亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        大興安嶺北部主要喬木樹種葉片-土壤碳氮磷生態(tài)化學(xué)計(jì)量特征

        2024-07-10 10:38:22景繼鑫,陳燦陽,滿秀玲,韓昭郅
        森林工程 2024年3期

        景繼鑫,陳燦陽,滿秀玲,韓昭郅

        摘要:以大興安嶺北部多年凍土區(qū)典型森林群落主要喬木為研究對(duì)象,分析葉片和土壤碳(C)、氮(N)、磷(P)含量及生態(tài)化學(xué)計(jì)量特征,探討葉片和土壤C、N、P生態(tài)化學(xué)計(jì)量之間的關(guān)系,為該地區(qū)森林生態(tài)系統(tǒng)養(yǎng)分循環(huán)研究提供理論依據(jù)。結(jié)果表明,4種喬木葉片C∶N范圍為25.66~47.92,C∶P范圍為323.83~603.86,N∶P為10.21~20.59,興安落葉松葉片C∶P和N∶P均最低,樟子松葉片C∶N和C∶P均最高,白樺C∶N最低,山楊N∶P最高;4種喬木葉片C∶N和C∶P都高于全球植物平均水平,表明這些喬木葉片具有較高的N、P利用效率,同時(shí)山楊葉片N∶P>20,其生長(zhǎng)主要受P素限制;不同的群落土壤C∶N為13.89~18.46,C∶P為35.43~77.19,N∶P為1.96~5.26,山楊林C∶P和N∶P均為最高,而C∶N最低。白樺林C∶N最高,N∶P最低。樟子松林C∶P最低。冗余分析結(jié)果顯示,4種喬木葉片C、N、P生態(tài)化學(xué)計(jì)量與土壤之間存在顯著相關(guān)關(guān)系,土壤C、N、P含量及化學(xué)計(jì)量對(duì)喬木固碳及氮磷吸收具有顯著影響。由此可見,我國(guó)寒溫帶4種喬木具有較高的N、P利用效率,但山楊生長(zhǎng)受到P的限制,葉片C、N、P生態(tài)化學(xué)計(jì)量與土壤生態(tài)化學(xué)計(jì)量顯著相關(guān)。

        關(guān)鍵詞:大興安嶺北部地區(qū);興安落葉松;樟子松;生態(tài)化學(xué)計(jì)量;土壤;葉片

        中圖分類號(hào):S714文獻(xiàn)標(biāo)識(shí)碼:A文章編號(hào):1006-8023(2024)03-0001-10

        The Foliar-soil Ecostoichiometric Characteristics of the Principal Arboreal?Species in the Northern Region of the Greater Hinggan Mountains

        JING Jixin, CHEN Canyang, MAN Xiuling*, HAN Zhaozhi

        (College of Forestry, Northeast Forestry University, Harbin 150040, China)

        Abstract:In this study, the main trees of typical forest communities in permafrost area of northern Greater Khingan Mountains were selected as the research objects, the contents of carbon (C), nitrogen (N) and phosphorus (P) in leaves and soil and their ecological stoichiometric characteristics were analyzed, and the relationship between leaves and soil C, N and P ecological stoichiometry was discussed to provide theoretical basis for the study of nutrient cycling in forest ecosystem in this area. Results indicated that the C∶N ratio of four tree leaves ranged from 25.66 to 47.92, the C∶P ratio ranged from 323.83 to 603.86, and the N:P ratio ranged from 10.21 to 20.59. Larix gmelini exhibited the lowest C∶N and N∶P ratios, while Pinus sylvestris var mongolica had the highest C∶N and C∶P ratios, Betula platyphylla had the lowest C∶N ratio and? Populus davidiana had the highest N∶P ratio. The C∶N and C∶P ratios of all four tree species exceeded the global average, suggesting efficient utilization of N and P. Nevertheless, the leaf N∶P >20 of? Populus davidiana was primarily limited by P in its growth. The soil C∶N ratio of different communities ranged from 13.89 to 18.46, the C∶P ratio ranged from 35.43 to 77.19, and the N∶P ratio ranged from 1.96 to 5.26. Populus davidiana forests exhibited the highest C∶P and N∶P ratios, while having the lowest C∶N ratio. Betula platyphylla had the highest C∶N ratio and the lowest N∶P ratio. Pinus sylvestris var mongolica displayed the lowest C∶P ratio. The redundancy analysis results showed that there was a significant correlation between the ecological stoichiometry of C, N, and P in the leaves of four trees and the soil. The content and stoichiometry of soil C, N, P had a significant impact on the carbon fixation and nitrogen and phosphorus absorption of trees. It can be seen that the four types of trees in the cold temperate zone of China have high N and P utilization efficiency, but the growth of Populus davidiana is limited by P. The ecological stoichiometry of leaf C, N, and P is significantly correlated with soil ecological stoichiometry.

        Keywords:Northern Greater Hinggan Mountains; Larix gmelini; Pinus sylvestris var mongolica; ecological stoichiometry; soil; foliage

        0引言

        生態(tài)化學(xué)計(jì)量學(xué)作為一門對(duì)生態(tài)系統(tǒng)中能量循環(huán)過程和多種化學(xué)元素平衡深入探究的學(xué)科[1-2],對(duì)分析生態(tài)循環(huán)中碳(C)、氮(N)、磷(P)等元素間相互耦合關(guān)系發(fā)揮著重要作用[3]。目前,C∶N∶P化學(xué)計(jì)量特征對(duì)于植物養(yǎng)分利用[4]、營(yíng)養(yǎng)元素限制[5]、群落結(jié)構(gòu)功能穩(wěn)定性[6]、凋落物分解[7]和微生物調(diào)節(jié)[8]等方面的研究都有廣泛應(yīng)用。通過葉片的生態(tài)化學(xué)計(jì)量可以反映植物的生長(zhǎng)和營(yíng)養(yǎng)限制的情況,而葉片的C∶N和C∶P則可以表現(xiàn)出植物的碳同化速率,并用于評(píng)估其營(yíng)養(yǎng)利用的效率[9],而葉片N∶P用于評(píng)價(jià)植物生長(zhǎng)過程N(yùn)、P養(yǎng)分限制狀況[10]。在不同季節(jié)[11]、生長(zhǎng)階段[12]和演替階段[13],植物生長(zhǎng)發(fā)育情況亦會(huì)有所不同,并通過不同的生態(tài)化學(xué)計(jì)量特征呈現(xiàn)。影響植物生長(zhǎng)發(fā)育的一個(gè)關(guān)鍵決定性因素是土壤可利用的N和P[14],其含量高低和土壤礦化程度可以通過土壤C∶N和C∶P來反映[15],其中N∶P是評(píng)估植物生長(zhǎng)受N、P限制情況的重要指標(biāo)[16]。Güsewell等[17]認(rèn)為陸地植物的N∶P在10以下時(shí),植物生長(zhǎng)受N限制,在10~20時(shí),N和P對(duì)植物生長(zhǎng)無影響,超過20則受P限制。一般來說,溫帶和北方森林主要受N限制,而熱帶和亞熱帶森林則普遍受P限制[18-19]。在不同的生態(tài)系統(tǒng)中,植物葉片-土壤化學(xué)計(jì)量關(guān)系也有所不同,這是由于植物需要對(duì)不同的環(huán)境做出相應(yīng)的適應(yīng)策略[20]。因此,生態(tài)化學(xué)計(jì)量學(xué)研究對(duì)于生態(tài)系統(tǒng)養(yǎng)分供給研究具有重要意義。

