摘 要:為拓展靜電紡納米纖維在空氣過濾領(lǐng)域中的應(yīng)用,以聚氨酯(PU)為原料,加入不同種類的鹽,采用靜電紡絲法制備樹枝狀PU納米纖維膜。利用掃描電鏡(SEM)、接觸角測試儀、紅外光譜儀、自動濾料測試儀測試納米纖維膜的微觀結(jié)構(gòu)、親疏水性、化學(xué)結(jié)構(gòu)和過濾性能。結(jié)果表明:在PU質(zhì)量分?jǐn)?shù)14%條件下,添加有機(jī)鹽TBAC,紡絲電壓35 kV時,制備的納米纖維膜的樹枝狀分叉結(jié)構(gòu)明顯;TBAC的加入使纖維膜的接觸角由99.1°減小到82.8°;分叉結(jié)構(gòu)使納米纖維膜的過濾性能顯著提高,與純PU納米纖維膜相比,過濾效率從50.8%提高到93.6%,品質(zhì)因子從0.009提高到0.073,可滿足高效低阻空氣過濾材料的需求。
關(guān)鍵詞:聚氨酯;靜電紡絲;納米纖維膜;空氣過濾;過濾性能
中圖分類號:TS102.6 文獻(xiàn)標(biāo)志碼:A 文章編號:1009-265X(2024)05-0018-05
收稿日期:20230922 網(wǎng)絡(luò)出版日期:20231216
基金項目:河南省高校國家級大學(xué)生創(chuàng)新創(chuàng)業(yè)訓(xùn)練計劃項目(202011517010)
作者簡介:李金超(1980—),男,河南南陽人,講師,主要從事功能高分子材料方面的研究。
現(xiàn)代工業(yè)的發(fā)展帶來了嚴(yán)重的環(huán)境污染問題,細(xì)顆粒物(PM2.5)等各種大氣污染物給人的身體健康、生存環(huán)境等造成了較大影響[1-2]。近三年新型冠狀病毒感染疫情的擴(kuò)散,使能有效吸附、阻隔有害顆粒物及細(xì)菌、病毒的空氣過濾材料需求激增[3-4]。傳統(tǒng)過濾材料由于孔徑較大,對亞微納米級的微小顆粒物的過濾能力不足,因此具有纖維直徑小、孔隙率高等優(yōu)點的納米纖維膜是高效空氣過濾材料的發(fā)展方向之一[5-6]。隨著研究的深入,空氣過濾材料在使用過程中的舒適性問題也受到關(guān)注,如用作口罩時,若人體產(chǎn)生的濕氣不能快速排出,易引起“眼鏡起霧”等問題[7]。
為進(jìn)一步提高納米纖維膜的濾效,相關(guān)研究通過在紡絲液中加入適量的無機(jī)鹽以提高紡絲液的電導(dǎo)率,使紡絲液在高壓電場中產(chǎn)生劈裂,獲得類似“蛛網(wǎng)”或 “樹枝狀”的分叉結(jié)構(gòu)[8-9],從而獲得孔徑更小的納米纖維膜,以達(dá)到高效低阻的目的[10-11]。本文采用靜電紡絲技術(shù),以PU為原料,四氫呋喃(THF)和N,N-二甲基甲酰胺(DMF)為溶劑,通過在紡絲液中加入鹽,促進(jìn)紡絲過程射流劈裂的產(chǎn)生,制備具有樹枝狀分叉的PU納米纖維膜。探討了鹽的種類、紡絲電壓對纖維膜形貌、親疏水性和過濾性能的影響。
1 實驗
1.1 試劑與儀器
試劑:PU(纖維級,大邱泡沫塑料有限公司);N,N-二甲基甲酰胺(DMF,分析純,天津凱通化學(xué)試劑有限公司);四氫呋喃(THF,分析純,天津凱通化學(xué)試劑有限公司);二水合四丁基氯化銨(TBAC,分析純,天津市科密歐化學(xué)試劑有限公司);四正丁基溴化銨(TBAB,分析純,鄭州派尼化學(xué)試劑廠)。
儀器:集熱式恒溫加熱磁力攪拌器(江蘇科技儀器有限公司);Sigma 500場發(fā)射掃描電子顯微鏡(德國卡爾蔡司公司);電子精密天平(上海越平科學(xué)技術(shù)有限公司);微量注射器(浙江史密斯醫(yī)學(xué)儀器有限公司);高壓直流電源(東文高壓電源天津股份有限公司);紅外光譜測試儀(美國Thermo Fisher公司);自動濾料測試儀(美國TSI公司);接觸角測量儀(上海中晨數(shù)字技術(shù)設(shè)備有限公司)。
