觸后抑制電流減弱和突觸前G蛋白門控內(nèi)向整流鉀離子通道表達(dá)減少也會(huì)出現(xiàn)類似的去抑制效應(yīng)[33-34]。E2通過降低電容、減少瞬態(tài)和持續(xù)鉀電流,并改變瞬態(tài)電流的電壓依賴性和動(dòng)力學(xué)來增強(qiáng)神經(jīng)元中GABA和AMPA突觸電導(dǎo)的去極化反應(yīng)[35]。由損傷神經(jīng)元和被激活神經(jīng)膠質(zhì)細(xì)胞介導(dǎo)的炎癥介質(zhì)可以影響神經(jīng)病理性疼痛的中樞神經(jīng)系統(tǒng)病理變化,例如,背角神經(jīng)元在大鼠CCI模型中顯示CCL13/CCR5的表達(dá)升高;干擾素γ可促使小膠質(zhì)細(xì)胞發(fā)生活;在大鼠SNL模型,發(fā)現(xiàn)星形膠質(zhì)細(xì)胞和CD4+T細(xì)胞大量分泌IL-17。E2可通過調(diào)節(jié)CCL、促炎因子、神經(jīng)膠質(zhì)細(xì)胞參與中樞神經(jīng)系統(tǒng)疼痛傳導(dǎo)來促進(jìn)神經(jīng)病理性疼痛的形成和維持[15,36-38]。
4 雌激素及其受體與癌性疼痛
4.1 癌性疼痛的機(jī)制概述
癌性疼痛被定義為由原發(fā)癌癥本身或腫瘤轉(zhuǎn)移引起的疼痛。骨癌痛是一種既有炎癥性疼痛又有神經(jīng)性疼痛成分的復(fù)雜痛覺狀態(tài)。目前研究最常見的動(dòng)物模型是骨癌痛模型。骨癌痛是臨床上常見的疼痛類型之一,60%~84%的晚期癌癥患者皆經(jīng)歷不同程度的骨痛。癌細(xì)胞轉(zhuǎn)移到骨骼,患者所經(jīng)歷的疼痛機(jī)制是復(fù)雜的,其涉及炎癥細(xì)胞、腫瘤細(xì)胞、骨細(xì)胞、基質(zhì)細(xì)胞和神經(jīng)元之間的相互作用[39]。
4.2 雌激素通過ER作用于細(xì)胞和離子通道調(diào)控骨癌痛
破骨細(xì)胞和腫瘤細(xì)胞將產(chǎn)生的H+釋放到細(xì)胞外,以營造酸性環(huán)境激活酸敏感離子通道(如TRPV1),刺激基質(zhì)細(xì)胞產(chǎn)生并釋放生長因子(NGF、BDNF)和促炎介質(zhì)(IL-1β、IL-6)[40-41],刺激巨噬細(xì)胞產(chǎn)生促炎細(xì)胞因子(IL-1β、IL-6、TNF-α)和前列腺素[42],通過與感覺神經(jīng)元上的受體結(jié)合來誘導(dǎo)疼痛[43]。有研究證實(shí),骨癌痛模型中腫瘤細(xì)胞釋放的胰島素樣生長因子1的增加與DRG神經(jīng)元中TRPV1通道的表達(dá)與活化相關(guān)[44]。結(jié)合前述,雌激素可通過調(diào)控TRPV1通道的激活來參與骨癌痛的形成和發(fā)展。
E2和GPER選擇性配體G-1觸發(fā)了GPER/EGFR/ERK/c-fos信號通路,通過上調(diào)缺氧誘導(dǎo)因子導(dǎo)致血管內(nèi)皮生長因子(VEGF)增加[45],并通過該信號通路加劇骨癌痛[46]。ERα可以通過CCL2/CCR2信號通路以促進(jìn)癌細(xì)胞遷移并將免疫抑制細(xì)胞招募到腫瘤微環(huán)境中,同時(shí)還可以經(jīng)CXCL12/CXCR4信號通路激活星形膠質(zhì)細(xì)胞活化和增加芳香化酶的表達(dá),這些有助于骨癌痛的發(fā)展和維持[47-50]。