        大興安嶺北部作為我國(guó)唯一的寒溫帶林區(qū),該地區(qū),冬季漫長(zhǎng)且寒冷,年均氣溫約為-4.5 ℃且無霜期僅約90 d。這些獨(dú)特的氣候條件對(duì)植物生長(zhǎng)產(chǎn)生了重大影響,可能改變其對(duì)養(yǎng)分的需求水平和養(yǎng)分適應(yīng)策略。因此,本研究選擇大興安嶺北部多年凍土區(qū)的典型森林群落作為研究對(duì)象,探究其主要喬木葉片與土壤C、N、P化學(xué)計(jì)量特征及其影響因子,以期為大興安嶺地區(qū)森林養(yǎng)分循環(huán)研究提供科學(xué)依據(jù)。

        1研究區(qū)概況與研究方法

        1.1研究區(qū)概況

        研究區(qū)位于大興安嶺地區(qū)的漠河市北極村鎮(zhèn),坐落在黑龍江上游的大興安嶺山脈北麓,黑龍江上游(50°10′~53°33′N,121°7′~124°20′E)。該地為寒溫帶大陸性季風(fēng)氣候,四季分明,冬季長(zhǎng)且寒冷,夏季短而溫?zé)?,年均氣?4.9 ℃,6—9月的平均氣溫為7.5~18.1 ℃。海拔300~700 m,年均降水量350~500 mm,年無霜期90 d左右,是我國(guó)多年凍土主要分布區(qū)。本區(qū)頂級(jí)群落是以興安落葉松(Larix gmelini)為主的明亮針葉林,其他森林類型有白樺(Betula platyphylla)、樟子松(Pinus sylvestris var. mongolica)和山楊(Populus davidiana)等,林下灌木主要有興安杜鵑(Rhododendron dauricum)、杜香(Ledum palustre)和越橘(Vaccinium vitis-idaea)等。地帶性土壤為棕色針葉林土,且有多年凍土的分布。

        1.2樣品采集與分析方法

        在前期踏查的基礎(chǔ)上,于2022年7月選擇4種典型森林群落,即興安落葉松林、樟子松林、白樺林和山楊林,在每一群落中選典型地段設(shè)置3塊面積為20 m×30 m的調(diào)查樣地,對(duì)樣地進(jìn)行每木檢尺,樣地基本情況見表1。在每個(gè)樣地內(nèi)選擇3株標(biāo)準(zhǔn)

        木為調(diào)查樣木,在每個(gè)標(biāo)準(zhǔn)木的東南西北4個(gè)方位,分別剪取樹冠內(nèi)部和外部相同部位無病蟲害成熟的葉片混勻,每個(gè)標(biāo)準(zhǔn)木獲得3份樣本,共108個(gè)樣本,用于C、N和P含量的檢測(cè)。葉片采集的同時(shí),在每個(gè)樣地內(nèi)隨機(jī)選取3個(gè)點(diǎn),挖掘土壤剖面,在去除凋落物后,分別按照0~5、5~10、10~20 cm進(jìn)行分層采集土壤樣品,將同一土層不同點(diǎn)的土壤樣品混勻,每塊樣地同一土層取3個(gè)樣本,4個(gè)林型共108個(gè)樣本,用于測(cè)定土壤養(yǎng)分含量。同時(shí),用環(huán)刀取原狀土,測(cè)定土壤容重和含水量。

        1.3土壤及葉片C、N、P含量測(cè)定

        將取回的新鮮土壤挑去根系和石礫等雜物,放置在陰涼通風(fēng)處自然風(fēng)干,風(fēng)干后土樣用研缽研磨并過0.149 mm篩,用于測(cè)定土壤有機(jī)碳(soil organic carbon, SOC)、全氮(total nitrogen, TN)和全磷(total phosphorus, TP)含量。新鮮葉片置于烘箱中經(jīng)過105 ℃ 2 h殺青后,在65 ℃烘干至恒重,粉碎后過100目篩,用于測(cè)定葉片C、N和P含量。土壤和植物葉片有機(jī)C含量均采用重鉻酸鉀-硫酸外加熱法測(cè)定;采用凱氏定氮法測(cè)定N含量,鉬銻抗比色法測(cè)定P含量。

        1.4數(shù)據(jù)統(tǒng)計(jì)與分析

        使用Excel 2020和SPSS 16.0軟件對(duì)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析。首先對(duì)數(shù)據(jù)進(jìn)行K-S檢驗(yàn),對(duì)P<0.05的數(shù)據(jù)進(jìn)行對(duì)數(shù)轉(zhuǎn)換,使其符合正態(tài)分布。采用單因素方差分析比較不同樣地葉片和土壤以及不同土層間C、N、P、C∶N、C∶P、N∶P含量差異性。用R4.0.5完成冗余分析(Redundancy Analysis, RDA)檢驗(yàn)喬木葉片與土壤C、N、P含量及化學(xué)計(jì)量比之間的相關(guān)關(guān)系?;瘜W(xué)計(jì)量比為質(zhì)量分?jǐn)?shù)比,0~20 cm土層數(shù)據(jù)由加權(quán)平均獲得,數(shù)據(jù)表示均為平均值±標(biāo)準(zhǔn)差。

