楊娟 龔佳鑫 吳隆鈺 舒級
摘要:研究一類具有乘性噪聲的時滯隨機演化方程的隨機中心流形的存在性與光滑性.由于時滯的影響,首先對帶時滯的非線性項進行轉化并處理由時滯影響產生的系數,從而得到中心流形的存在性,然后利用Lyapunov-Perron方法證明方程的中心流形的光滑性.
關鍵詞:時滯隨機演化方程; 隨機中心流形; 乘性噪聲; 存在性; 光滑性
中圖分類號:O175.29? 文獻標志碼:A? 文章編號:1001-8395(2024)05-0696-12
doi:10.3969/j.issn.1001-8395.2024.05.016
本文研究如下一類具有乘性噪聲的時滯隨機演化方程的中心流形的存在性與光滑性:
dv(t)dt=Av(t)+H(v(t))+F(v(t-ρ))+v(t),(1)
其中,A是可分的實Hilbert空間X上的一簇自伴、稠定、具有緊預解集的線性算子,H(v(t))是從X到X的一簇Lipschitz連續(xù)項,F(xiàn)(v(t-ρ))是由X到X的一簇帶時滯的非線性項,ρ是一個正常數,v(t)是乘性噪聲,符號代表方程(1)在Stratonovich積分意義下成立.
本文主要證明方程(1)中心流形的存在性與光滑性.運用Lyapunov-Perron方法證明中心流形的存在性與光滑性,在時滯的影響下,需要對帶有時滯的非線性項進行轉化處理,確定新的譜間隙條件,從而得到具有乘性噪聲的時滯隨機演化方程的中心流形的存在性與光滑性.
不變流形在描述和理解非線性動力系統(tǒng)的動力學行為方面具有重要意義,并且時滯偏微分方程、隨機偏微分方程在物理、力學、生物等相關領域受到人們的廣泛關注,而實際問題中時滯因素與隨機因素往往會同時出現(xiàn).不變流形理論最先由Hadamard[1]和Lyapunov[2]以及Perron[3]分別用2種方法提出,這2種方法也為后期以及現(xiàn)代研究不變流形奠定了良好基礎.
不變流形在數學理論中也有許多豐碩的成果,Carr[4]擴展了對有限維確定動力系統(tǒng)的不變流形的存在性以及分岔特征的研究,如文獻[5-12]將不變流形的研究拓展到了無窮維隨機動力系統(tǒng).Chow和Lu[13-14]以及Duan等[15-16]利用Hadamard方法與Lyapunov-Perron方法探索了在無窮維動力系統(tǒng)上的不變流形的存在性與光滑性.隨著對不變流形的研究,文獻[17-26]拓展了對帶有加性噪聲或乘性噪聲的隨機偏微分方程的研究.此外,文獻[27-31]也探究了時滯或延遲反應擴散方程的相關性質.Shi[32]研究了在不同相空間中具有乘性噪聲的隨機偏微分方程的中心流形的光滑收斂性.
本文將采用文獻[32]的框架和研究方法,研究具有乘性噪聲的時滯隨機演化方程的中心流形.
1 預備知識
本節(jié)參考文獻[16,33-34]給出隨機動力系統(tǒng)與隨機不變流形的基本知識,以及方程中每個算子的相關性質.
1.1 隨機動力系統(tǒng)
設(Ω,F(xiàn),P)是概率空間,X是具有范數‖·‖的可分Hilbert空間.用B(R),B(R+),B(X)分別表示R,R+,X的Borel集簇.
定義 1.1
如果(Ω,F(xiàn),P,(θt)t∈R)滿足:
(i) 映射θ:RΩ→Ω是(B(R)F,F(xiàn))-可測的;
(ii) θ0=idΩ是Ω上的恒等算子,對所有t,s∈R,θt+s=θtθs;
(iii) 對所有t∈R,θtP=P;
則(Ω,F(xiàn),P,(θt)t∈R)被稱為度量動力系統(tǒng).
定義 1.2
如果一個映射φ:R+×Ω×X→X,(t,ω,x)MT ExtraaA@φ(t,ω,x)滿足:
(i) φ是(B(R+)FB(X),B(X))-可測的;
(ii) 映射φ(t,ω)=φ(t,ω,·):X→X在θt上形成一個余環(huán):
φ(0,ω)=idX, ω∈Ω,φ(s+t,ω)=φ(t,θsω)φ(s,ω),s,t∈R+, ω∈Ω;
則φ被稱為度量動力系統(tǒng)(Ω,F(xiàn),P,(θt)t∈R)上的一個隨機動力系統(tǒng).若φ是隨機動力系統(tǒng)并且對每個(t,ω)∈R+×Ω,映射
φ(t,ω):X→X, xMT ExtraaA@φ(t,ω)x
是Ck的,則φ被稱為一個Ck光滑隨機動力系統(tǒng).
1.2 隨機不變流形
如果非空閉集M(ω)X,ω∈Ω上的多值函數M=(M(ω))ω∈Ω滿足
ωMT ExtraaA@infy∈Ω‖x-y‖
是對每個x∈X的隨機變量,則M(ω)被稱為隨機集.若M(ω)是流形,則稱M是隨機流形;若M(ω)對每個ω是Ck光滑流形,則稱M是Ck隨機流形.
定義 1.3
若對于隨機動力系統(tǒng)滿足
(t,ω,M(ω))M(θtω), t≥0,則稱M是隨機流形.