GPER通過促進(jìn)谷氨酸能神經(jīng)元中鈣/鈣調(diào)蛋白依賴性蛋白激酶Ⅱα的功能性上調(diào)和增加谷氨酸受體1亞基對興奮性突觸的聚集以促進(jìn)興奮性傳遞和上調(diào)α1亞基和下調(diào)γ2亞基來減少脊髓中的抑制性傳遞以促進(jìn)骨癌痛的發(fā)展[51]。雌激素受體相關(guān)受體α(estrogenreceptor-relatedreceptor α,ERRα)通過上調(diào)破骨細(xì)胞生成抑制劑骨蛋白和VEGF,促進(jìn)腫瘤細(xì)胞局部生長,但抑制乳腺癌細(xì)胞在骨中的增殖及破骨細(xì)胞的分化和活性,進(jìn)而限制骨腫瘤的發(fā)生[52]。
進(jìn)一步研究發(fā)現(xiàn),ERRα可能通過ERRα介導(dǎo)的趨化因子(CCL17和CCL20)的誘導(dǎo)和TGF-β3的降低來激活骨微環(huán)境中的免疫反應(yīng),抑制了腫瘤細(xì)胞在骨中錨固后乳腺癌細(xì)胞的生長[53]。然而,對于去勢抵抗性前列腺癌的研究發(fā)現(xiàn),過表達(dá)ERRα顯著增加了骨中前列腺癌和轉(zhuǎn)移的進(jìn)展,機(jī)制研究顯示,該受體通過增加轉(zhuǎn)移因子(如VEGF-A、Wnt蛋白家庭成員5a、T轉(zhuǎn)化生長因子β1)的表達(dá),并產(chǎn)生有利于生長的腫瘤環(huán)境,從而增強(qiáng)骨重塑[54]。因此,在不同的癌癥類型或骨轉(zhuǎn)移階段,ERRα的功能似乎不一致,甚至相反的原因是一個(gè)有待探索的關(guān)鍵課題。
5 總結(jié)與展望
目前隨著老齡化人口的逐年增多,退行性疾病和相應(yīng)慢性病的患病率也同時(shí)上升,導(dǎo)致病理性疼痛的發(fā)病率日趨增高,逐漸成為一大難題。臨床上常用的阿片類鎮(zhèn)痛藥物僅能暫緩患者的疼痛,且具有成癮、耐受等不良反應(yīng),因此開發(fā)新型鎮(zhèn)痛藥物迫在眉睫。近年來,諸多研究者繼續(xù)深入探討其具體機(jī)制,臨床研究和流行病學(xué)調(diào)查顯示,病理性疼痛的發(fā)生、發(fā)展與雌激素及其受體存在密切關(guān)聯(lián),雌激素及其受體是否可作為新型鎮(zhèn)痛靶點(diǎn)而廣受關(guān)注。然而,研究發(fā)現(xiàn)雌激素在病理性疼痛的作用機(jī)制繁多,甚至有些還存在相反的作用,因此,進(jìn)一步明確雌激素調(diào)節(jié)疼痛的信號通路從而篩選出關(guān)鍵靶點(diǎn)來治療和預(yù)防病理性疼痛,以及開發(fā)出相應(yīng)的鎮(zhèn)痛藥物在病理性疼痛研究中至關(guān)重要。本文從炎癥性疼痛、神經(jīng)病理性疼痛和癌性疼痛三方面概述了雌激素及其受體在其中的疼痛調(diào)控機(jī)制,以期為繼續(xù)深入研究病理性疼痛提供參考。
作者貢獻(xiàn):何幫靖提出研究選題方向、搜集及整理相關(guān)文獻(xiàn),并撰寫論文初稿;張朋威負(fù)責(zé)論文的修訂;周明旺負(fù)責(zé)文章的質(zhì)量控制及審校,并對文章整體負(fù)責(zé);所有作者確認(rèn)了論文的最終稿。
本文無利益沖突。
參考文獻(xiàn)
宋學(xué)軍,樊碧發(fā),萬有,等. 國際疼痛學(xué)會(huì)新版疼痛定義修訂簡析[J]. 中國疼痛醫(yī)學(xué)雜志,2020,26(9):641-644. DOI:10.3969/j.issn.1006-9852.2020.09.001.