        2結(jié)果與分析

        2.1不同樹種葉片C、N、P含量及其化學(xué)計(jì)量比特征

        由表2可知,大興安嶺北部4種喬木葉片TC含量變化幅度為455.53~487.00 g/kg,其中興安落葉松葉片TC含量最低,白樺葉片最高,二者差異顯著(P<0.05)。4種喬木葉片TN含量在9.88~18.99 g/kg范圍內(nèi)波動(dòng),由大到小表現(xiàn)為白樺、山楊、興安落葉松和樟子松。其中,白樺葉片TN含量是樟子松葉片的1.70倍,差異極顯著(P<0.01);葉片TP含量為0.81~1.43 g/kg,由大到小表現(xiàn)為興安落葉松、白樺、山楊和樟子松,興安落葉松葉片TP含量顯著高于樟子松(P<0.05)??偨Y(jié)來看,興安落葉松葉片TP含量最高,TC含量最低,樟子松葉片TN和TP含量均最低,而白樺葉片TC和TN均最高,山楊葉片TC、TN和TP含量則處于中間水平。

        不同樹種葉片C∶N范圍為25.66~47.92,樟子松葉片C∶N顯著高于其他3個(gè)樹種,白樺葉片最低,而白樺和山楊葉片差異不顯著(P>0.05);4種喬木葉片C∶P范圍在323.83~603.86,4種喬木間差異并不顯著;葉片N∶P范圍在10.21~20.59,山楊葉片N∶P為興安落葉松葉片的2.02倍,差異顯著(P<0.05)。由此可見,興安落葉松葉片C∶P和N∶P均最低,樟子松葉片C∶N和C∶P均最高,白樺葉片C∶N最低,山楊葉片N∶P最高,且4種喬木葉片C∶P差異均不顯著。

        2.2不同群落類型土壤C、N、P含量及其化學(xué)計(jì)量比特征

        由表3可知,不同群落類型土壤SOC含量呈現(xiàn)隨土層加深而逐漸減少的趨勢(shì),不同土層波動(dòng)范圍為9.59~37.87 g/kg,白樺林0~20 cm土層SOC含量(26.14 g/kg)極顯著高于樟子松林(14.23 g/kg)(P<0.01)。4種群落類型0~20 cm土壤TN含量在0.96~1.71 g/kg變化,其中,由大到小排序?yàn)樯綏盍?、白樺林、興安落葉松林和樟子松林,山楊林土壤TN含量在所有土層中均顯著高于其他3種群落類型;興安落葉松林TP含量隨土層下降而增加,但各土層之間差異不顯著,且10~20 cm土層TP含量顯著高于其他3種群落類型。白樺林0~20 cm土壤TP含量(0.71 g/kg)為山楊林(0.32 g/kg)的2.22倍,差異極顯著(P<0.01)。由此可見,白樺林土壤SOC和TP含量均最高,山楊林土壤TN最高而TP最低,樟子松林土壤SOC和TN均最低,興安落葉松林土壤SOC和TP在0~5 cm和5~10 cm含量相對(duì)較低,但10~20 cm含量顯著高于其他群落類型。

        不同群落類型土壤C∶N在13.89~18.46,由大到小表現(xiàn)為白樺林、興安落葉松林、樟子松林和山楊林,而樟子松林和山楊林之間差異不顯著;4種群落0~20 cm土壤C∶P在35.43~77.19,樟子松林和白樺林差異不顯著,同時(shí),樟子松林在不同土層之間由大到小表現(xiàn)為10~20、0~5、5~10 cm,其在10~20 cm土層C∶P最高,其余群落類型均為0~5 cm最高;各群落N∶P范圍在1.96~5.26,山楊林顯著高于白樺林,興安落葉松林和樟子松林為中等水平且差異不顯著。樟子松林N∶P表現(xiàn)為隨土層加深而升高的趨勢(shì),其余群落類型表現(xiàn)相反。由此可見,山楊林C∶P和N∶P均為最高,而C∶N最低。白樺林C∶N最高,N∶P最低。樟子松林C∶P最低。

        2.3葉片化學(xué)計(jì)量特征與土壤因子之間的關(guān)系

        為更深入地揭示大興安嶺地區(qū)主要樹種葉片化學(xué)計(jì)量特征與土壤因子之間的相互關(guān)系,本研究采用冗余分析(RDA)方法進(jìn)行分析。RDA分析能夠在一張圖上同時(shí)對(duì)葉片化學(xué)計(jì)量特征和土壤因子進(jìn)行排序,更能直觀顯示二者之間的關(guān)系,二者夾角為銳角則為正相關(guān),夾角為鈍角則為負(fù)相關(guān)。銳角越小,正相關(guān)性越大。鈍角越大,則負(fù)相關(guān)越大。同時(shí),土壤因子箭頭越長(zhǎng),說明其對(duì)葉片化學(xué)計(jì)量影響越明顯。

        由圖1可知,落葉松林、樟子松林、白樺林和山楊林所測(cè)得的0~20 cm土壤因子分別對(duì)其葉片化學(xué)計(jì)量前兩軸的總解釋信息量分別為78.44%、74.67%、83.45%和72.34%。落葉松和樟子松葉片TC均與土壤TP、C∶P和N∶P顯著正相關(guān),而白樺和山楊葉片TC與C∶P和N∶P顯著負(fù)相關(guān)。4種喬木葉片TN與土壤C∶N和C∶P顯著正相關(guān)。白樺葉片TP與C∶N、C∶P、N∶P顯著負(fù)相關(guān),其余3種喬木TP與C∶N、C∶P、N∶P呈顯著正相關(guān)。落葉松和山楊葉片C∶N、C∶P和N∶P與土壤C∶N、C∶P和N∶P顯著負(fù)相關(guān)。樟子松和白樺C∶N與土壤C∶N、C∶P和N∶P顯著負(fù)相關(guān)。土壤pH與4種喬木葉片C、N、P大多呈顯著負(fù)相關(guān)。