1.3 Hilbert空間X上的無界線性算子A
設A是Hilbert空間X上的一簇線性算子,并且滿足:
(i) A是稠定線性算子,并且在X上生成一個解析半群;
(ii) A是自伴的且具有緊預解集,
則σ(A)僅由多重有限的特征值{λn}∞n=1組成
λ1≥λ2≥…≥λn≥…→-∞,
其對應的特征向量{φn}∞n=1構成空間X的一組標準正交基.
將譜σ(A)寫成
σ(A)=σu(A)∪σc(A)∪σs(A),
其中
σu(A):={λ∈σ(A)|λ≥λm},σc(A):={λ∈σ(A)|λm+l-1≤λ≤λm+1},σs(A):={λ∈σ(A)|λ≤λm+l}.
假設λm>0,λm+l<0以及σc(A)≠.用Xu、Xc、Xs分別表示σu、σc、σs對應的特征空間,則有
X=XuXcXs,
對應投影算子Pu:X→Xu,Pc:X→Xc,Ps:X→Xs.
由A生成的線性半群eAt有如下性質.
引理 1.4
對每個0<α ‖eAtPu‖L(X,X)≤eλmt, t≤0,‖eAtPc‖L(X,X)≤eα|t|, t∈R,‖eAtPs‖L(X,X)≤eλm+lt, t≥0. 1.4 非線性算子H與F 考慮非線性算子H:X→X,F(xiàn):X→X.假設H和F是全局Lipschitz連續(xù)并且一致Lipschitz有界,即 L1=supx≠y,x,y∈X‖H(x)-H(y)‖X‖x-y‖X<∞,(2) L2=supx≠y,x,y∈X‖F(xiàn)(x)-F(y)‖X‖x-y‖X<∞,(3) 假設H(0)=0,F(xiàn)(0)=0. 為了研究Ck范數下中心流形的光滑性,進一步假設H、F從X到X是Ck的,其中整數k≥1,即H、F是Ck可微的并且每階導數DiH、DiF是一致有界的,且導數一致連續(xù)的,Li(X,X)是從X到X的所有i階有界線性算子的空間. 設C([-ρ,0],X)是從[-ρ,0]到X的所有連續(xù)函數的空間,其中ρ>0,且有范數 ‖φ‖C([-ρ,0],X)=sup-ρ≤s≤0{‖φ(s)‖X:s∈[-ρ,0],φ∈C([-ρ,0],X)}. 為了簡潔,用Cρ表示C([-ρ,0],X). 2 中心流形的存在性 本節(jié)證明以下方程的隨機中心流形存在: dv(t)dt=Av(t)+H(v(t))+F(v(t-ρ))+v(t),(4) 其中,A、H(v(t))、F(v(t-ρ))在前面已給出,W(t)是一維標準Wiener過程,表示一般的白噪聲,v(t)是Stratonovich微分.但是,由參考文獻[35]的第七章可知,不變流形存在性理論通常應用于It方程.隨機演化方程(4)的等價It方程為 dv(t)=Av(t)dt+(H(v(t))+F(v(t-ρ)))dt+v(t)2dt+v(t)d.(5) 為了研究由方程(4)的解生成的隨機動力系統(tǒng),考慮一維線性隨機微分方程 dz+zdt=dW,(6) 這個方程的解被稱為Ornstein-Uhlenbeck過程,并且滿足以下性質. 引理 2.1[16] 上述過程具有以下性質: (i) 存在全測度{θt}t∈R不變集 Ω1∈B(C0(R,R)),其具有次線性增長 limt→±∞|ω(t)||t|=0, ω∈Ω1, 在P-測度1下. (ii) 對于ω∈Ω1的隨機變量 z(ω)=-∫0-∞eτω(τ)dτ 存在并生成了方程(6)的唯一穩(wěn)態(tài)解,表示為 Ω1×R瘙綍(ω,t)→z(θtω)=-∫0-∞eτθtω(τ)dτ=-∫0-∞eτω(τ+t)dτ+ω(t), 且映射t→z(θtω)是連續(xù)的. (iii) 特別地,有 limt→±∞|z(θtω)||t|=0, ω∈Ω1. (iv) 除此之外,有 limt→±∞1t∫t0z(θτω)dτ=0, ω∈Ω1. 對余下部分,限制θt在全測度不變集Ω1上,而不是Ω上,定義對應的概率空間(Ω1,F(xiàn),P),但依舊表示為(Ω,F(xiàn),P). 接下來,研究方程(4)的解定義一個隨機動力系統(tǒng),為了證明這一點,考慮如下隨機偏微分方程 du(t)dt=Au(t)+z(θtω)u(t)+e-z(θtω)H(ez(θtω)u(t))+e-z(θtω)F(ez(θt-ρω)u(t-ρ)),(7) 初值條件為 u(s)=x(s), s∈[-ρ,0],(8) 其中x(s)∈Cρ.與原始隨機微分方程相比,此方程未出現(xiàn)隨機積分.通過解的存在唯一性定理,該方程對每個ω∈Ω都有唯一解,則解映射 (t,ω,x)MT ExtraaA@u(t,ω,x) 生成一個隨機動力系統(tǒng),即u是 B(R+)FB(Cρ)可測,且生成余環(huán): u(0,ω,x)=x, ω∈Ω,u(t+s,ω,x)=u(t,θsω,·)u(s,ω,x),s,t∈R+, ω∈Ω, x∈Cρ. 對每個x∈Cρ,ω∈Ω,引入下列隨機變換 T(ω,x)=e-z(ω)x. 顯然,對固定的ω∈Ω,其逆變換是 T-1(ω,x)=ez(ω)x. 下面這個命題給出了原始隨機方程(4)的解生成一個隨機動力系統(tǒng). 命題 2.2 假設u是方程(7)解生成的一個隨機動力系統(tǒng),則 (t,ω,x)MT ExtraaA@T-1(θtω,·)u(t,ω,T(ω,x))=:v(t,ω,x)(9) 是一個隨機動力系統(tǒng).對于任意x∈Cρ,這個過程是方程(4)的一個解并生成一個隨機動力系統(tǒng). 證明 這個證明過程與文獻[32]相似,所以此處省略. 注意到,譜σ(A)僅由特征值{λn}∞n=1組成,且有 λ1≥λ2≥…≥λn≥…→-∞. 設0<α Cη={φ:C(R,X)|supt∈Re-η|t|-∫t0z(θrω)dr‖φ(t)‖X<∞}, 且具有范數 ‖φ‖Cη=supt∈Re-η|t|-∫t0z(θrω)dr‖φ(t)‖X. 設L是一個正常數且滿足 L1+NL2≤L<∞,(10) 其中N=max{Nu,Nc,Ns},這些系數將在后文中具體給出.為了保證中心流形的存在性和Ck光滑性,假設 L(1η-α+1λm-η+1-λm+l-η)<1,(11) 譜間隙條件kη L(1iη-α+1λm-iη+1-λm+l-iη)<1,1≤i≤k.(12) 為了研究中心流形的Ck光滑性,還需要選擇κ>0,使得有 L(1i(η±κ)-α+1λm-i(η±κ)+1-λm+l-i(η±κ))<1, 1≤i≤k.(13) 現(xiàn)在考慮方程(7)的隨機不變流形.設 Mc(ω)={x|u(·,ω,x)∈Cη}, 當它是流形時,則Mc(ω)被稱為中心流形.顯然,0∈Mc(ω),它是非空的且是不變的. 以下引理表明Mc(ω)中的點可以由一個積分方程所確定. 引理 2.3 對于x∈Mc(ω)當且僅當存在一個初值為u(0)=x的函數u(·)∈Cη,且滿足 u(t)=eAt+∫t0z(θrω)drξ+∫t0eA(t-s)+∫tsz(θrω)drPc[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds,(14) 其中ξ=Pcx. 