ZHANG W X,WU H,XU Q,et al. Estrogen modulation of pain perception with a novel 17β-estradiol pretreatment regime in ovariectomized rats[J]. Biol Sex Differ,2020,11(1):2. DOI:10.1186/s13293-019-0271-5.
LI L L,F(xiàn)AN X T,WARNER M,et al. Ablation of estrogen receptor alpha or beta eliminates sex differences in mechanical pain threshold in normal and inflamed mice[J]. Pain,2009,143(1/2):37-40. DOI:10.1016/j.pain.2009.01.005.
張雨桐,王姿雯,杜佳蓉,等. 雌激素參與慢性痛的性別差異[J]. 中國疼痛醫(yī)學(xué)雜志,2018,24(7):536-541. DOI:10.3969/j.issn.1006-9852.2018.07.012
LABASTIDA-RAMíREZ A,RUBIO-BELTRáN E,VILLALóN C M,et al. Gender aspects of CGRP in migraine[J]. Cephalalgia,2019,39(3):435-444. DOI:10.1177/0333102417739584.
SALDANHA C J,DUNCAN K A,WALTERS B J. Neuroprotective actions of brain aromatase[J]. Front Neuroendocrinol,2009,
30(2):106-118. DOI:10.1016/j.yfrne.2009.04.016.
SANTEN R J,SIMPSON E. History of estrogen: its purification,structure,synthesis,biologic actions,and clinical implications[J]. Endocrinology,2019,160(3):605-625. DOI:10.1210/en.2018-00529.
LU H,OZAWA H,NISHI M,et al. Serotonergic neurones in the dorsal raphe nucleus that project into the medial preoptic area contain oestrogen receptor beta[J]. J Neuroendocrinol,2001,13(10):839-845. DOI:10.1046/j.1365-2826.2001.00695.x.
ALEXANDER S P,CHRISTOPOULOS A,DAVENPORT A P,
et al. The concise guide to pharmacology 2021/22:g protein-coupled receptors[J]. Br J Pharmacol,2021,178(Suppl 1):S27-156. DOI:10.1111/bph.15538.
XU Z Z,XIE W L,F(xiàn)ENG Y Q,et al. Positive interaction between GPER and β-alanine in the dorsal root ganglion uncovers potential mechanisms: mediating continuous neuronal sensitization and neuroinflammation responses in neuropathic pain[J].
J Neuroinflammation,2022,19(1):164. DOI:10.1186/s12974-022-02524-9.
SHANG X S,ZHANG L R,JIN R L,et al. Estrogen regulation of the expression of pain factor NGF in rat chondrocytes[J]. J Pain Res,2021(14):931-940. DOI:10.2147/JPR.S297442.
GOROWSKA-WOJTOWICZ E,DULIBAN M,KOTULA-BALAK M,et al. Modulatory effects of estradiol and its mixtures with ligands of GPER and PPAR on MAPK and PI3K/Akt signaling pathways and tumorigenic factors in mouse testis explants and mouse tumor leydig cells[J]. Biomedicines,2022,10(6):1390. DOI:10.3390/biomedicines10061390.
JIANG N,AN J Y,YANG K,et al. NLRP3 inflammasome:a new target for prevention and control of osteoporosis?[J]. Front Endocrinol (Lausanne),2021,12:752546. DOI:10.3389/fendo.2021.752546.