        3討論

        3.1不同喬木葉片C、N、P含量及化學(xué)計(jì)量特征

        植物體內(nèi)C、N、P相互耦合,共同調(diào)控植物的生長(zhǎng)發(fā)育[21]。本研究表明,大興安嶺地區(qū)4種喬木葉片C含量(455.53~487.00 g/kg)高于我國(guó)暖溫帶(451 g/kg)[22]、溫帶(438 g/kg)[23]和熱帶(452.3 g/kg)[24],而葉片TN含量(9.88~18.99 g/kg)和TP含量(0.81~1.43 g/kg)均低于我國(guó)植物葉片TN含量均值19.7 g/kg和TP含量均值2.0 g/kg[19]。植物養(yǎng)分含量及其吸收利用和效率在不同溫度[25]、濕度[26]和海拔[27]條件下均表現(xiàn)出差異。因此,本研究4種喬木在大興安嶺地區(qū)獨(dú)特的低溫環(huán)境下,產(chǎn)生了與其他地區(qū)不同的養(yǎng)分吸收利用策略。本研究中樟子松葉片TC含量(473.33 g/kg)高于興安落葉松和山楊葉片,其主要原因在于常綠樹種葉片更新速度較慢,大量C素被光合作用所固定并積累儲(chǔ)存在葉片中[28]。相比之下,白樺葉片TC含量(487 g/kg)最高,說明在大興安嶺地區(qū),白樺葉片具有較高的C儲(chǔ)能力。有研究結(jié)果表明,較高的葉片TN使其具有更快的光合速率,加速植物生長(zhǎng)[29],而針葉樹種與闊葉樹種由于葉片結(jié)構(gòu)的差異產(chǎn)生了不同的葉片生理功能,導(dǎo)致針葉樹種向光合器官中分配的氮素比例較低[30],同時(shí),常綠植物吸收的氮素大多用于構(gòu)建生長(zhǎng)所必需的結(jié)構(gòu)蛋白[31],從而N含量由小到大表現(xiàn)為樟子松葉片、興安落葉松、2種闊葉樹種。

        植物C∶N和C∶P通常能表示植物對(duì)N、P的利用效率[32]。本研究中4種喬木樹種C∶N(13.89~18.46)和C∶P(35.43~77.19)高于全球植物平均C∶N(22.5)和C∶P(233.2)[19],說明研究區(qū)4種喬木葉片具有較高的P利用效率,而N利用效率較低。由于針葉樹種葉片氮素周轉(zhuǎn)較闊葉樹種更慢,且淋洗過程中氮素?fù)p失量更低[33],使樟子松和落葉松葉片氮利用效率顯著高于山楊和白樺葉片。陸地植物在N∶P<10時(shí)受N限制,在大于20時(shí)受P限制[11],山楊葉片N∶P為20.59,說明山楊生長(zhǎng)可能受P素限制,然而植物葉片化學(xué)計(jì)量特征由環(huán)境與遺傳因子共同決定,具有種內(nèi)變異且生態(tài)策略趨異性[34],因此大興安嶺北部地區(qū)山楊生長(zhǎng)是否受P素限制還需開展進(jìn)一步研究。白樺葉片C、N最高,興安落葉松葉片TP含量最高,樟子松葉片C∶N和C∶P最高,山楊葉片N∶P最高,這也反映了不同樹種對(duì)養(yǎng)分分配及其利用效率存在差異[35]。

        3.2不同群落類型土壤C、N、P含量及化學(xué)計(jì)量特征

        大興安嶺地區(qū)4種典型森林類型土壤SOC和TN含量均表現(xiàn)為隨土層深度的增加而降低,而TP含量在不同土層間差異不明顯,這是因?yàn)橥寥繱OC、TN和TP含量在垂直分布上主要是由于C、N、P來源不同所決定的。土壤N來源途徑多樣,主要包括植物凋落物歸還和大氣沉降補(bǔ)充[36-37],而P來源相對(duì)單一,主要由巖石風(fēng)化和淋洗補(bǔ)充,這些過程相對(duì)困難[38]。因此,表層土壤N含量較高,而P在垂直分布中均一性較好。土壤SOC、TN和TP主要來源于凋落物分解,然后被植物吸收[39],這些元素經(jīng)過淋溶后向下層土壤遷移,同時(shí)也受植物根系的吸收和利用影響[40]。依據(jù)全國(guó)第二次土壤普查養(yǎng)分分級(jí)標(biāo)準(zhǔn),山楊林土壤TN含量處于二級(jí)水平,興安落葉松林和白樺林屬于三級(jí),而樟子松林則屬于四級(jí)。白樺林TP含量為三級(jí),興安落葉松林和樟子松林為四級(jí),山楊林僅為五級(jí)水平。大興安嶺地區(qū)森林土壤N和P含量較低,在一定程度上影響了植物生長(zhǎng)[41],比如P素缺乏可能對(duì)山楊生長(zhǎng)產(chǎn)生了限制。

        土壤C、N、P化學(xué)計(jì)量比是反映土壤養(yǎng)分和土壤養(yǎng)分有效性的關(guān)鍵性指標(biāo)[4]。在本研究中,4種林型土壤C∶N在土壤剖面中隨深度增加而降低。同一土層中土壤C∶N值越低,意味著土壤礦化作用越快,土壤中速效氮含量也較高[42-43]。然而,這4種林型C∶N均高于中國(guó)土壤C∶N的平均值(11.9)[44],這可能是由于本研究位于大興安嶺北部,冬季漫長(zhǎng)而寒冷,導(dǎo)致凋落物分解速率相對(duì)較慢,歸還土壤的N素量相對(duì)較低[45]。土壤C∶P會(huì)顯著影響到土壤微生物的C和P,當(dāng)C∶P>200時(shí)微生物進(jìn)行磷凈固持,當(dāng)C∶P<200時(shí)進(jìn)行磷凈礦化[46]。此外,土壤C∶P也可以表示土壤磷的有效性,二者之間呈負(fù)相關(guān)[42]。興安落葉松林、白樺林和樟子松林土壤C∶P均低于我國(guó)平均值61[44],而山楊林高于平均值,這表明山楊林土壤磷有效性相對(duì)較低,可能受P素限制。作為診斷土壤氮磷養(yǎng)分限制飽和度的指標(biāo),土壤N∶P能夠反映植物生長(zhǎng)過程中土壤養(yǎng)分的供給情況[16],本研究中,山楊土壤N∶P(5.26)顯著高于其余3種群落類型(1.96~2.55),同時(shí)高于我國(guó)平均值5.1[44],并且其N含量在4個(gè)群落類型中最高,說明土壤磷元素可能是山楊生長(zhǎng)的一個(gè)重要限制因素,即土壤中N素有效性較高,而磷素的有效性不足以與之平衡,因此會(huì)影響樹木生長(zhǎng)發(fā)育和生理功能[47]。

