摘 要:農(nóng)藥的廣泛高劑量使用對生物產(chǎn)生嚴(yán)重的毒性作用,造成嚴(yán)重的土壤污染和水污染。農(nóng)藥污染問題日益突出,迫切需要經(jīng)濟(jì)、有效的農(nóng)藥污染土壤修復(fù)處理技術(shù)加以解決。生物炭具有比表面積大、孔隙度高、吸附能力強(qiáng)等特點(diǎn),可以吸附污染土壤中的農(nóng)藥,改善土壤狀況,是一種具有廣闊應(yīng)用前景的生物材料。近年來,人們通過制備改性生物炭來提高生物炭的理化性能和吸附性能,為生物炭的應(yīng)用開辟了新道路。詳細(xì)闡述了生物炭的特性、新煙堿類農(nóng)藥的危害、生物炭對新煙堿類農(nóng)藥的吸附以及生物炭再生方法,以期為修復(fù)新煙堿類農(nóng)藥污染提供一定的參考和指導(dǎo)。此外,通過比較生物炭再生方法,為今后選擇經(jīng)濟(jì)、有效、簡便的生物炭再生應(yīng)用提供參考。
關(guān)鍵詞:生物炭; 新煙堿類農(nóng)藥; 吸附; 生物炭再生
中圖分類號:S156.2 " " " 文獻(xiàn)標(biāo)識碼:A " " 文章編號:1002-204X(2024)01-0033-09
doi:10.3969/j.issn.1002-204x.2024.01.009
Adsorption Performance and Environmental Application Evaluation of Biochar for Neonicotinoid Pesticides
Zhang Yan1,2, Liu Chang2, Zhao Rui1,2, Ma Jianhua1,2, Bi Jiangtao3*
(1.School of Agriculture, Ningxia University, Yinchuan, Ningxia 750021; 2.Institute of Plant Protection, Ningxia Academy of Agriculture and Forestry Sciences, Yinchuan, Ningxia 750002; 3.School of Ecology and Environment, Ningxia University, Yinchuan, Ningxia 750021)
Abstract With the development of agricultural modernization, many pesticides have been applied to fields. The extensive and high-dose use of pesticides has produced serious toxic effects on organisms, resulting in serious soil and water pollution. The problem of pesticide pollution is becoming more and more serious. Therefore, economic and effective remediation technology of pesticide-contaminated soil is urgently needed. Biochar has the characteristics of large specific surface area, high porosity and strong adsorption capacity, which can adsorb pesticides in polluted soil and improve soil conditions. It is a kind of biomaterial with broad development prospects. In recent years, people have improved the physical and chemical properties and adsorption properties of biochar by preparing modified biochar, which has opened up a new way for the application of biochar. In this paper, the characteristics of biochar, the harm of neonicotinoid pesticides and the adsorption of neonicotinoid pesticides by biocharare reviewed. At the same time, the reproduction methods of biocharare summarized. The summary can provide some reference and guidance for repairing the pollution of neonicotinoid pesticides, hoping to reduce the pollution of neonicotinoid pesticides in soil environment. In addition, by comparing the methods of biochar regeneration, it provides a reference for choosing an economical, effective and simple application of biochar regeneration in the future.