DRAGIN N,NANCY P,VILLEGAS J,et al. Balance between estrogens and proinflammatory cytokines regulates chemokine production involved in thymic germinal center formation[J]. Sci Rep,2017,7(1):7970. DOI:10.1038/s41598-017-08631-5.
WU X B,CAO D L,ZHANG X,et al. CXCL13/CXCR5 enhances sodium channel Nav1.8 current density via p38 MAP kinase in primary sensory neurons following inflammatory pain[J]. Sci Rep,2016,6:34836. DOI:10.1038/srep34836.
SONG X X,JIN L Y,LI X F,et al. Substance P mediates estrogen modulation proinflammatory cytokines release in intervertebral disc[J]. Inflammation,2021,44(2):506-517. DOI:10.1007/s10753-020-01347-1.
JI J,HE Q R,LUO X,et al. IL-23 enhances C-fiber-mediated and blue light-induced spontaneous pain in female mice[J]. Front Immunol,2021,12:787565. DOI:10.3389/fimmu.2021.787565.
王芷,宋小星,張富軍. 雌激素調(diào)控去勢小鼠疼痛的炎癥機(jī)制[J]. 上海交通大學(xué)學(xué)報(bào)(醫(yī)學(xué)版),2017,37(7):936-941. DOI:10.3969/j.issn.1674-8115.2017.07.009
POHóCZKY K,KUN J,SZALONTAI B,et al. Estrogen-dependent up-regulation of TRPA1 and TRPV1 receptor proteins in the rat endometrium[J]. J Mol Endocrinol,2016,56(2):135-149. DOI:10.1530/JME-15-0184.
KAUR S,MCDONALD H,TONGKHUYA S,et al. Estrogen exacerbates the nociceptive effects of peripheral serotonin on rat trigeminal sensory neurons[J]. Neurobiol Pain,2021,10:100073. DOI:10.1016/j.ynpai.2021.100073.
GU Y,ZHANG N X,ZHU S J,et al. Estradiol reduced 5-HT reuptake by downregulating the gene expression of Plasma Membrane Monoamine Transporter (PMAT,Slc29a4) through estrogen receptor β and the MAPK/ERK signaling pathway[J]. Eur J Pharmacol,2022,924:174939. DOI:10.1016/j.ejphar.2022.174939.
MA W,ST-JACQUES B,RUDAKOU U,et al. Stimulating TRPV1 externalization and synthesis in dorsal root ganglion neurons contributes to PGE2 potentiation of TRPV1 activity and nociceptor sensitization[J]. Eur J Pain,2017,21(4):575-593. DOI:10.1002/ejp.959.
COLLOCA L,LUDMAN T,BOUHASSIRA D,et al. Neuropathic pain[J]. Nat Rev Dis Primers,2017,3:17002. DOI:10.1038/nrdp.2017.2.
MEACHAM K,SHEPHERD A,MOHAPATRA D P,et al. Neuropathic pain:central vs. peripheral mechanisms[J]. Curr Pain Headache Rep,2017,21(6):28. DOI:10.1007/s11916-017-0629-5.
XU Z Z,CHEN Q Y,DENG S Y,et al. 17β-estradiol attenuates neuropathic pain caused by spared nerve injury by upregulating CIC-3 in the dorsal root ganglion of ovariectomized rats[J]. Front Neurosci,2019,13:1205. DOI:10.3389/fnins.2019.01205.
DENG C,GU Y J,ZHANG H,et al. Estrogen affects neuropathic pain through upregulating N-methyl-D-aspartate acid receptor 1 expression in the dorsal root ganglion of rats[J]. Neural Regen Res,2017,12(3):464-469. DOI:10.4103/1673-5374.202925.
MA J N,MCFARLAND K,OLSSON R,et al. Estrogen receptor beta selective agonists as agents to treat chemotherapeutic-induced neuropathic pain[J]. ACS Chem Neurosci,2016,7(9):1180-1187. DOI:10.1021/acschemneuro.6b00183.