        3.3葉片化學(xué)計(jì)量與土壤因子之間的關(guān)系

        大興安嶺北部4種群落類型土壤C、N、P對(duì)葉片化學(xué)計(jì)量特征變化的貢獻(xiàn)較低,說明在植物生長(zhǎng)過程中C、N、P之間相互耦合,共同影響植物發(fā)育[48]。土壤因子中土壤含水對(duì)葉片化學(xué)計(jì)量特征變化的貢獻(xiàn)最大,落葉松林和樟子松林土壤含水與葉片TP呈正相關(guān),與葉片C∶P和N∶P顯著負(fù)相關(guān),這是由于土壤水分通過影響土壤微生物[49-50]的活性與種類進(jìn)而間接影響植物對(duì)磷素的吸收和利用。土壤pH上升,硝化細(xì)菌活性被抑制,礦化氮有向氨化轉(zhuǎn)變的趨勢(shì),從而提高植物氮利用效率[51],使落葉松林和樟子松林土壤pH與葉片C∶N正相關(guān)。樟子松林土壤C∶N與葉片C∶N正相關(guān),白樺林土壤C∶N和C∶P均與葉片C∶P呈正相關(guān),這與部分研究中,在養(yǎng)分匱乏的環(huán)境下,植物的養(yǎng)分利用效率較高的觀點(diǎn)一致[52]。而樟子松林和白樺林土壤C∶N與葉片C∶N負(fù)相關(guān),這可能是由于土壤中氮含量超過植物的最大吸收量,氮含量下降會(huì)對(duì)植物生長(zhǎng)發(fā)育產(chǎn)生負(fù)面影響[53]。

        4 結(jié)論

        本研究深入分析了大興安嶺北部4種喬木葉片和土壤生態(tài)化學(xué)計(jì)量特征,結(jié)果表明,4種喬木葉片C∶N>25,興安落葉松葉片顯著高于其他3個(gè)樹種,白樺葉片最低,葉片C∶P>600,但4種喬木間差異不顯著,葉片N∶P在10.21~20.59,興安落葉松最低,山楊葉片N∶P最高,且>20,表明其生長(zhǎng)可能受到磷限制。4種林型土壤C∶N均高于我國(guó)土壤C∶N的平均值(11.9)。興安落葉松林、白樺林和樟子松林土壤C∶P均低于我國(guó)平均值(61),而山楊林高于平均值。同時(shí)山楊土壤N∶P(5.26)顯著高于其余3種群落類型(1.96~2.55),說明土壤磷元素可能是山楊生長(zhǎng)一個(gè)重要的限制因素。樟子松林土壤C∶N與葉片C∶N正相關(guān),白樺林土壤C∶N和C∶P均與葉片C∶P呈正相關(guān),樟子松林和白樺林土壤C∶N與葉片C∶N負(fù)相關(guān),說明植物養(yǎng)分利用效率主要受土壤中養(yǎng)分含量所影響,且不同植物對(duì)環(huán)境會(huì)作出相應(yīng)的適應(yīng)策略。

        【參考文獻(xiàn)】

        [1]張繼輝,蔡道雄,盧立華,等.不同林齡柚木人工林土壤生態(tài)化學(xué)計(jì)量特征[J].生態(tài)學(xué)報(bào),2020,40(16):5718-5728.

        ZHANG J H, CAI D X, LU L H, et al. Soil ecological stoichiometry of different aged Teak (Tectona grandis) plantations[J]. Acta Ecologica Sinica, 2020, 40(16): 5718-5728.

        [2]拓衛(wèi)衛(wèi),范家偉,周雅潔,等.毛烏素沙地樟子松林植物-土壤生態(tài)化學(xué)計(jì)量特征演變關(guān)系[J].水土保持研究,2023,30(6):177-186.

        TUO W W, FAN J W, ZHOU Y J, et al. Evolutionary relationship of ecological stoichiometric characteristics between soil and plant of Pinus sylvestris forest in Mu Us sandy land[J]. Research of Soil and Water Conservation, 2023, 30(6): 177-186.

        [3]周念清,吳延浩,蔡奕,等.濕地關(guān)鍵帶中磷與氮、碳循環(huán)聯(lián)動(dòng)耦合機(jī)制[J].地球科學(xué)與環(huán)境學(xué)報(bào),2022,44(1):91-101.

        ZHOU N Q, WU Y H, CAI Y, et al. Coupling mechanism of phosphorus and nitrogen, carbon cycles in critical zone of wetland[J]. Journal of Earth Sciences and Environment, 2022, 44(1): 91-101.

        [4]孫連偉,陳靜文,鄧琦.全球變化背景下陸地植物N/P生態(tài)化學(xué)計(jì)量學(xué)研究進(jìn)展[J].熱帶亞熱帶植物學(xué)報(bào),2019,27(5):534-540.

        SUN L W, CHEN J W, DENG Q. Research progress of terrestrial plants N/P ecological stoichiometry under global change[J]. Journal of Tropical and Subtropical Botany, 2019, 27(5): 534-540.

        [5]LIU J, FANG L C, QIU T Y, et al. Disconnection between plant-microbial nutrient limitation across forest biomes[J]. Functional Ecology, 2023, 37(8): 2271-2281.

        [6]HE Y Q, ZHANG Q C, JIANG C Y, et al. Mixed planting improves soil aggregate stability and aggregate-associated C-N-P accumulation in subtropical China[J]. Frontiers in Forests and Global Change, 2023, 6: 1141953.

        [7]LI J N, NIU X M, WANG P, et al. Soil degradation regulates the effects of litter decomposition on soil microbial nutrient limitation: evidence from soil enzymatic activity and stoichiometry[J]. Frontiers in Plant Science, 2023, 13: 1090954.

        [8]QIU L J, LI Y J, ZHONG Q, et al. Adaptation mechanisms of the soil microbial community under stoichiometric imbalances and nutrient-limiting conditions in a subtropical nitrogen-saturated forest[J]. Plant and Soil, 2023, 489(1): 239-258.

        [9]俞月鳳,彭晚霞,宋同清,等.喀斯特峰叢洼地不同森林類型植物和土壤C、N、P化學(xué)計(jì)量特征[J].應(yīng)用生報(bào),2014,25(4):947-954.

        YU Y F, PENG W X, SONG T Q, et al. Stoichiometric characteristics of plant and soil C, N and P in different forest types in depressions between Karst hills, southwest China[J]. Chinese Journal of Applied Ecology, 2014, 25(4): 947-954.

        [10]JIANG J, WANG Y P, YANG Y H, et al. Interactive effects of nitrogen and phosphorus additions on plant growth vary with ecosystem type[J]. Plant and Soil, 2019, 440(1): 523-537.

        [11]郁國(guó)梁,王軍強(qiáng),馬紫荊,等.博斯騰湖湖濱濕地優(yōu)勢(shì)植物葉片碳、氮、磷化學(xué)計(jì)量特征的季節(jié)動(dòng)態(tài)及其影響因子[J].植物資源與環(huán)境學(xué)報(bào),2022,31(5):9-18.