證明 設τ,t∈R,x∈Mc(ω),因為對所有t∈R方程的解u(t;x,ω)存在,則有 u(t;x,ω)=eA(t-τ)+∫tτz(θrω)dru(τ;x,ω)+∫tτeA(t-s)+∫tsz(θrω)dr [e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(15) 取τ=0,用投影算子Pc作用于方程(15),得到 Pcu(t;x,ω)=eAt+∫t0z(θrω)drPcx+∫t0eA(t-s)+∫tsz(θrω)drPc [e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(16) 用投影算子Pu作用于方程(15)有 Puu(t;x,ω)=eA(t-τ)+∫tτz(θrω)drPuu(τ;x,ω)+∫tτeA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(17) 由引理1.4,當τ>max{t,0}時,且τ→+∞,可得 ‖eA(t-τ)+∫tτz(θrω)drPuu(τ;x,ω)‖X ≤eλm(t-τ)+∫tτz(θrω)dr+η|τ|+∫τ0z(θrω)dr‖u(·;x,ω)‖Cη≤ eλmt+∫t0z(θrω)dr+(η-λm)τ‖u(·;x,ω)‖Cη→0. 當τ→+∞時,對方程(17)取極限,有 Puu(t;x,ω)=∫t+∞eA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(18) 類似地,得到 Psu(t;x,ω)=∫t-∞eA(t-s)+∫tsz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s;x,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;x,ω))]ds.(19) 綜合(16)、(18)以及(19)式,得到方程(14).由簡單計算可以得到逆向結論. 接下來證明方程(7)的中心流形的存在性. 定理 2.4 假設(11)式成立,則有: (i) 對每個ξ∈Xc,方程(14)有唯一解 u(·;ξ,ω)∈Cη±κ,且滿足 ‖u(·;ξ,ω)-u(·;,ω)‖Cη≤(1-L(1η-α+1λm-η+1-λm+l-η))-1‖ξ-‖Xc; (ii) Mc(ω)能由Lipschitz映射 hc(·,ω):Xc→XuXs的圖表示,即 Mc(ω)={ξ+hc(ξ,ω)|ξ∈Xc},(20) 其中 hc(ξ,ω)=Puu(0;ξ,ω)+Psu(0;ξ,ω),hc(0,ω)=0. 證明 首先證明(i),即證明當ξ∈Xc時,方程(14)在Cη上有唯一解u=u(·;ξ,ω),且滿足Lipschitz連續(xù).用Qc(u;ξ,ω)表示方程(14)的右邊.通過引理1.4和(10)式,得到 e-η|t|-∫t0z(θrω)dr‖Qc(u;ξ,ω)‖Xc≤‖e-η|t|+Atξ‖Xc+‖∫t0e-η|t|+A(t-s)+∫0sz(θrω)drPc[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds‖Xc+‖∫t+∞e-η|t|+A(t-s)+∫0sz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds‖Xc+‖∫t-∞e-η|t|+A(t-s)+∫0sz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds‖Xc≤‖e-η|t|+Atξ‖Xc+{‖∫t0e-η|t|+α|t-s|+∫0sz(θrω)dre-z(θsω)H(ez(θsω)u(s))ds‖Xc+‖∫t-ρ-ρe-η|t|+α|t-s-ρ|+∫0s+ρz(θrω)dr×e-z(θs+ρω)F(ez(θsω)u(s))ds‖Xc}+{‖∫t+∞e-η|t|+λm(t-s)+∫0sz(θrω)dre-z(θsω)H(ez(θsω)u(s))ds‖Xc+‖∫t-ρ+∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×e-z(θs+ρω)F(ez(θsω)u(s))ds‖Xc}+{‖∫t-∞e-η|t|+λm+l(t-s)+∫0sz(θrω)dr×e-z(θsω)H(ez(θsω)u(s))ds‖Xc+‖∫t-ρ-∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×e-z(θs+ρω)F(ez(θsω)u(s))ds‖Xc}≤‖ξ‖Xc+{1η-αL1‖u(·)‖Cη+1η-αL2Nc‖u(·)‖Cη}+{1λm-ηL1‖u(·)‖Cη+1λm-ηL2Nu‖u(·)‖Cη}+{1-λm+l-ηL1‖u(·)‖Cη+1-λm+l-ηL2Ns‖u(·)‖Cη}≤‖ξ‖Xc+L(1η-α+1λm-η+1-λm+l-η)‖u(·)‖Cη, 其中 Nc=sups∈R 2e2ηρe∫ss+ρz(θrω)dre-z(θs+ρω)ez(θsω),Nu=sups∈R 2e2λmρe∫ss+ρz(θrω)dre-z(θs+ρω)ez(θsω),Ns=sups∈R 2e-2λm+lρe∫ss+ρz(θrω)dre-z(θs+ρω)ez(θsω). 這意味著映射Qc(u;ξ,ω)是從Cη到自身的. 接著,證明解是唯一的.對u,∈Cη,有 ‖Qc(u;ξ,ω)-Qc(;ξ,ω)‖Cη≤supt∈Re-η|t|-∫t0z(θrω)dr{‖∫t0eA(t-s)+∫tsz(θrω)drPc×[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))-e-z(θsω)F(ez(θs-ρω)(s-ρ))]ds‖Xc+‖∫t+∞eA(t-s)+∫tsz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))-e-z(θsω)F(ez(θs-ρω)(s-ρ))]ds‖Xc+‖∫t-∞eA(t-s)+∫tsz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))-e-z(θsω)F(ez(θs-ρω)(s-ρ))]ds‖Xc}≤{‖∫t0e-η|t|+α|t-s|+∫0sz(θrω)dr[e-z(θsω)H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))]ds‖Xc+‖∫t-ρ-ρe-η|t|+α|t-s-ρ|+∫0s+ρz(θrω)dr×[e-z(θs+ρω)F(ez(θsω)u(s))-e-z(θs+ρω)F(ez(θsω)(s))]ds‖Xc}+{‖∫t+∞e-η|t|+λm(t-s)+∫0sz(θrω)dr[e-z(θsω)×H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))]ds‖Xc+‖∫t-ρ+∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×[e-z(θs+ρω)F(ez(θsω)u(s))-e-z(θs+ρω)F(ez(θsω)(s))]ds‖Xc}+{‖∫t-∞e-η|t|+λm+l(t-s)+∫0sz(θrω)dr[e-z(θsω)×H(ez(θsω)u(s))-e-z(θsω)H(ez(θsω)(s))]ds‖Xc+‖∫t-ρ-∞e-η|t|+λm(t-s-ρ)+∫0s+ρz(θrω)dr×[e-z(θs+ρω)F(ez(θsω)u(s))-e-z(θs+ρω)F(ez(θsω)(s))]ds‖Xc}≤L(1η-α+1λm-η+1-λm+l-η)‖u(·)-(·)‖Cη. 