Key words Biochar; Neonicotinoid pesticides; Adsorption; Biochar regeneration
近年來,生物炭作為一種良好的土壤調(diào)節(jié)劑被廣泛應(yīng)用在農(nóng)業(yè)領(lǐng)域。生物炭含有大量碳和一定量的其他養(yǎng)分元素,具有豐富的孔結(jié)構(gòu)和官能團(tuán)、較大的比表面積、較強(qiáng)的吸附性能和穩(wěn)定性等特征[1],可以調(diào)節(jié)土壤pH值,降低土壤容重,增加土壤有機(jī)碳含量,提升土壤肥力[2],對改良土壤具有較好效果。此外,生物炭還能吸附重金屬和有機(jī)污染物,減少有毒物質(zhì)在作物體內(nèi)的累積[3]。生物炭與微生物修復(fù)重金屬及有機(jī)污染土壤過程中既有生物炭作為固定化載體對微生物的保護(hù)作用、快速定殖作用,也有生物炭對污染物的吸附作用,以及微生物對污染物的降解作用[4]。
新煙堿類農(nóng)藥通過作用于昆蟲的乙酰膽堿受體對昆蟲產(chǎn)生高效毒殺作用,成為使用最廣泛的一類殺蟲劑[5-6]。新煙堿類農(nóng)藥的頻繁使用,使得土壤中的農(nóng)藥殘留超過了土壤自凈能力,土壤污染加劇[7-8]。同時,新煙堿類農(nóng)藥對無脊椎動物也存在危害。因此,生物炭作為一種有效的土壤改良劑,為減少農(nóng)藥造成的環(huán)境污染提供了解決途徑。
1 生物炭的制備與特性
1.1 生物炭制備的原料及方法
生物炭是一種比表面積高、孔隙度高、碳含量高的固體多孔材料[9],通過將生物質(zhì)原料(如作物秸稈、污泥、廢棄物、糞便等)置于厭氧高溫下高溫?zé)峤庵苽?。生物炭主要用于土壤修?fù)及水體污染吸附等領(lǐng)域[10]。許多有機(jī)資源,包括農(nóng)業(yè)廢棄物、森林廢棄物、畜禽糞便、廚余垃圾、工業(yè)生物廢棄物、城市生物廢棄物和動物尸體,都可以作為生物炭制造原料[11]。
生物炭的制備方法主要分為水熱炭化、熱解、氣化和微波碳化[12],其中熱解是最常用的制備方法。熱解原料不同,熱解溫度、壓力、吸附劑大小及加熱速率和方式也不一樣[13]。在熱解過程中,原料中的半纖維素物質(zhì)在200~260 ℃分解,纖維素、木質(zhì)素在240~350 ℃和280~500 ℃分解[14-15]。生物質(zhì)向生物炭的轉(zhuǎn)化從晶體結(jié)構(gòu)開始,然后是化學(xué)鍵、化學(xué)成分的無定形碳結(jié)構(gòu),再到生物炭,并堆積成多芳香烴薄片,形成最終的生物炭[16]。
1.2 生物炭的特性
生物炭對土壤環(huán)境中的農(nóng)藥有很強(qiáng)的吸附能力,其特殊的理化性質(zhì)很大程度上取決于原料和熱解條件[17]。生物炭的特性因素主要包括孔隙度、比表面積、pH值、官能團(tuán)、碳含量、芳香結(jié)構(gòu)及礦物組成[18]。
1.2.1 孔隙度和比表面積 孔隙度和比表面積是表征生物炭吸附有機(jī)污染物能力的2個主要特性因素,分別是通過孔隙填充和表面吸附來達(dá)到目的[18]。生物炭在生物質(zhì)熱解過程中,由于脫水失水及有機(jī)質(zhì)揮發(fā)、斷裂、坍塌等原因,可形成孔隙結(jié)構(gòu)[19],孔隙結(jié)構(gòu)越多,比表面積越大,吸附能力越強(qiáng)。有研究表明,溫度升高導(dǎo)致孔隙體積和比表面積增大[20]。然而,在某些高溫情況下,顯示出較低的比表面積和孔隙度[21],主要原因是在較高的溫度下,生物炭的多孔結(jié)構(gòu)可能會出現(xiàn)大孔多于微孔或被焦油堵塞,導(dǎo)致比表面積變小[22]。
生物質(zhì)原料木質(zhì)素含量高(如竹子和椰子殼)產(chǎn)生的生物炭具有大孔結(jié)構(gòu),而生物質(zhì)原料纖維素含量高(如外殼)主要產(chǎn)生微孔結(jié)構(gòu)的生物炭[23]。生物炭不同的孔隙度和比表面積可能會導(dǎo)致對土壤污染物有不同的吸附反應(yīng)[24]。
1.2.2 pH值 生物炭較高的pH值可以通過堿催化機(jī)制加速土壤中有機(jī)磷和氨基甲酸酯類農(nóng)藥的水解[25]。與孔隙度和比表面積一樣,生物炭的pH值也受到熱解溫度和原料的影響。總的來說,生物炭呈堿性,pH值隨著熱解溫度的升高而升高[26]。但由于原料不同也有一些例外,例如低溫(400 ℃)下從廢水、污泥和小麥秸稈中提取的生物炭呈酸性[27-28]。