        YU G L, WANG J Q, MA Z J, et al. Seasonal dynamics of carbon, nitrogen, and phosphorus stoichiometric characteristics of leaves of dominant plants in the lakeside wetland of Bosten Lake and their influencing factors[J]. Journal of Plant Resources and Environment, 2022, 31(5): 9-18.

        [12]冀盼盼,張健飛,張玉珍,等.不同林齡華北落葉松人工林生態(tài)化學(xué)計(jì)量特征[J].南京林業(yè)大學(xué)學(xué)報(bào)(自然版),2020,44(3):126-132.

        JI P P, ZHANG J F, ZHANG Y Z, et al. Ecological stoichiometry characteristics of Larix principis-rupprechtii plantations at different ages[J]. Journal of Nanjing Forestry University (Natural Sciences Edition), 2020, 44(3): 126-132.

        [13]宋語涵,張鵬,金光澤.闊葉紅松林不同演替階段灌木葉片碳氮磷化學(xué)計(jì)量特征及其影響因素[J].植物生報(bào),2021,45(9):952-960.

        SONG Y H, ZHANG P, JIN G Z. Characteristics of shrub leaf carbon, nitrogen and phosphorus stoichiometry and influencing factors in mixed broadleaved-Korean pine forests at different successional stages[J]. Chinese Journal of Plant Ecology, 2021, 45(9): 952-960.

        [14]李紅琴,張法偉,儀律北.高寒草甸表層土壤和優(yōu)勢(shì)植物葉片的化學(xué)計(jì)量特征對(duì)降水改變和氮添加的響應(yīng)[J].報(bào),2023,47(7):922-931.

        LI H Q, ZHANG F W, YI L B. Stoichiometric responses in topsoil and leaf of dominant species to precipitation change and nitrogen addition in an alpine meadow[J]. Chinese Journal of Plant Ecology, 2023, 47(7): 922-931.

        [15]張萍,章廣琦,趙一娉,等.黃土丘陵區(qū)不同森林類型葉片-凋落物-土壤生態(tài)化學(xué)計(jì)量特征[J].生態(tài)學(xué)報(bào),2018,38(14):5087-5098.

        ZHANG P, ZHANG G Q, ZHAO Y P, et al. Ecological stoichiometry characteristics of leaf-litter-soil interactions in different forest types in the loess hilly-gully region of China[J]. Acta Ecologica Sinica, 2018, 38(14): 5087-5098.

        [16]王振宇,王濤,鄒秉章,等.不同生長(zhǎng)階段杉木人工林土壤C∶N∶P化學(xué)計(jì)量特征與養(yǎng)分動(dòng)態(tài)[J].應(yīng)用生報(bào),2020,31(11):3597-3604.

        WANG Z Y, WANG T, ZOU B Z, et al. Soil C: N: P stoichiometry and nutrient dynamics in Cunninghamia lanceolata plantations during different growth stages[J]. Chinese Journal of Applied Ecology, 2020, 31(11): 3597-3604.

        [17]GSEWELL S, KOERSELMAN W, VERHOEVEN J T A. Biomass N:P ratios as indicators of nutrient limitation for plant populations in wetlands[J]. Ecological Applications, 2003, 13(2): 372-384.

        [18]CAMENZIND T, HATTENSCHWILER S, TRESEDER K K, et al. Nutrient limitation of soil microbial processes in tropical forests[J]. Ecological Monographs, 2018, 88(1): 4-21.

        [19]EOSTERTAG R, DIMANNO N M. Detecting terrestrial nutrient limitation: a global meta-analysis of foliar nutrient concentrations after fertilization[J]. Frontiers in Earth Science, 2016, 4: 23.

        [20]ABIS L, LOUBET B, CIURARU R, et al. Reduced microbial diversity induces larger volatile organic compound emissions from soils[J]. Scientific Reports, 2020, 10(1): 6104.

        [21]ZHANG W, LIU W C, XU M P, et al. Response of forest growth to C: N: P stoichiometry in plants and soils during Robinia pseudoacacia afforestation on the Loess Plateau, China[J]. Geoderma, 2019, 337: 280-289.

        [22]韓文軒,吳漪,湯璐瑛,等.北京及周邊地區(qū)植物葉的碳氮磷元素計(jì)量特征[J].北京大學(xué)學(xué)報(bào)(自然科學(xué)版),2009,45(5):855-860.

        HAN W X, WU Y, TANG L Y, et al. Leaf carbon, nitrogen and phosphorus stoichiometry across plant species in Beijing and its periphery[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2009, 45(5): 855-860.

        [23]鄭淑霞,上官周平.黃土高原地區(qū)植物葉片養(yǎng)分組成的空間分布格局[J].自然科學(xué)進(jìn)展,2006,16(8):965-973.

        ZHENG S X, SHANGGUAN Z P. The spatial distribution pattern of nutrient composition in plant leaves in the Loess Plateau region[J]. Progress in Natural Science, 2006, 16(8):965-973.

        [24]張亞興,朱麗薇,劉楠.海南不同生活型植物葉片和根系C、N、P化學(xué)計(jì)量特征[J].熱帶亞熱帶植物學(xué)報(bào),2020,28(2):131-135.

        ZHANG Y X, ZHU L W, LIU N. C, N, and P concentrations and their stoichiometry of leaves and roots with different life forms in Hainan Province[J]. Journal of Tropical and Subtropical Botany, 2020, 28(2): 131-135.

        [25]胡星,劉慶,趙春章,等.不同增溫模式對(duì)西南亞高山針葉林云杉養(yǎng)分及其化學(xué)計(jì)量特征的影響[J/OL].應(yīng)用與環(huán)境生物學(xué)報(bào),2023:1-12.

        HU X, LIU Q, ZHAO C Z, et al. Effects of different warming patterns on nutrients and stoichiometric characteristics of Spruce in alpine coniferous forests of Southwest Asia[J/OL]. Chinese Journal of Applied and Environmental Biology, 2023:1-12.

        [26]盧同平,王艷飛,王黎明,等.西雙版納熱帶雨林土壤與葉片生態(tài)化學(xué)計(jì)量特征的干濕度效應(yīng)[J].生態(tài)學(xué)報(bào),2018,38(7):2333-2343.

        LU T P, WANG Y F, WANG L M, et al. Effect of the humidity/aridity gradient on the ecological stoichiometry of soil and leaves in Xishuangbanna tropical rainforest[J]. Acta Ecologica Sinica, 2018, 38(7): 2333-2343.

        [27]吳欣陽,邵靜,陳曉萍,等.武夷山不同海拔闊葉樹葉片養(yǎng)分含量及再吸收效率[J].應(yīng)用生態(tài)學(xué)報(bào),2023,34(9):2305-2313.