由(11)式可得Qc(·;ξ,ω)是關于(ξ,ω)一致收縮的.根據壓縮映射原理,對每個ξ∈Xc,Qc(·;ξ,ω)都有唯一不動點u(·;ξ,ω)∈Cη. 類似地,對所有ξ,∈Xc,有 ‖u(t;ξ,ω)-u(t;,ω)‖Cη≤‖ξ-‖Xc+L(1η-α+1λm-η+1-λm+l-η)‖u(·;ξ,ω)-u(·;,ω)‖Cη. 因此 ‖u(t;ξ,ω)-u(t;,ω)‖Cη≤(1-L(1η-α+1λm-η+1-λm+l-η))-1‖ξ-‖Xc.(21) 此外,因為u(·;ξ,ω)可以是壓縮映射Qc從0開始迭代的ω-向極限,并且將一個F-可測函數映射到一個可測函數,所以u(·;ξ,ω)關于ω是F-可測的.另一方面,因為u(·;ξ,ω)關于ξ是Lipschitz連續(xù)的,所以u(·;ξ,ω)關于(ξ,ω)是可測的. 下面證明(ii).設 hc(ξ,ω)=Puu(0;ξ,ω)+Psu(0;ξ,ω), 則有 hc(ξ,ω)=∫0+∞e-As+∫0sz(θrω)drPu[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds+∫0-∞e-As+∫0sz(θrω)drPs[e-z(θsω)H(ez(θsω)u(s))+e-z(θsω)F(ez(θs-ρω)u(s-ρ))]ds, 且hc(0,ω)=0. 運用引理1.4和(10)式,對每個ξ,∈Xc,有 ‖hc(ξ,ω)-hc(,ω)‖Xc≤(1λm-η+1-λm+l-η)×L1-L(1η-α+1λm-η+1-λm+l-η)‖ξ-‖Xc, 而且hc關于(ξ,ω)是可測的. 根據引理2.3和hc(ξ,ω)的定義,得到 Mc(ω)={ξ+hc(ξ,ω)|ξ∈Xc}. 現(xiàn)在證明Mc(ω)是隨機集,即對任意x∈Cρ,有 ωMT ExtraaA@infy∈X|x-(Pcy+hc(Pcy,ω))|(22) 是可測的.令是可分空間X的可數稠密集,則(22)式的右邊等價于 infy∈|x-(Pcy+hc(Pcy,ω))|, 這說明hc(·,ω)是連續(xù)的.由于對任意y∈Rn,ωMT ExtraaA@hc(Pcy,ω)是可測的,所以(22)式中下確界的任意表達式都是可測的. 3 中心流形的光滑性 下面證明中心流形的光滑性,運用歸納法和導數定義,首先證明方程解是一階可微的,其次證明一階導數存在且連續(xù),最后證明k階導數存在且連續(xù). 定理 3.1 假設H和F關于u是Ck的,譜間隙條件kη 證明 歸納法證明.首先,當k=1時,根據(11)式,存在一個較小的數κ>0,使得α<η-2κ,且滿足對所有0≤δ≤2κ,有 L(1(η-δ)-α+1λm-(η-δ)+1-λm+l-(η-δ))<1. 因為Cη-δCη,對任意0≤δ≤2κ,Qc(·;ξ,ω)在Cη-δ中也是一致壓縮的,所以 u(·;ξ,ω)∈Cη-δ.令 S=eAt+∫t0z(θrω)dr, 對∈Xc,有 Tv=∫t0eA(t-s)+∫tsz(θrω)drPcDu×[e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]vds+∫t+∞eA(t-s)+∫tsz(θrω)drPuDu×[e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]vds+∫t-∞eA(t-s)+∫tsz(θrω)drPsDu×[e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]vds, 其中v∈Cη-κ.顯然地,S是從X到Cη-κ的有界線性算子.類似于Qc的證明,可知T是一個由Cη-κ到自身的有界線性算子,且有 ‖T‖≤L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ))<1, 這說明id-T在Cη-κ上是可逆的.對ξ,∈Xc,令 I=∫t0eA(t-s)+∫tsz(θrω)drPc{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))×(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds. 斷言稱,當ξ→時,‖I‖Cη-κ=(‖ξ-‖Xc).根據斷言可得 u(·;ξ,ω)-u(·;,ω)-T(u(s;ξ,ω)-u(s;,ω))=S(ξ-)+I=S(ξ-)+(‖ξ-‖Xc), 等價于 u(·;ξ,ω)-u(·;,ω)=(id-T)-1S(ξ-)+(‖ξ-‖Xc), 即知u(·;ξ,ω)關于ξ是可微的. 下面證明上述斷言是成立的.令 B=[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))×(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]. 對I的第一個積分項,設Z1是一個足夠大的正數,當t≥Z1時,令 I11=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z10eA(t-s)+∫tsz(θrω)drPcBds‖X,I12=e-(η-κ)|t|-∫t0z(θrω)dr‖∫tZ1eA(t-s)+∫tsz(θrω)drPcBds‖X; 當t≤-Z1時,令 I13=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z10eA(t-s)+∫tsz(θrω)drPcBds‖X,I14=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-Z1eA(t-s)+∫tsz(θrω)drPcBds‖X; 當-Z1≤t≤Z1時,令 I15=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z1-Z1eA(t-s)+∫tsz(θrω)drPcBds‖X. 對于I的第二項積分,設Z2是一個足夠大的正常數,當t≥Z2時,令 I21=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t+∞eA(t-s)+∫tsz(θrω)drPuBds‖X; 當-Z2≤t≤Z2時,令 I22=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z2+∞eA(t-s)+∫tsz(θrω)drPuBds‖X,I23=e-(η-κ)|t|-∫t0z(θrω)dr‖∫tZ2eA(t-s)+∫tsz(θrω)drPuBds‖X; 當t≤-Z2時,令 I24=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z2+∞eA(t-s)+∫tsz(θrω)drPuBds‖X,I25=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z2Z2eA(t-s)+∫tsz(θrω)drPuBds‖X,I26=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-Z2eA(t-s)+∫tsz(θrω)drPuBds‖X. 