有研究表明,pH值與生物炭熱解溫度之間存在正相關(guān)關(guān)系,這些生物炭由各種生物質(zhì)產(chǎn)生,如生物固體、農(nóng)業(yè)殘留物和牲畜糞便[29]。溫度升高通常會導(dǎo)致灰分含量升高,從而導(dǎo)致生物炭的pH值升高[30]。例如生物炭的pH值隨著溫度從300 ℃升高到700 ℃而增加,與生物炭中總堿性陽離子和碳酸鹽含量的增加呈正相關(guān)[31]。此外,在較高溫度下生物炭上羧基等酸性官能團(tuán)的減少也會導(dǎo)致較高的pH值[32]。
1.2.3 官能團(tuán) 表面官能團(tuán),包括羧基(-COOH)、羥基(-OH)、內(nèi)酯(-COO-)、酰胺(-CONH2)和胺基(-NH-),對生物炭吸附能力的影響至關(guān)重要[33]。一般來說,熱解溫度和原料是影響生物炭表面官能團(tuán)數(shù)量的2個關(guān)鍵因素[34]。然而,與比表面積、孔隙度和pH值的增加趨勢不同,較高的溫度通常會導(dǎo)致H/C、O/C和N/C比值的降低,這表明生物炭上官能團(tuán)的豐度降低[29]。在熱解過程中,木質(zhì)纖維素材料的大部分官能團(tuán)隨著溫度的升高而損失[35]。
1.2.4 含碳量和芳香結(jié)構(gòu) 含碳量和芳香族結(jié)構(gòu)是影響生物炭對農(nóng)藥吸附能力的重要因素,而芳香結(jié)構(gòu)對土壤中生物炭行為的可持續(xù)性起著重要作用[18]。實(shí)際上,熱解溫度對生物炭的性質(zhì)影響最大,H/C值是芳香族結(jié)構(gòu)的反映,芳香族結(jié)構(gòu)進(jìn)一步構(gòu)成了生物炭不同的孔徑和比表面積[36]。一般來說,從木質(zhì)纖維素材料中提取的生物炭隨著溫度上升到500 ℃以上,碳化程度會越來越高,因此生物炭的含碳量會隨著溫度的升高而增加[37]。有研究表明,從有機(jī)碳含量高的原料中提取的生物炭對有機(jī)污染物具有較高的吸附能力[38]。此外,生物炭的高炭化和芳構(gòu)化結(jié)構(gòu)使其抗腐穩(wěn)定性高、半衰期長,難以分解和礦化[39]。因此,生物炭在土壤改良方面具有很大的潛力。
1.2.5 其他理化性質(zhì) 生物炭中具有高陽離子交換能力的礦物學(xué)成分被認(rèn)為對土壤中農(nóng)藥具有重要的吸附作用[40],它們可以通過表面螯合或表面酸性機(jī)制降低農(nóng)藥的可用性[41]。熱解溫度和原料均對生物炭中礦物組分濃度有影響,較高的溫度會豐富生物炭中的礦物質(zhì)[42]。
不同生物炭熱解溫度通過干擾生物炭性質(zhì)而影響生物炭對農(nóng)藥的吸附程度,從而對農(nóng)藥的吸附產(chǎn)生不同的影響[43]。例如,生物炭熱解溫度較高會導(dǎo)致比表面積較大,以此為農(nóng)藥吸附提供更多的位點(diǎn)[44]。所以,更深入地研究生物炭的吸附作用是有必要的。
2 新煙堿類農(nóng)藥對環(huán)境和生態(tài)的潛在影響
自20世紀(jì)80年代起,新煙堿類農(nóng)藥應(yīng)用已逐漸成為水稻、玉米、小麥等主要農(nóng)作物蟲害防治的重要手段。盡管這類農(nóng)藥在作物保護(hù)中扮演了不可或缺的角色,但在使用過程中,僅約5%的活性成分被作物吸收,大部分新煙堿類農(nóng)藥會進(jìn)入農(nóng)田土壤。在土壤中,部分農(nóng)藥成分因吸附作用而積累,而其余部分則因解吸作用而進(jìn)入農(nóng)田水體,最終可能通過灌溉、滲漏等方式進(jìn)入河流、湖泊和濕地。
新煙堿類農(nóng)藥源于植物性農(nóng)藥煙堿,是一類經(jīng)過改進(jìn)的高效殺蟲劑。隨著吡蟲啉、噻蟲嗪、啶蟲脒、烯啶蟲胺等煙堿類殺蟲劑的研發(fā)和推廣,新煙堿類農(nóng)藥已逐漸替代了許多傳統(tǒng)的殺蟲劑。圖1為4種常用新煙堿類農(nóng)藥的化學(xué)結(jié)構(gòu)。
由于新煙堿類農(nóng)藥被廣泛使用,飲用水、蔬菜、水果甚至牛奶等產(chǎn)品都受到不同程度的污染[45]。新煙堿類殺蟲劑會減弱蜜蜂覓食能力,通過削弱蜜蜂的歸巢能力來增加蜜蜂的死亡率[46]。同時,新煙堿類農(nóng)藥對水生及陸生無脊椎動物也具有致死作用[47]。新煙堿類農(nóng)藥在土壤中半衰期長,在水中溶解度高,很容易遷移至地表水中,對水體生物有潛在影響[48]。在我國,噴灑是新煙堿類農(nóng)藥最主要的施用方法[49],這導(dǎo)致高達(dá)30%~50%的新煙堿類農(nóng)藥被釋放到大氣中[50],造成空氣污染。常用的幾種新煙堿類農(nóng)藥(圖1)對許多非靶標(biāo)生物的危害也極大[51]。
3 生物炭對土壤中新煙堿類農(nóng)藥吸附行為的
影響
生物炭是一種常用土壤改良劑[52-53],其對新煙堿類農(nóng)藥的吸附性能主要受生物炭制備材料、熱解溫度、孔隙度、比表面積、pH值、溫度、離子強(qiáng)度、官能團(tuán)等因素的影響(表1)。