1.2 樹枝狀納米纖維膜的制備
圖1為樹枝狀PU納米纖維膜制備流程,具體步驟:在室溫條件下,以PU為溶質(zhì)(質(zhì)量分?jǐn)?shù)14%),DMF與THF 1∶1進(jìn)行混合制備溶劑,分別加入
TBAB和TBAC,充分?jǐn)嚢枞芙?,配制一定濃度的均勻紡絲液。將紡絲液吸入20 mL的針管中,隨后將針管裝入注射系統(tǒng)中,使用直徑為0.67 mm的針頭作為紡絲噴頭。設(shè)定接收距離為18 cm,擠出速度1 mL/h。
2 測試與表征
2.1 掃描電鏡形貌表征
裁取一定規(guī)格的納米纖維膜,用導(dǎo)電膠固定于樣品臺上,以離子濺射儀對纖維膜表面進(jìn)行噴金處理,采用場發(fā)射掃面電子顯微鏡(SEM)觀察所紡制的納米纖維膜的形貌,并利用軟件測量纖維直徑,繪制直徑分布圖。
2.2 表面接觸角測試
采用OCA20視頻接觸角測量儀對進(jìn)行接觸角測試,水滴體積為3 μL。在纖維膜的平整位置任取5個點,測試水滴接觸角,多次測試求其平均值。
2.3 紅外光譜測試
采用傅里葉紅外反射光譜(FTIR)法來測定加入TBAB、TBAC兩種鹽后PU納米纖維膜官能團(tuán)的變化。具體測試方法為:測試前先將納米纖維膜在80 ℃的烘箱中干燥120 min,接著在室溫條件下,通過紅外光譜儀分析測定納米纖維膜官能團(tuán)的情況。
2.4 空氣過濾性能測試
依照國家標(biāo)準(zhǔn)JG/T 404—2013使用TSI 8130自動濾料測試儀對試樣進(jìn)行空氣過濾性能測試,包括過濾效率和阻力。
為綜合評價過濾材料的過濾性能,一般引入品質(zhì)因數(shù)QF,其計算公式為:
式中:η為過濾效率,%;ΔP為阻力,Pa。品質(zhì)因數(shù)越大,綜合過濾性能越好[12]。
3 結(jié)果與討論
3.1 鹽的種類對纖維膜形態(tài)結(jié)構(gòu)的影響
未加鹽及分別加入TBAB和TBAC兩種不同鹽時納米纖維膜的掃描電鏡照片如圖2所示,從圖中可以看出,在相同紡絲工藝條件下,加入鹽后,納米纖維直徑明顯下降,加入TBAC的纖維膜樹枝狀分叉結(jié)構(gòu)更加明顯。這主要是因為加入鹽后,紡絲液的電導(dǎo)率增加,溶液射流更易被極度牽伸產(chǎn)生劈裂,形成纖維細(xì)度更小的樹枝狀結(jié)構(gòu)的纖維膜[13]。這些細(xì)小的枝狀結(jié)構(gòu)使納米纖維形成的孔徑更小,進(jìn)一步提高纖維膜的過濾效率。
3.2 紡絲電壓對纖維膜形態(tài)結(jié)構(gòu)的影響
在相同的紡絲條件下,紡絲電壓對纖維膜結(jié)構(gòu)特別是樹枝狀纖維細(xì)絲的形成具有較大影響,不同紡絲電壓時PU納米纖維膜電鏡照片如圖3所示。當(dāng)紡絲電壓為25、30 kV時,纖維膜中僅有極少量分叉纖維細(xì)絲產(chǎn)生。當(dāng)電壓提高到35 kV時,纖維膜中出現(xiàn)大量的纖維細(xì)絲,且分布均勻,非常利于降低纖維膜整體的孔徑,提高過濾效率。這主要是因為隨著電壓增加,紡絲液在靜電場中牽伸越充分,越易拉伸分裂細(xì)化。
3.3 紅外光譜分析
對純PU與分別加入TBAB和TBAC兩種不同鹽時紡制的PU納米纖維膜進(jìn)行紅外光譜測試,如圖4所示。在純的PU曲線中,3330 cm-1處為水和—OH的振動峰,2936、2860 cm-1為C—H的伸縮振動峰,1712 cm-1和1526 cm-1分別為C===O和N—H的伸縮振動峰,這些都是PU的特征吸收峰[14]。加入TBAB和TBAC后的PU復(fù)合納米纖維膜,在2792 cm-1和1016 cm-1處出現(xiàn)了弱的吸收帶,表明兩種鹽存在于納米纖維膜中[15]。同時,在復(fù)合纖維膜中,均含有PU的特征吸收峰,說明復(fù)合納米纖維膜被成功制備。