對于I的第三項積分,設Z3是一個足夠大的正常數,當t≥Z3時,令 I31=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z3-∞eA(t-s)+∫tsz(θrω)drPsBds‖X,I32=e-(η-κ)|t|-∫t0z(θrω)dr‖∫Z3-Z3eA(t-s)+∫tsz(θrω)drPsBds‖X,I33=e-(η-κ)|t|-∫t0z(θrω)dr‖∫tZ3eA(t-s)+∫tsz(θrω)drPsBds‖X; 當-Z3≤t≤Z3時,令 I34=e-(η-κ)|t|-∫t0z(θrω)dr‖∫-Z3-∞eA(t-s)+∫tsz(θrω)drPsBds‖X,I35=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-Z3eA(t-s)+∫tsz(θrω)drPsBds‖X; 當t≤-Z3時,令 I36=e-(η-κ)|t|-∫t0z(θrω)dr‖∫t-∞eA(t-s)+∫tsz(θrω)drPsBds‖X. 對于I11,取固定的Z1,有 I11=e-(η-κ)|t|-∫t0z(θrω)dr×‖∫Z10eA(t-s)+∫tsz(θrω)drPc{[e-z(θsω)H(ez(θsω)u(s;ξ,ω))-e-z(θsω)H(ez(θsω)u(s;,ω))+e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω))-e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω))]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))(u(s;ξ,ω)-u(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(u(s-ρ;ξ,ω)-u(s-ρ;,ω))]}ds‖X≤|∫Z10e-(η-κ)|t|+α|t-s|+(η-κ)|s|×{∫10|Du(e-z(θsω)H(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θsω)H(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×‖u(·;ξ,ω)-u(·;,ω)‖Cη-κ+|∫Z1-ρ-ρe-(η-κ)|t|+α|t-s-ρ|+(η-κ)|s|+∫ss+ρz(θrω)dr×{∫10|Du(e-z(θs+ρω)F(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θs+ρω)F(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×‖u(·;ξ,ω)-u(·;,ω)‖Cη-κ≤|∫Z10e-αs+(η-κ)s×{∫10|Du(e-z(θsω)H(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θsω)H(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×(1-L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ)))-1‖ξ-‖Xc+|∫Z1-ρ-ρe-αs-αρ+(η-κ)s+∫ss+ρz(θrω)dr×{∫10|Du(e-z(θs+ρω)F(ez(θsω)(τu(s;ξ,ω)+(1-τ)u(s;,ω))))-Du(e-z(θs+ρω)F(ez(θsω)))(u(s;ξ,ω))|dτ}ds|×(1-L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ)))-1‖ξ-‖Xc. 由[0,Z1],[-ρ,Z1-ρ]是緊閉區(qū)間,以及積分關于(s;ξ)的連續(xù)性知,存在β1>0,使得當 ‖ξ-‖Xc≤β1時,有 supt≥Z1? I11≤114ζ‖ξ-‖Xc. 根據引理1.4,(2)、(3)、(10)以及(21)式,可得 I12≤2|∫tZ1e-(η-κ)|t|+α|t-s|+(η-κ)|s|e-κ|s|L1ds|‖u(·;ξ,ω)-u(·;,ω)‖Cη-2κ+2|∫t-ρZ1-ρe-(η-κ)|t|+α|t-s-ρ|+(η-κ)|s|e-κ|s|+∫ss+ρz(θrω)dre-z(θs+ρω)L2ez(θsω)ds|‖u(·;ξ,ω)-u(·;,ω)‖Cη-2κ≤2Le-κ(Z1-ρ)(η-κ-α)[1-L(1(η-2κ)-α+1λm-(η-2κ)+1-λm+l-(η-2κ))]‖ξ-‖Xc, 對任意ζ>0,存在Z1足夠大時,使得 2Le-κ(Z1-ρ)(η-κ-α)[1-L(1(η-2κ)-α+1λm-(η-2κ)+1-λm+l-(η-2κ))]≤114ζ, 則有 supt≥Z1I12≤114ζ‖ξ-‖Xc. 以上幾項均可分成這2種情況,則當‖ξ-‖Xc≤β1時,有 supt≥Z1{I11+I12}+supt≤-Z1{I13+I14}+sup-Z1≤t≤Z1I15≤37ζ‖ξ-‖Xc. 類似地,通過選擇足夠大的Z2、Z3,以及充分小的β2>0,使得當‖ξ-‖Xc≤β2時,有 supt≥Z2I21+sup-Z2≤t≤Z2{I22+I23}+supt≤-Z2{I24+I25+I26}≤27ζ‖ξ-‖Xc, 以及 supt≥Z3{I31+I32+I33}+sup-Z3≤t≤Z3{I34+I35}+supt≤-Z3I36≤27ζ‖ξ-‖Xc. 令=min{β1,β2},使得當‖ξ-‖Xc≤時,則得到 ‖I‖Cη-κ≤ζ‖ξ-‖Xc. 因此,當ξ→時,‖I‖Cη-κ=(‖ξ-‖Xc),即知u(·;ξ,ω)關于ξ是可微的,且導數滿足Dξu(t;ξ,ω)∈L(Xc,Cη-κ)以及 Dξu(t;ξ,ω)=eAt+∫t0z(θrω)dr+∫t0eA(t-s)+∫tsz(θrω)drPc[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]ds. 對于ξ,∈Xc,有 Dξu(t;ξ,ω)-Dξu(t;,ω)=∫t0eA(t-s)+∫tsz(θrω)drPc{[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))Dξu(s;,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×Dξu(s-ρ;,ω)]}ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu{[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))Dξu(s;,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×Dξu(s-ρ;,ω)]}ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs{[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dξu(s-ρ;ξ,ω)]-[Du(