        WU X Y, SHAO J, CHEN X P, et al. Nutrient content and resorption efficiency of leaves of broad-leaved trees along altitudes in Wuyi Mountains, China[J]. Chinese Journal of Applied Ecology, 2023, 34(9): 2305-2313.

        [28]蔡艷,張毅,劉輝,等.峨眉山常綠闊葉林常綠和落葉物種葉片C、N、P研究[J].浙江林業(yè)科技,2009,29(3):9-13.

        CAI Y, ZHANG Y, LIU H, et al. Study on C, N, P content in leaf of evergreen and deciduous trees in evergreen broad-leaved forest at E'mei Mountain[J]. Journal of Zhejiang Forestry Science and Technology, 2009, 29(3): 9-13.

        [29]胡啟武,聶蘭琴,鄭艷明,等.沙化程度和林齡對(duì)濕地松葉片及林下土壤C、N、P化學(xué)計(jì)量特征影響[J].生態(tài)學(xué)報(bào),2014,34(9):2246-2255.

        HU Q W, NIE L Q, ZHENG Y M, et al. Effects of desertification intensity and stand age on leaf and soil carbon, nitrogen and phosphorus stoichiometry in Pinus elliottii plantation[J]. Acta Ecologica Sinica, 2014, 34(9): 2246-2255.

        [30]BYTNEROWICZ T A, FUNK J L, MENGE D N L, et al. Leaf nitrogen affects photosynthesis and water use efficiency similarly in nitrogen-fixing and non-fixing trees[J]. Journal of Ecology, 2023, 111(11): 2457-2471.

        [31]LI R S, YU D, ZHANG Y K, et al. Investment of needle nitrogen to photosynthesis controls the nonlinear productivity response of young Chinese fir trees to nitrogen deposition[J]. The Science of the Total Environment, 2022, 840: 156537.

        [32]李鴻博,陳詩(shī),黃耀華,等.橫斷山脈亞高山帶高山櫟葉片生態(tài)化學(xué)計(jì)量及內(nèi)穩(wěn)性特征[J].植物研究,2023,43(6):923-931.

        LI H B, CHEN S, HUANG Y H, et al. Ecological stoichiometry and homeostasis of alpine Quercus semicarpifolia leaves in subalpine zone of Hengduan Mountains[J]. Bulletin of Botanical Research, 2023, 43(6): 923-931.

        [33]GURMESA G A, ZHANG S S, WANG A, et al. Within-site difference in nitrogen status between mixed forests and larch plantations: evidence from multiple indicators[J]. Ecosphere, 2023, 14(1): e4358.

        [34]XU R, CHENG S D, ZHOU J, et al. Intraspecific variations in leaf functional traits of Cunninghamia lanceolata provenances[J]. BMC Plant Biology, 2023, 23(1): 92.

        [35]張楠,楊智杰,胥超,等.中亞熱帶森林轉(zhuǎn)換對(duì)凋落物養(yǎng)分歸還及養(yǎng)分利用效率的影響[J].應(yīng)用生態(tài)學(xué)報(bào),2022,33(2):321-328.

        ZHANG N, YANG Z J, XU C, et al. Effects of forest conversion on litterfall nutrient return and nutrient use efficiency in Mid-subtropical China[J]. Chinese Journal of Applied Ecology, 2022, 33(2): 321-328.

        [36]陳立新,姜一,段文標(biāo),等.紅松混交林凋落物氮儲(chǔ)量及分解釋放對(duì)土壤氮的影響[J].生態(tài)學(xué)雜志,2015,34(1):114-121.

        CHEN L X, JIANG Y, DUAN W B, et al. Effect of litter nitrogen storage and nitrogen release of litter decomposition on soil nitrogen in Pinus koraiensis mixed forests[J]. Chinese Journal of Ecology, 2015, 34(1): 114-121.

        [37]DUAN L, CHEN X, MA X X, et al. Atmospheric S and N deposition relates to increasing riverine transport of S and N in southwest China: implications for soil acidification[J]. Environmental Pollution, 2016, 218: 1191-1199.

        [38]HERRERA D, MYLAVARAPU R S, HARRIS W G, et al. Soil phosphorus sources and their relative water solubility and extractability[J]. Communications in Soil Science and Plant Analysis, 2022, 53(12): 1445-1455.

        [39]劉姝萱,安慧,張馨文,等.氮磷添加對(duì)荒漠草原植物-凋落物-土壤生態(tài)化學(xué)計(jì)量特征的影響[J].生態(tài)學(xué)報(bào),2022,42(21):8773-8783.

        LIU S X, AN H, ZHANG X W, et al. Effects of nitrogen and phosphorus addition on the ecological stoichiometry of plant-litter-soil in desert grassland[J]. Acta Ecologica Sinica, 2022, 42(21): 8773-8783.

        [40]張英鵬,孫明,李彥,等.根系調(diào)控對(duì)設(shè)施西葫蘆產(chǎn)量、品質(zhì)及土壤氮磷淋溶損失的影響[J].山東農(nóng)業(yè)科學(xué),2020,52(11):90-94.

        ZHANG Y P, SUN M, LI Y, et al. Effects of different root regulation on yield and quality of summer squash and soil nitrogen and phosphorus leaching loss in greenhouse[J]. Shandong Agricultural Sciences, 2020, 52(11): 90-94.

        [41]林秋燕,鐘全林,李寶銀,等.氮磷添加對(duì)刨花楠幼林生長(zhǎng)與葉性狀及土壤養(yǎng)分關(guān)系影響[J/OL].應(yīng)用與環(huán)境生物學(xué)報(bào),2023:1-13.

        LIN Q Y, ZHONG Q L, LI B Y, et al. Effect of nitrogen and phosphorus addition on the relationship between leaf traits-soil nutrients and the growth of Machilus pauhoi young plantation[J/OL]. Chinese Journal of Applied and Environmental Biology, 2023:1-13.

        [42]曹娟,閆文德,項(xiàng)文化,等.湖南會(huì)同3個(gè)林齡杉木人工林土壤碳、氮、磷化學(xué)計(jì)量特征[J].林業(yè)科學(xué),2015,51(7):1-8.

        CAO J, YAN W D, XIANG W H, et al. Stoichiometry characterization of soil C, N, and P of Chinese fir plantations at three different ages in Huitong, Hunan Province, China[J]. Scientia Silvae Sinicae, 2015, 51(7): 1-8.

        [43]周士鋒,趙敏娟.粗枝云杉根系及樹冠中的碳氮磷化學(xué)計(jì)量特征研究[J].西部林業(yè)科學(xué),2022,51(1):42-48.