生物炭的孔徑、比表面積和pH值是重點(diǎn)考慮因素,因?yàn)槠溆兄谖轿镔|(zhì)(如重金屬和有機(jī)化合物)??讖皆酱?,吸附能力越好;比表面積越大,官能團(tuán)越多,吸附污染物越多,官能團(tuán)的數(shù)量對pH值也有影響。
4 生物炭環(huán)境應(yīng)用與實(shí)際效能
生物炭可以作為一種污染土壤的改良劑和修復(fù)劑來固定、降低農(nóng)藥的生物利用度及毒性。在農(nóng)田土壤中施用生物炭會產(chǎn)生不同的影響,這取決于制備生物炭的原料、熱解溫度和施用量[64]??筛鶕?jù)原料組成、生產(chǎn)參數(shù)選擇最佳生物炭類型。在土壤中,生物炭吸附污染物的同時還可以釋放養(yǎng)分,提高微生物對污染物的降解速度。施用生物炭對改變土壤養(yǎng)分、土壤污染物和微生物功能具有重要作用[65]。生物炭可改善農(nóng)藥污染的土壤肥力,降低土壤生態(tài)風(fēng)險。將生物炭應(yīng)用于土壤可產(chǎn)生農(nóng)藝、環(huán)境和經(jīng)濟(jì)效益。生物炭可以根據(jù)特定的環(huán)境保護(hù)目的進(jìn)行特殊定制,也使其成為一種具有廣泛應(yīng)用前景的選擇[66]。
吸附劑的應(yīng)用已被公認(rèn)為從水中去除重金屬離子的可行性手段[67]。重金屬離子不易被特定的吸附劑去除,如鉛和釩在不同的環(huán)境條件(pH值、溫度等)下具有不同的形態(tài),具有不同的凈電荷[68],以至于難以消除。生物炭由于存在高度多孔的結(jié)構(gòu)和各種官能團(tuán),對重金屬表現(xiàn)出極大的親和力[69]。許多研究探索了生物炭從水中去除重金屬的能力[70]。另外,生物炭可以通過改性以增強(qiáng)對重金屬的吸附能力,例如生物炭中添加礦物質(zhì)、有機(jī)官能團(tuán)、還原劑和納米顆粒,以及可用堿溶液活化生物炭[71]。
5 生物炭的再生與可持續(xù)性
5.1 吸附后的生物炭再生方法
生物炭或其部分成分會隨著時間發(fā)生變化,這一過程通常被稱為“老化”[72]。生物炭老化過程中由于其理化性質(zhì)的變化而影響農(nóng)藥在土壤中的吸附和解吸。生物炭在土壤中的吸附親和力會隨著其老化或風(fēng)化而減弱。生物炭老化導(dǎo)致比表面積減小,對生物炭的潛在吸附能力有負(fù)面影響。隨著生物炭的生產(chǎn)規(guī)模及應(yīng)用范圍不斷擴(kuò)大,從經(jīng)濟(jì)和環(huán)保的角度來看,進(jìn)行生物炭的再生是非常有必要的。目前,傳統(tǒng)的再生方法包括熱再生法、藥劑再生法、濕式氧化再生法和電化學(xué)再生法等[73]。
5.2 再生后生物炭的吸附效果評估
生物炭再生方法中熱再生法最具成本效益;藥劑再生法的無機(jī)試劑通常價格低廉、再生條件溫和,但處理時間長,再生效率一般低于80%[74];濕式氧化再生法、電化學(xué)再生法、超臨界二氧化碳萃取法,以及新型TiO2光催化再生法的效益相對較熱再生法和藥劑再生法高,使用頻率較低,成本相對高(表2)。
6 生物炭潛在的環(huán)境風(fēng)險及未來研究方向
6.1 生物炭的環(huán)境影響
雖然生物炭被普遍視為有益的土壤改良劑,能夠減少土壤中農(nóng)藥的生物降解,但不當(dāng)使用和處理可能對環(huán)境帶來潛在風(fēng)險。生物炭的添加可能導(dǎo)致微生物活性過高,從而加速農(nóng)藥的降解[75]。過量或不適當(dāng)?shù)纳锾渴褂脮?dǎo)致土壤中的生物,如動物、植物、微生物受到有害化學(xué)物質(zhì)的威脅[76]。并非所有種類的生物炭都適合成為土壤改良劑,其效果因種類而異[77]。因此,使用生物炭時必須考慮其種類、處理方法和用量[78]。
6.2 未來研究方向
改良后的生物炭具有巨大潛力,不僅能夠改善土壤結(jié)構(gòu),還能有效吸附農(nóng)藥,從而提高土壤質(zhì)量和降低污染。
6.2.1 深化對吸附機(jī)理的研究 進(jìn)一步研究生物炭與農(nóng)藥之間的相互作用,探討影響吸附的各種因素,如表面特性、孔隙結(jié)構(gòu)和溫度等,有助于優(yōu)化生物炭的制備和使用。
6.2.2 提升生物炭的性能 研究生物炭不同的制備方法和原料,以及可能的表面改性技術(shù),以提高生物炭的吸附性能和穩(wěn)定性。引入納米技術(shù)或其他高效材料將是未來的發(fā)展趨勢。
6.2.3 實(shí)際應(yīng)用與實(shí)踐 將研究成果應(yīng)用于實(shí)際場景,考慮成本、持續(xù)性和操作性,為不同的農(nóng)藥殘留問題提供量身定制的解決方案。
6.2.4 探索減少農(nóng)藥使用的替代方法 除了利用生物炭減少農(nóng)藥殘留,還應(yīng)研究其他方法,如生物控制、農(nóng)業(yè)技術(shù)創(chuàng)新和開發(fā)環(huán)保農(nóng)藥,從源頭上減少農(nóng)藥的使用。