e-z(θsω)H(ez(θsω)u(s;,ω)))Dξu(s;,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×Dξu(s-ρ;,ω)]}ds=∫t0eA(t-s)+∫tsz(θrω)drPc×[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))×(Dξu(s;ξ,ω)-Dξu(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(Dξu(s-ρ;ξ,ω)-Dξu(s-ρ;,ω))]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu×[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))×(Dξu(s;ξ,ω)-Dξu(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(Dξu(s-ρ;ξ,ω)-Dξu(s-ρ;,ω))]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs×[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))×(Dξu(s;ξ,ω)-Dξu(s;,ω))+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))×(Dξu(s-ρ;ξ,ω)-Dξu(s-ρ;,ω))]ds+, 其中 =∫t0eA(t-s)+∫tsz(θrω)drPc×{[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))-Du(e-z(θsω)H(ez(θsω)u(s;,ω)))]Dξu(s;,ω)+[Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))-Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))]×Dξu(s;,ω)}ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu×{[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))-Du(e-z(θsω)H(ez(θsω)u(s;,ω)))]Dξu(s;,ω)+[Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))-Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))]×Dξu(s;,ω)}ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs×{[Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))-Du(e-z(θsω)H(ez(θsω)u(s;,ω)))]Dξu(s;,ω)+[Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))-Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;,ω)))]×Dξu(s;,ω)}ds, 則有 ‖Dξu(t;ξ,ω)-Dξu(t;,ω)‖L(Xc,Cη)≤‖‖L(Xc,Cη)1-L(1(η-κ)-α+1λm-(η-κ)+1-λm+l-(η-κ)). 利用上述斷言類似地證明,可得當ξ→時, ‖‖L(Xc,Cη)=(1), 則Dξu(·;ξ,ω)從Xc到L(Xc,Cη)是連續(xù)的.因此,u(·;·,ω)從Xc到Cη是C1的. 其次,由歸納假設可知,u從Xc到C(k-1)η是Ck-1的,且(k-1)階導數Dk-1ξu(t;ξ,ω)滿足 Dk-1ξu(t;ξ,ω)=∫t0eA(t-s)+∫tsz(θrω)drPc[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dk-1ξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dk-1ξu(s-ρ;ξ,ω)]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dk-1ξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dk-1ξu(s-ρ;ξ,ω)]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[Du(e-z(θsω)×H(ez(θsω)u(s;ξ,ω)))Dk-1ξu(s;ξ,ω)+Du(e-z(θsω)F(ez(θs-ρω)u(s-ρ;ξ,ω)))×Dk-1ξu(s-ρ;ξ,ω)]ds+∫t0eA(t-s)+∫tsz(θrω)drPc[Rk-1(s;ξ,ω)+k-1(s-ρ;ξ,ω)]ds+∫t+∞eA(t-s)+∫tsz(θrω)drPu[Rk-1(s;ξ,ω)+k-1(s-ρ;ξ,ω)]ds+∫t-∞eA(t-s)+∫tsz(θrω)drPs[Rk-1(s;ξ,ω)+k-1(s-ρ;ξ,ω)]ds, 其中 Rk-1(s;ξ,ω)=∑k-3i=0k-2 iDk-2-iξ×Du(e-z(θsω)H(ez(θsω)u(s;ξ,ω)))Di+1ξu(s;ξ,ω),k-1(s-ρ;ξ,ω)=∑k-3i=0k-2 iDk-2-iξDu(e-z(θsω)F(ez(θs-ρω)×u(s-ρ;ξ,ω)))Di+1ξu(s-ρ;ξ,ω). 最后,證明k階成立,根據歸納假設知,當i=1,2,…,k-1時,Diξu∈Ciη成立.由于H、F是Ck的,則 Rk-1(s;ξ,ω),k-1(s-ρ;ξ,ω)∈Lk-1(Xc,C(k-1)η) 且關于ξ是C1的,其中Lk-1(Xc,C(k-1)η)是從Xc到C(k-1)η的所有(k-1)階有界線性算子的空間.又因為譜間隙條件成立,即對任意1≤i≤k,α L(1iη-α+1λm-iη+1-λm+l-iη)<1. 利用證明k=1時的方法,可知Dk-1ξu(·;·,ω)從Xc到Lk(Xc,Ckη)是C1的. 