NADERI A,ASGARI A R,ZAHED R,et al. Estradiol attenuates spinal cord injury-related central pain by decreasing glutamate levels in thalamic VPL nucleus in male rats[J]. Metab Brain Dis,2014,29(3):763-770. DOI:10.1007/s11011-014-9570-z.
GUO W,MIYOSHI K,DUBNER R,et al. Spinal 5-HT3 receptors mediate descending facilitation and contribute to behavioral hypersensitivity via a reciprocal neuron-glial signaling cascade[J]. Mol Pain,2014,10:35. DOI:10.1186/1744-8069-10-35.
KAUR S,HICKMAN T M,LOPEZ-RAMIREZ A,et al. Estrogen modulation of the pronociceptive effects of serotonin on female rat trigeminal sensory neurons is timing dependent and dosage dependent and requires estrogen receptor alpha[J]. Pain,2022,163(8):e899-916. DOI:10.1097/j.pain.0000000000002604.
CHEN J H,SUN Y,JU P J,et al. Estrogen augmented visceral pain and colonic neuron modulation in a double-hit model of prenatal and adult stress[J]. World J Gastroenterol,2021,27(30):5060-5075. DOI:10.3748/wjg.v27.i30.5060.
ZHOU L J,YANG T,WEI X,et al. Brain-derived neurotrophic factor contributes to spinal long-term potentiation and mechanical hypersensitivity by activation of spinal microglia in rat[J]. Brain Behav Immun,2011,25(2):322-334. DOI:10.1016/j.bbi.2010.09.025.
IMLACH W L,BHOLA R F,MOHAMMADI S A,et al. Glycinergic dysfunction in a subpopulation of dorsal horn interneurons in a rat model of neuropathic pain[J]. Sci Rep,2016,6:37104. DOI:10.1038/srep37104.
LYU C,MULDER J,BARDE S,et al. G protein-gated inwardly rectifying potassium channel subunits 1 and 2 are down-regulated in rat dorsal root ganglion neurons and spinal cord after peripheral axotomy[J]. Mol Pain,2015,11:44. DOI:10.1186/s12990-015-0044-z.
DEFAZIO R A,NAVARRO M A,ADAMS C E,et al. Estradiol enhances the depolarizing response to GABA and AMPA synaptic conductances in arcuate kisspeptin neurons by diminishing voltage-gated potassium currents[J]. J Neurosci,2019,39(48):9532-9545. DOI:10.1523/JNEUROSCI.0378-19.2019.
SALEM M L,HOSSAIN M S,NOMOTO K. Mediation of the immunomodulatory effect of beta-estradiol on inflammatory responses by inhibition of recruitment and activation of inflammatory cells and their gene expression of TNF-alpha and IFN-gamma[J]. Int Arch Allergy Immunol,2000,121(3):235-245. DOI:10.1159/000024323.
LEE J Y,CHOI H Y,JU B G,et al. Estrogen alleviates neuropathic pain induced after spinal cord injury by inhibiting microglia and astrocyte activation[J]. Biochim Biophys Acta Mol Basis Dis,2018,1864(7):2472-2480. DOI:10.1016/j.bbadis.2018.04.006.
劉艷敏,費(fèi)以琳,黎星淼,等. 雌激素促進(jìn)星形膠質(zhì)細(xì)胞系U-87增殖和侵襲[J]. 基礎(chǔ)醫(yī)學(xué)與臨床,2020,40(3):305-309. DOI:10.3969/j.issn.1001-6325.2020.03.005.
ZAJ?CZKOWSKA R,KOCOT-K?PSKA M,LEPPERT W,et al. Bone pain in cancer patients: mechanisms and current treatment[J]. Int J Mol Sci,2019,20(23):6047. DOI:10.3390/ijms20236047.
YONEDA T,HIASA M,NAGATA Y,et al. Acidic microenvironment and bone pain in cancer-colonized bone[J]. Bonekey Rep,2015,4:690. DOI:10.1038/bonekey.2015.58.