綜上所述,未來的研究方向應(yīng)聚焦對生物炭作用機(jī)制的深入探索,完善其應(yīng)用方法,并結(jié)合其他方法,共同降低農(nóng)藥殘留對環(huán)境和人類的潛在威脅。鼓勵農(nóng)民和相關(guān)機(jī)構(gòu)將使用生物炭作為一種環(huán)境友好的處理方法,并提供政策支持和推廣機(jī)制,以確保農(nóng)業(yè)的可持續(xù)發(fā)展。
參考文獻(xiàn):
[1] RAVULA A R, YENUGU S. Pyrethroid based pesticides-chemical and biological aspects[J]. Critical Reviews in Toxicology, 2021,51(2): 117-140.
[2] MEI B, ZHANG W Y, CHEN M L, et al. Research and application of in situ sample-processing methods for rapid simultaneous detection of pyrethroid pesticides in vegetables[J]. Separations, 2022,9(3):59.
[3] ZHAO B, O'CONNOR D, ZHANG J L, et al. Effect of pyrolysis temperature, heating rate, and residence time on rapeseed stem derived biochar[J]. Journal of Cleaner Production, 2018,174:977-987.
[4] BAIAMONTE G, DE PASQUALE C, MARSALA V, et al. Structure alteration of a sandy-clay soil by biochar amendments[J]. Journal of Soils and Sediments, 2015,15:816-824.
[5] 譚穎,張琪,趙成,等. 蔬菜水果中的新煙堿類農(nóng)藥殘留量與人群攝食暴露健康風(fēng)險評價[J]. 生態(tài)毒理學(xué)報,2016,11(6):67-81.
[6] 李成名,聶恩光,張素芬,等. 14C-吡蟲啉在苗期油菜中的吸收、轉(zhuǎn)運(yùn)與分布特性[J]. 核農(nóng)學(xué)報,2021,35(2):438-446.
[7] 李田田,鄭珊珊,王晶,等. 新煙堿類農(nóng)藥的污染現(xiàn)狀及轉(zhuǎn)化行為研究進(jìn)展[J]. 生態(tài)毒理學(xué)報,2018,13(4):9-21.
[8] MORRISSEY C A, MINEAU P, DEVRIES J H, et al. Neonicotinoid contamination of global surface waters and associated risk to aquatic invertebrates: a review[J]. Environment International, 2015,74:291-303.
[9] 汪佳玥,凌茜,張雲(yún)豪,等. 生物炭制備方法及其在環(huán)境污染治理中的應(yīng)用研究[J]. 南通大學(xué)學(xué)報(自然科學(xué)版),2022,21(4):1-14.
[10] 董康妮. 利用改性苧麻秸稈生物炭活化過硫酸鹽去除鹽酸四環(huán)素的研究[D]. 重慶:重慶大學(xué),2022.
[11] ZHAO X C, OUYANG W, HAO F H, et al. Properties comparison of biochars from corn straw with different pretreatment and sorption behaviour of atrazine[J]. Bioresource Technology, 2013,147:338-344.
[12] NATH H, SARKAR B, MITRA S, et al. Biochar from biomass: a review on biochar preparation its modification and impact on soil including soil microbiology[J]. Geomicrobiology Journal, 2022,39(3-5):373-388.
[13] RILLING M C, WAGNER M, SALEM M, et al. Material derived from hydrothermal carbonization: effects on plant growth and arbuscular mycorrhiza[J]. Applied Soil Ecology, 2010,45(3):238-242.