        ZHOU S F, ZHAO M J. Stoichiometric characteristics of carbon, nitrogen and phosphorus in different root and crown of Picea crassifolia[J]. Journal of West China Forestry Science, 2022, 51(1): 42-48.

        [44]劉婕,勾曉華,劉建國(guó),等.甘南黃河流域4種典型林分土壤C、N、P化學(xué)計(jì)量特征[J].生態(tài)學(xué)報(bào),2023,43(13):5627-5637.

        LIU J, GOU X H, LIU J G, et al. The stoichiometric characteristics of soil C, N and P in four typical forest stands in the Yellow River Basin in Gannan[J]. Acta Ecologica Sinica, 2023, 43(13): 5627-5637.

        [45]梁蕾,馬秀枝,韓曉榮,等.模擬增溫下凋落物對(duì)大青山油松人工林土壤溫室氣體通量的影響[J].生態(tài)環(huán)報(bào),2022,31(3):478-486.

        LIANG L, MA X Z, HAN X R, et al. Effects of litter on soil greenhouse gas flux of Pinus tabulaeformis plantation in Daqing Mountain under simulated warming[J]. Ecology and Environmental Sciences, 2022, 31(3): 478-486.

        [46]何高迅,王越,彭淑嫻,等.滇中退化山地不同植被恢復(fù)下土壤碳氮磷儲(chǔ)量與生態(tài)化學(xué)計(jì)量特征[J].生態(tài)報(bào),2020,40(13):4425-4435.

        HE G X, WANG Y, PENG S X, et al. Soil carbon, nitrogen and phosphorus stocks and ecological stoichiometry characteristics of different vegetation restorations in degraded mountainous area of central Yunnan, China[J]. Acta Ecologica Sinica, 2020, 40(13): 4425-4435.

        [47]ZHAO C T, LIN Q H, TIAN D, et al. Nitrogen addition promotes conservative resource-use strategies via aggravating phosphorus limitation of evergreen trees in subtropical forest[J]. The Science of the Total Environment, 2023, 889: 164047.

        [48]MA X M, ZHOU Z, CHEN J, et al. Long-term nitrogen and phosphorus fertilization reveals that phosphorus limitation shapes the microbial community composition and functions in tropical montane forest soil[J]. The Science of the Total Environment, 2023, 854: 158709.

        [49]張靜,溫仲明,李鳴雷,等.外來物種刺槐對(duì)土壤微生物功能多樣性的影響[J].生態(tài)學(xué)報(bào),2018,38(14):4964-4974.

        ZHANG J, WEN Z M, LI M L, et al. Effects of the exotic black locust on the functional diversity of soil microorganisms[J]. Acta Ecologica Sinica, 2018, 38(14): 4964-4974.

        [50]王澤西,陳倩妹,黃尤優(yōu),等.川西亞高山森林土壤呼吸和微生物生物量碳氮對(duì)施氮的響應(yīng)[J].生態(tài)學(xué)報(bào),2019,39(19):7197-7207.

        WANG Z X, CHEN Q M, HUANG Y Y, et al. Response of soil respiration and microbial biomass carbon and nitrogen to nitrogen application in subalpine forests of western Sichuan[J]. Acta Ecologica Sinica, 2019, 39(19): 7197-7207.

        [51]楊楚童,鄒顯花,孫雪蓮,等.不同磷利用效率杉木在低磷脅迫下的形態(tài)及養(yǎng)分分配差異[J].西北林學(xué)院報(bào),2021,36(4):94-102.

        YANG C T, ZOU X H, SUN X L, et al. Differences in morphology and nutrient distribution of Chinese fir with different phosphorus use efficiency under low phosphorus stress[J]. Journal of Northwest Forestry University, 2021, 36(4): 94-102.

        [52]雷澤勇,白津?qū)?,周鳳艷,等.遼寧章古臺(tái)地區(qū)不同年齡樟子松固沙林對(duì)土壤pH值的影響[J].生態(tài)學(xué)雜志,2019,38(11):3264-3272.

        LEI Z Y, BAI J N, ZHOU F Y, et al. Effects of Pinus sylvestris var. mongolica sand-fixation plantations with different ages on soil pH in Zhanggutai, Liaoning Province[J]. Chinese Journal of Ecology, 2019, 38(11): 3264-3272.

        [53]劉俊英,回金峰,孫夢(mèng)瑤,等.施磷水平和接種AMF與解磷細(xì)菌對(duì)苜蓿產(chǎn)量及磷素利用效率的影響[J].農(nóng)報(bào),2020,36(19):142-149.

        LIU J Y, HUI J F, SUN M Y, et al. Effects of phosphorus application and inoculation arbuscular mycorrhizae fungi(AMF) and phosphate solubilizing bacteria on dry matter yield and phosphorus use efficiency of alfalfa[J]. Transactions of the Chinese Society of Agricultural Engineering, 2020, 36(19): 142-149.

        国产亚洲精品一品二品| 99视频一区| 成人无码视频在线观看网站| 中文字幕国产精品专区| 国内久久婷婷六月综合欲色啪| 国产av旡码专区亚洲av苍井空| 亚洲av成人一区二区三区av| 日本一区二区不卡超清在线播放| 国内精品国产三级国产| 成人午夜福利视频后入| 亚洲a∨无码一区二区| 国产精品女丝袜白丝袜| 桃色一区一区三区蜜桃视频| av狠狠色丁香婷婷综合久久 | 大陆极品少妇内射aaaaaa| 国产美女在线精品亚洲二区| 一本久久伊人热热精品中文| 手机看片自拍偷拍福利| 美女又色又爽视频免费| 永久免费看免费无码视频| 日本在线一区二区免费| 国产做无码视频在线观看| 法国啄木乌av片在线播放| 亚洲中文字幕不卡无码| 青青草在线免费播放视频| 在线看片免费人成视频久网下载 | 国产精品欧美视频另类专区| 中文字幕34一区二区| 狠狠躁夜夜躁人人爽天天古典| 四虎欧美国产精品| 亚洲av国产精品色a变脸| 成年丰满熟妇午夜免费视频| 精品国精品无码自拍自在线| 人妻少妇精品视中文字幕国语| 日本一区二区三区区视频| 国产又a又黄又潮娇喘视频| 免费无遮挡无码视频在线观看| 亚洲情精品中文字幕99在线| 中文字幕人乱码中文字幕| 国产熟妇搡bbbb搡bbbb搡| 亚洲av成人一区二区三区不卡|