參考文獻 [1] HADAMARD J. Sur literation et les solutions asymptotiques des equations differentielles[J]. Bulletin de la Société Mathématique de France,1901,29:224-228. [2] LYAPUNOV A. Problème géneral de la stabilité du mouvement[M]. Ewing: Princeton University Press,1947. [3] PERRON O. ber stabilitt und asymptotisches verhalten der integrale von differentialgleichungs systemen[J]. Mathematische Zeitschrift,1929,29(1):129-160. [4] CARR J. Application of centre manifold theory[M]. Berlin: Springer-Verlag,1981. [5] BATES P, LU K, ZENG C. Persistence of overflowing manifolds for semiflow[J]. Communications on Pure and Applied Mathematics,1999,52(8):983-1046. [6] BATES P, LU K, ZENG C. Existence and persistence of invariant manifolds for semiflows in Banach space[J]. Memoirs of the American Mathematical Society,1998,135(645):1-132. [7] BATES P, LU K, ZENG C. Invariant foliations near normally hyperbolic invariant manifolds for semiflows[J]. Trans Amer Math Soc,2000,352:4641-4676. [8] BATES P, LU K, ZENG C. Approximately invariant manifolds and global dynamics of spike states[J]. Inventiones Mathematicae,2008,174(2):355-433. [9] CHUESHOV I, GIRYA T. Inertial manifolds and stationary measures for stochastically perturbed dissipative dynamical systems[J]. Sbornik: Mathematics,1995,186(1):29-45. [10] DA PRATO G, DEBUSSCHE A. Construction of stochastic inertial manifolds using backward integration[J]. Stochastics and Stochastic Reports,1996,59(3/4):305-324. [11] HENRY D. Geometric theory of semilinear parabolic equations[M]. Berlin: Springer-Verlag,1981. [12] VANDERBAUWHEDE A, VAN GILS S A. Center manifolds and contractions on a scale of Banach spaces[J]. Journal of Functional Analysis,1987,72(2):209-224. [13] CHOW S N, LU K N. Ck centre unstable manifolds[J]. Proceedings of the Royal Society of Edinburgh: Section A Mathematics,1988,108(3/4):303-320. [14] CHOW S N, LU K N. Invariant manifolds for flows in Banach spaces[J]. Journal of Differential Equations,1988,74(2):285-317. [15] DUAN J Q, LU K N, SCHMALFUSS B. Invariant manifolds for stochastic partial differential equations[J]. The Annals of Probability,2003,31(4):2109-2135. [16] DUAN J Q, LU K N, SCHMALFUSS B. Smooth stable and unstable manifolds for stochastic evolutionary equations[J]. Journal of Dynamics and Differential Equations,2004,16(4):949-972. [17] BENSOUSSAN A, FLANDOLI F. Stochastic inertial manifold[J]. Stochastics and Stochastic Reports,1995,53(1/2):13-39. [18] CARABALLO T, CHUESHOV I, LANGA J A. Existence of invariant manifolds for coupled parabolic and hyperbolic stochastic partial differential equations[J]. Nonlinearity,2005,18(2):747-767. [19] CARABALLO T, DUANY J, LU K N, et al. Invariant manifolds for random and stochastic partial differential equations[J]. Advanced Nonlinear Studies,2010,10(1):23-52. [20] LU K N, SCHMALFU? B. Invariant manifolds for stochastic wave equations[J]. Journal of Differential Equations,2007,236(2):460-492. [21] LU K N, SCHMALFU B. Invariant foliations for stochastic partial differential equations[J]. Stochastics and Dynamics,2008,8(3):505-518. [22] MOHAMMED S E A, SCHEUTZOW M K R. The stable manifold theorem for stochastic differential equations[J]. The Annals of Probability,1999,27(2):615-652. [23] MOHAMMED S E A, ZHANG T S, ZHAO H Z. The stable manifold theorem for semilinear stochastic evolution equations and stochastic partial differential equations[J]. Memoirs of the American Mathematical Society,2008,196(917):1-47. [24] SCHMALFUSS B. A random fixed point theorem and the random