[14] LIU W J, JIANG H, YU H Q. Development of biochar-based functional materials: toward a sustainable platform carbon material[J]. Chemical Reviews, 2015,115(22):12251-12285.
[15] DAS J, DEBNATH C, NATH H, et al. Anti bacterial effect of activated carbons prepared from some biomasses available in North East India[J]. Energy Sources, Part A: Recovery, Utilization, and Environmental Effects, 2022,44(2):4928-4938.
[16] NARTEY O D, ZHAO B W. Biochar preparation, characterization, and adsorptive capacity and its effect on bioavailability of contaminants: an overview[J]. Advances in Materials Science and Engineering, 2014,2014:715395.
[17] YAVARI S, MALAKAHMAD A, SAPARI N B. Biochar efficiency in pesticides sorption as a function of production variables-a review[J]. Environmental Science and Pollution Research, 2015,22(18):13824-13841.
[18] LIU Y X, LONAPPAN L, BRAR S K, et al. Impact of biochar amendment in agricultural soils on the sorption, desorption, and degradation of pesticides: a review[J]. Science of The Total Environment, 2018,645:
60-70.
[19] BAGREEV A, BANDOSZ T J, LOCHE D C. Pore structure and surface chemistry of adsorbents obtained by pyrolysis of sewage sludge-derived fertilizer[J]. Carbon, 2001,39(13):1971-1979.
[20] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012,107:419-428.
[21] JIN J, KANG M J, SUN K, et al. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine[J]. Science of the Total Environment, 2016,550:504-513.
[22] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017,178:466-478.
[23] JOSEPH S D, DOWNIE A, MUNROE P, et al. Biochar for carbon sequestration, reduction of greenhouse gas emissions and enhancement of soil fertility; a review of the materials science[C]//Proceedings of the Australian combustion symposium. Sydney: University of Sydney, 2007:130-133.
[24] UCHIMIYA M, LIMA I M, KLASSON K T, et al. Immobilization of heavy metal ions (CuII, CdII, NiII, and PbII) by broiler litter-derived biochars in water and soil[J]. Journal of Agricultural and Food Chemistry, 2010,58(9):5538-5544.
[25] 張鵬,武健羽,李力,等. 豬糞制備的生物炭對西維因的吸附與催化水解作用[J]. 農(nóng)業(yè)環(huán)境科學(xué)學(xué)報,2012, 31(2):416-421.
[26] CANTRELL K B, HUNT P G, UCHIMIYA M, et al. Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar[J]. Bioresource Technology, 2012,107:419-428.
[27] HOSSAIN M K, STREZOV V, CHAN K Y, et al. Influence of pyrolysis temperature on production and nutrient properties of wastewater sludge biochar[J]. Journal of Environmental Management, 2011,92(1):223-228.
[28] ZHANG H, VORONEY R P, PRICE G W. Effects of temperature and processing conditions on biochar chemical properties and their influence on soil C and N transformations[J]. Soil Biology and Biochemistry, 2015,83:19-28.
[29] LIU Y X, YAO S, WANG Y Y, et al. Bio-and hydrochars from rice straw and pig manure: inter-comparison[J]. Bioresource Technology, 2017,235:332-337.
[30] JIN J, KANG M J, SUN K, et al. Properties of biochar-amended soils and their sorption of imidacloprid, isoproturon, and atrazine[J]. Science of The Total Environment, 2016,550:504-513.
[31] YUAN J H, XU R K, ZHANG H. The forms of alkalis in the biochar produced from crop residues at different temperatures[J]. Bioresource Technology, 2011,102(3):3488-3497.
[32] LI H B, DONG X L, DA SILVA E B, et al. Mechanisms of metal sorption by biochars: Biochar characteristics and modifications[J]. Chemosphere, 2017,178:466-478.
[33] ANTN-HERRERO R, GARCíA-DELGADO C, ALONSO-IZQUIERDO M, et al. Comparative adsorption of tetracyclines on biochars and stevensite: Looking for the most effective adsorbent[J]. Applied Clay Science, 2018,160:162-172.
[34] CHEN Z M, XIAO X, CHEN B L, et al. Quantification of chemical states, dissociation constants and contents of oxygen-containing groups on the surface of biochars produced at different temperatures[J]. Environmental Science amp;Technology, 2015,49(1):309-317.
[35] PIGNATELLO J J, MITCH W A, XU W Q. Activity and reactivity of pyrogenic carbonaceous matter toward organic compounds[J]. Environmental Science amp;Technology, 2017,51(16):8893-8908.
[36] XIAO X, CHEN Z M, CHEN B L. H/C atomic ratio as a smart linkage between pyrolytic temperatures, aromatic clusters and sorption properties of biochars derived from diverse precursory materials[J]. Scientific Reports, 2016,6(1):22644.