YONEDA T,HIASA M,OKUI T,et al. Sensory nerves: A driver of the vicious cycle in bone metastasis?[J]. J Bone Oncol,2021,30:100387. DOI:10.1016/j.jbo.2021.100387.
QUAIL D F,JOYCE J A. Microenvironmental regulation of tumor progression and metastasis[J]. Nat Med,2013,19(11):1423-1437. DOI:10.1038/nm.3394.
BARAL P,UDIT S,Chiu IM. Pain and immunity:implications for host defence[J]. Nat Rev Immunol,2019,19(7):433-447. DOI:10.1038/s41577-019-0147-2.
LI Y,CAI J,HAN Y,et al. Enhanced function of TRPV1 via up-regulation by insulin-like growth factor-1 in a rat model of bone cancer pain[J]. Eur J Pain,2014,18(6):774-784. DOI:10.1002/j.1532-2149.2013.00420.x.
DE FRANCESCO E M,PELLEGRINO M,SANTOLLA M F,et al. GPER mediates activation of HIF1α/VEGF signaling by estrogens[J]. Cancer Res,2014,74(15):4053-4064. DOI:10.1158/0008-5472.CAN-13-3590.
ZHANG Z L,DENG M L,HUANG J J,et al. Microglial annexin A3 downregulation alleviates bone cancer-induced pain through inhibiting the Hif-1α/vascular endothelial growth factor signaling pathway[J]. Pain,2020,161(12):2750-2762. DOI:10.1097/j.pain.0000000000001962.
SMEESTER B A,O'BRIEN E E,MICHLITSCH K S,et al. The relationship of bone-tumor-induced spinal cord astrocyte activation and aromatase expression to mechanical hyperalgesia and cold hypersensitivity in intact female and ovariectomized mice[J]. Neuroscience,2016,324:344-354. DOI: 10.1016/j.neuroscience.2016.03.030.
XU M S,WANG Y,XIA R L,et al. Role of the CCL2-CCR2 signalling axis in cancer:mechanisms and therapeutic targeting[J]. Cell Prolif,2021,54(10):e13115. DOI:10.1111/cpr.13115.
SHEN W,HU X M,LIU Y N,et al. CXCL12 in astrocytes contributes to bone cancer pain through CXCR4-mediated neuronal sensitization and glial activation in rat spinal cord[J]. J Neuroinflammation,2014,11:75. DOI:10.1186/1742-2094-11-75.
HE M,YU W W,CHANG C,et al. Estrogen receptor α promotes lung cancer cell invasion via increase of and cross-talk with infiltrated macrophages through the CCL2/CCR2/MMP9 and CXCL12/CXCR4 signaling pathways[J]. Mol Oncol,
2020,14(8):1779-1799. DOI:10.1002/1878-0261.12701.
LUO J,HUANG X X,LI Y L,et al. GPR30 disrupts the balance of GABAergic and glutamatergic transmission in the spinal cord driving to the development of bone cancer pain[J]. Oncotarget,2016,7(45):73462-73472. DOI:10.18632/oncotarget.11867.
FRADET A,AOREL H,BOUAZZA L,et al. Dual function of ERRα in breast cancer and bone metastasis formation:implication of VEGF and osteoprotegerin[J]. Cancer Res,2011,71(17):5728-5738. DOI:10.1158/0008-5472.
MATHILDE B,ALEXANDRA L,CYRIL B,et al. ERRα expression in bone metastases leads to an exacerbated antitumor immune response[J]. Cancer Res,2020,80(13):2914-2926.
FRADET A,BOUCHET M,DELLIAUX C,et al. Estrogen related receptor alpha in castration-resistant prostate cancer cells promotes tumor progression in bone[J]. Oncotarget,2016,7(47):77071-77086. DOI:10.18632/oncotarget.12787.
(收稿日期:2023-08-14;修回日期:2023-09-05)
(本文編輯:曹新陽)