graph transformation[J]. Journal of Mathematical Analysis and Applications,1998,225(1):91-113. [25] SANTAMARA E. Distance of attractors of evolutionary equations[D]. Madrid: Universidad Complutense de Madrid,2014. [26] VARCHON N. Domain perturbation and invariant manifolds[J]. Journal of Evolution Equations,2012,12(3):547-569. [27] LI D S, SHI L. Upper semicontinuity of random attractors of stochastic discrete complex Ginzburg-Landau equations with time-varying delays in the delay[J]. Journal of Difference Equations and Applications,2018,24(6):872-897. [28] LI D S, LU K N, WANG B X, et al. Limiting dynamics for non-autonomous stochastic retarded reaction-diffusion equations on thin domains[J]. Discrete & Continuous Dynamical Systems Series-A,2019,39(7):3717-3747. [29] LI D S, SHI L, ZHAO J. Regular random attractors for non-autonomous stochastic evolution equations with time-varying delays on thin domains[J]. Journal of Mathematical Physics,2020,61(11):112702. [30] SHI L, WANG R H, LU K N, et al. Asymptotic behavior of stochastic FitzHugh-Nagumo systems on unbounded thin domains[J]. Journal of Differential Equations,2019,267(7):4373-4409. [31] SHI L, LI X L. Limiting behavior of non-autonomous stochastic reaction-diffusion equations on unbounded thin domains[J]. Journal of Mathematical Physics,2019,60(8):082702. [32] SHI L. Smooth convergence of random center manifolds for SPDEs in varying phase spaces[J]. Journal of Differential Equations,2020,269(3):1963-2011. [33] ARNOLD L. Random dynamical system[M]. Berlin: Springer-Verlag,1998. [34] ARRIETA J, SANTAMARA E. Estimates on the distance of inertial manifolds[J]. Discrete & Continuous Dynamical Systems Series-A,2014,34(10):3921-3944. [35] DA PRATO G, ZABCZYK J. Stochastic equations in infinite dimension[M]. Berlin: Springer-Verlag,1992. The Existence and Smoothness of Random Center Manifolds for a Class of Delay Stochastic Evolutionary Equations with Multiplicative Noise YANG Juan1,2, GONG Jiaxin1,2, WU Longyu1,2, SHU Ji1,2 (1. School of Mathematical Science, Sichuan Normal University, Chengdu 610066, Sichuan; 2. V.C. & V.R. Key Lab, Sichuan Normal University, Chengdu 610066, Sichuan) Abstract:We study the existence and smoothness of random center manifolds for a class of delay stochastic evolutionary equations with multiplicative noise. Due to the effect of delay, we first transform the nonlinear terms with delay and deal with the coefficients generated by the effect of delay, thus the existence of center manifolds is obtained. Then, we use the Lyapunov-Perron method to investigate the smoothness of center manifolds for the equations with delay. Keywords:delay stochastic evolutionary equations; random center manifolds; multiplicative noise; existence; smoothness2020 MSC:37L25; 60H15 (編輯 余 毅) Invariant foliations of overflowing manifolds for semiflows in Banach space[J]. Bifurcation Theory and Its Numerical Analysis,1999:1-12. 基金項目:國家自然科學基金(12326414)和四川省科技廳應用基礎計劃項目(2016JY0204) *通信作者簡介:舒 級(1976—),男,教授,博士,主要從事隨機動力系統(tǒng)和偏微分方程的研究,E-mail:shuji2008@hotmail.com 引用格式:楊娟,龔佳鑫,吳隆鈺,等. 一類具有乘性噪聲的時滯隨機演化方程的隨機中心流形的存在性與光滑性[J]. 四川師范大學學報(自然科學版),2024,47(5):696-707.