[37] ALLEN-KING R M, GRATHWOHL P, BALL W P. New modeling paradigms for the sorption of hydrophobic organic chemicals to heterogeneous carbonaceous matter in soils, sediments, and rocks[J]. Advances in Water Resources, 2002,25(8-12):985-1016.
[38] WU M, PAN B, ZHANG D, et al. The sorption of organic contaminants on biochars derived from sediments with high organic carbon content[J]. Chemosphere, 2013,90(2):782-788.
[39] LEHMANN J. Bio‐energy in the black[J]. Frontiers in Ecology and the Environment, 2007, 5(7): 381-387.
[40] DIAS B O, SILVA C A, HIGASHIKAWA F S, et al. Use of biochar as bulking agent for the composting of poultry manure: effect on organic matter degradation and humification[J]. Bioresource Technology, 2010,101(4):1239-1246.
[41] WEI J, FURRER G, KAUFMANN S, et al. Influence of clay minerals on the hydrolysis of carbamate pesticides[J]. Environmental Science amp;Technology, 2001,35(11):2226-2232.
[42] SUBEDI R, TAUPE N, PELISSETTI S, et al. Greenhouse gas emissions and soil properties following amendment with manure-derived biochars: Influence of pyrolysis temperature and feedstock type[J]. Journal of Environmental Management, 2016,166:73-83.
[43] LI J M, CAOR L, YUAN Y, et al. Comparative study for microcystin-LR sorption onto biochars produced from various plant-and animal-wastes at different pyrolysis temperatures: Influencing mechanisms of biochar properties[J]. Bioresource Technology, 2018,247:794-803.
[44] CHU G, ZHAO J, CHEN F Y, et al. Physi-chemical and sorption properties of biochars prepared from peanut shell using thermal pyrolysis and microwave irradiation[J]. Environmental Pollution, 2017,227:372-379.
[45] HAN W C, TIAN Y, SHEN X M. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: An overview[J]. Chemosphere, 2018,192:59-65.
[46] HENRY M, BéGUIN M, REQUIER F, et al. A common pesticide decreases foraging success and survival in honey bees[J]. Science, 2012,336(6079):348-350.
[47] VIJVER M G, BRINK P J. Macro-invertebrate decline in surface water polluted with imidacloprid: a rebuttal and some new analyses[J]. Plos One, 2014,9(2):e89837.
[48] BONMATIN J M, GIORIO C, GIROLAMI V, et al. Environmental fate and exposure; neonicotinoids and fipronil[J]. Environmental Science and Pollution Research, 2015,22:35-67.
[49] 李廣領(lǐng),谷珊山,郭文舉,等. 菠菜中3種新煙堿殺蟲劑多殘留分析方法研究[J]. 植物保護(hù),2015,41(4):131-135.
[50] UEYAMA J, NOMURA H, KONDO T, et al. Biological monitoring method for urinary neonicotinoid insecticides using LC‐MS/MS and its application to Japanese adults[J]. Journal of Occupational Health, 2014,56(6):461-468.
[51] WOOD T J, GOULSON D. The environmental risks of neonicotinoid pesticides: a review of the evidence post 2013[J]. Environmental Science and Pollution Research, 2017,24(21):17285-17325.
[52] MARTIN S M, KOOKANA R S, VAN ZWIETEN L, et al. Marked changes in herbicide sorption-desorption upon ageing of biochars in soil[J]. Journal of Hazardous Materials, 2012,231-232:70-78.
[53] 劉鴻驕,侯亞紅,王磊. 秸稈生物炭還田對圍墾鹽堿土壤的低碳化改良[J]. 環(huán)境科學(xué)與技術(shù),2014,37(1):75-80.
[54] YAN P, ZOU Z H, LI X, et al. Biochar changed the distribution of imidacloprid in a plant-soil-groundwater system[J]. Chemosphere, 2022,307:136213.
[55] SRIKHAOW A, WIN E E, AMORNSAKCHAI T, et al. Biochar derived from pineapple leaf non-fibrous materials and its adsorption capability for pesticides[J]. ACS Omega, 2023,8(29):26147-26157.
[56] SRIKHAOW A, CHAENGSAWANG W, KIATSIRIROAT T, et al. Adsorption kinetics of imidacloprid, acetamiprid and methomyl pesticides in aqueous solution onto eucalyptus woodchip derived biochar[J]. Minerals, 2022,12(5):528.
[57] MANDAL A, SINGH N, PURAKAYASTHA T J. Characterization of pesticide sorption behaviour of slow pyrolysis biochars as low cost adsorbent for atrazine and imidacloprid removal[J]. Science of The Total Environment, 2017,577:376-385.