3.4 表面接觸角分析
測試未加鹽與分別加入質(zhì)量分?jǐn)?shù)為0.4%的TBAB、TBAC后的PU納米纖維膜的接觸角。結(jié)果發(fā)現(xiàn):未加鹽時纖維膜的接觸角為99.1°,加入TBAB接觸角為94.1°,加入TBAC接觸角為82.8°。這表明鹽的加入使PU納米纖維膜的接觸角出現(xiàn)不同程度的降低。產(chǎn)生這一現(xiàn)象的原因主要是TBAB與TBAC這兩種鹽都有親水性的銨離子,增加了纖維膜的親水性。這一改變可有效改善空氣過濾材料在使用過程中的吸濕、導(dǎo)濕性能。
3.5 空氣過濾性能分析
在紡絲電壓、擠出速度、接收距離、溶液濃度等條件均一致的情況下,對不同類型的PU納米纖維膜的空氣過濾性能進(jìn)行測試。氣流速度設(shè)置為32 L/min,如表1所示。相同條件下,未添加鹽的PU納米纖維膜的過濾效率為45.4%,過濾阻力為67.3 Pa;加入TBAB后纖維膜過濾效率為57.2%,過濾阻力為84.8 Pa;加入TBAC后過濾效率為93.6%,過濾阻力為33.7 Pa。由此可見,添加鹽TBAC的PU納米纖維膜的過濾效率最大,阻力最低。濾效的顯著提高主要是因為在紡絲液中加入鹽后促使射流產(chǎn)生劈裂現(xiàn)象,從而形成分叉超細(xì)納米纖維,分叉結(jié)構(gòu)使纖維膜孔徑進(jìn)一步減小,能夠阻隔粒徑更小的顆粒物;另一方面直徑變細(xì),其比表面積隨之增大,增加了粒子與纖維之間的接觸面積,提高了纖維膜對顆粒物的吸附作用,提高了過濾效率。而分叉納米纖維直徑較小,使得壓力降(阻力)保持在較低水平[13]。
根據(jù)式(1)計算得到不同種類纖維膜的品質(zhì)因子QF (見表1)??梢钥闯鎏砑覶BAC的PU納米纖維膜的QF值最大,其綜合過濾性能最優(yōu)。這是由于該條件下的納米纖維膜的纖維直徑由于分叉直徑更細(xì),形成的孔徑更小小,空氣過濾效率較其他兩類纖維膜大大提高,而阻力維持在較低水平,纖維膜整體表現(xiàn)出高效低阻的特點。
4 結(jié)論
本文以THF和DMF為溶劑,以有機(jī)鹽為添加劑,采用靜電紡絲技術(shù)成功制備出了具有樹枝狀分叉結(jié)構(gòu)的PU納米纖維膜。對影響分叉結(jié)構(gòu)的因素進(jìn)行了實驗分析,主要得到以下結(jié)論:
a)有機(jī)鹽的種類和紡絲電壓對分叉結(jié)構(gòu)影響明顯。相同條件下,TBAC為添加劑和紡絲電壓為35 kV時,制得的納米纖維膜的分叉結(jié)構(gòu)更為明顯。
b)表面接觸角測試表明TBAC的加入可在一定程度上提高纖維膜的親水性,可一定程度提升佩戴的舒適性。
c)樹枝狀分叉結(jié)構(gòu)對纖維膜的過濾性能影響顯著。與純PU納米纖維膜相比,具有分叉結(jié)構(gòu)的納米纖維膜過濾效率提高顯著,同時濾阻維持在較低水平,綜合過濾性能顯著提高(品質(zhì)因子從0.009提高到0.073),體現(xiàn)出比較顯著的高效低阻特點。
制備的樹枝狀PU納米纖維膜更適用于高效空氣過濾材料的需求,但對分叉結(jié)構(gòu)產(chǎn)生的規(guī)律及控制不夠明晰,尚需進(jìn)一步深入研究。
參考文獻(xiàn):
[1]BOROJENI I A, GAJEWSKI G, RIAHI R A. Application of electrospun nonwoven fibers in air filters[J]. Fibers, 2022, 10(2): 15.