[58] 梁茂儒,陸玉芳,馬明坤,等. 木屑生物質(zhì)炭對水中阿特拉津、多菌靈和啶蟲脒復(fù)合農(nóng)藥的吸附性能研究[J]. 土壤,2022,54(4):793-801.
[59] 白金龍,郭麗,石冬瑾,等.杉木生物炭對水中啶蟲脒和噻蟲胺的吸附特性[J]. 環(huán)境工程學(xué)報,2020,14(12):3339-3351.
[60] CHENG H M, TANG G L, WANG S S, et al. Combined remediation effects of biochar and organic fertilizer on immobilization and dissipation of neonicotinoids in soils[J]. Environment International, 2022,169:
107500.
[61] YOU X W, JIANG H T, ZHAO M, et al. Biochar reduced Chinese chive (Allium tuberosum) uptake and dissipation of thiamethoxam in an agricultural soil[J]. Journal of Hazardous Materials, 2020,390:121749.
[62] PERES F S C, PETTER F A, SINHORIN A P, et al. Influence of biochar on the sorption and leaching of thiamethoxan in soil[J]. Journal of Environmental Science and Health, Part B, 2022,57(2):153-163.
[63] LI S Z, ZHANG Z H, ZHANG C, et al. Novel hydrophilic straw biochar for the adsorption of neonicotinoids: kinetics, thermodynamics, influencing factors, and reuse performance[J]. Environmental Science and Pollution Research, 2023,30(11):29143-29153.
[64] DENG H, FENG D, HE J X, et al. Influence of biochar amendments to soil on the mobility of atrazine using sorption-desorption and soil thin-layer chromatography[J]. Ecological Engineering, 2017,99:381-390.
[65] SHAABAN M, VAN ZWIETEN L, BASHIR S, et al. A concise review of biochar application to agricultural soils to improve soil conditions and fight pollution[J]. Journal of Environmental Management, 2018,228:429-440.
[66] IPPOLITY J A, LAIRD D A, BUSSCHER W J. Environmental benefits of biochar[J]. Journal of Environmental Quality, 2012,41(4):967-972.
[67] LEIVISK? T, KHALID M K, SARPOLA A, et al. Removal of vanadium from industrial wastewater using iron sorbents in batch and continuous flow pilot systems[J]. Journal of Environmental Management, 2017,190:231-242.
[68] WANG X S, WANG L, WANG Y, et al. Calcium sulfate hemihydrate whiskers obtained from flue gas desulfurization gypsum and used for the adsorption removal of lead[J]. Crystals, 2017,7(9):270.
[69] MOHAN D, PITTMAN JR. C U, BRICKA M, et al. Sorption of arsenic, cadmium, and lead by chars produced from fast pyrolysis of wood and bark during bio-oil production[J]. Journal of Colloid and Interface Science, 2007,310(1):57-73.
[70] AHMAD M, RAJAPAKSHA A U, LIM J E, et al. Biochar as a sorbent for contaminant management in soil and water: a review[J]. Chemosphere, 2014,99:19-33.
[71] MOHAN D, SARSWAT A, OK Y S, et al. Organic and inorganic contaminants removal from water with biochar, a renewable, low cost and sustainable adsorbent-a critical review[J]. Bioresource Technology, 2014,160:191-202.
[72] KONG L L, LIU W T, ZHOU Q X. Biochar: an effective amendment for remediating contaminated soil[J]. Reviews of Environmental Contamination and Toxicology,2014,228:83-99.
[73] 鄒意義. TiO2負(fù)載-FeCl3改性污泥生物炭對水中芳香類有機(jī)物的吸附-光再生試驗(yàn)研究——以吡蟲啉為例[D]. 蘇州:蘇州科技大學(xué),2021.
[74] 段萬發(fā). 廢物衍生吸附劑的制備、應(yīng)用和再生[J]. 四川化工,2022,25(1):15-18.
[75] ZHANG G X, GUO X F, ZHU Y E, et al. The effects of different biochars on microbial quantity, microbial community shift, enzyme activity, and biodegradation of polycyclic aromatic hydrocarbons in soil[J]. Geoderma, 2018,328:100-108.
[76] ALKHARABSHEH H M, SELEIMAN M F, BATTAGLIA M L, et al. Biochar and its broad impacts in soil quality and fertility, nutrient leaching and crop productivity: A review[J]. Agronomy, 2021,11(5):993.
[77] TAN Z X, LIN C S K, JI X Y, et al. Returning biochar to fields: A review[J]. Applied Soil Ecology, 2017,116:1-11.
[78] WANG J L, WANG S Z. Preparation, modification and environmental application of biochar: A review[J]. Journal of Cleaner Production, 2019, 227: 1002-1022.Journal of Cleaner Production, 2019,227:1002-1022.
責(zé)任編輯:李曉瑞