[2]胡蝶飛, 王琰, 姚菊明, 等. 納米纖維復(fù)合結(jié)構(gòu)空氣過濾材料性能研究[J]. 紡織學(xué)報, 2023, 44(5): 77-83.
HU Diefei, WANG Yan, YAO Juming,et al. Study on performance of nanofiber air filter materials[J]. Journal of Textile Research, 2023,44(5):77-83.
[3]夏勇, 趙迎, 徐利云, 等. 抗菌防沾污生物防護(hù)材料的制備及其性能[J]. 紡織學(xué)報, 2023, 44(1): 64-70.XIA Yong, ZHAO Ying, XU Liyun, et al. Preparation and properties of antibacterial and anti-contamination. biological protective materials[J]. Journal of Textile Research, 2023, 44(1): 64-70.
[4]賈琳, 郭天光, 孫明楷, 等. PAN/ZnO復(fù)合納米纖維濾膜的性能研究[J]. 棉紡織技術(shù), 2022, 50(9): 1-7.
JIA Lin, GUO Tianguang, SUN Mingkai,et al. Property study on PAN/ZnO composite nano fibrous filtration film[J]. Cotton Textile Technology, 2022, 50(9): 1-7.
[5]程瑋, 張晶, 徐成書, 等. 羊毛角蛋白與PVA復(fù)合纖維膜的制備及其在醫(yī)用口罩濾芯中的應(yīng)用[J]. 現(xiàn)代紡織技術(shù), 2023, 31(4): 74-83.
CHENG Wei, ZHANG Jing, XU Chengshu, et al. Preparation of wool keratin and polyvinyl alcohol composite fiber membrane and the exploration as surgical-mask filtration materials[J]. Advanced Textile Technology, 2023, 31(4): 74-83.
[6]楊吉震, 劉強(qiáng)飛, 何瑞東, 等. 高效低阻空氣過濾材料研究進(jìn)展[J]. 紡織學(xué)報, 2022, 43(10): 209-215.
YANG Jizhen, LIU Qiangfei, HE Rundong, et al. Research progress in high efficiency and low resistance air filter materials[J]. Journal of Textile Research, 2022, 43(10): 209-215.
[7]李俊, 伍文靜, 孫金璽, 等. 電紡制備聚丙烯腈/聚偏氟乙烯復(fù)合纖維膜及其空氣過濾性能[J]. 復(fù)合材料學(xué)報, 2021, 38(3): 741-748.
LI Jun, LI Wenjing, SUN Jinxi, et al. Preparation of polyacrylonitrile/polyvinylidene fluoride composite fiber membrane by electrospinning and its air filtration performance[J]. Acta Materiae Compositae Sinica, 2021, 38(3): 741-748.
[8]DING B, LI C R, MIYAUCHI Y, et al. Formation of novel 2D polymer nanowebs via electrospinning[J]. Nanotechnology, 2006, 17(15): 3685-3691.
[9]厲宗潔, 王鑫慧, 王浩, 等. 靜電紡樹枝狀聚偏氟乙烯納米纖維膜的制備[J]. 高分子材料科學(xué)與工程, 2023, 39(6): 71-77.
LI Zongjie, WANG Xinhui, WANG Hao, et al. Preparation of electrospun tree-like polyvinylidene fluoride nanofiber membrane[J]. Polymeric Materials Science and Engineering, 2023, 39(6): 71-77.
[10]姚瑩, 趙為陶, 張德鎖, 等. 超支化季銨鹽誘導(dǎo)制備樹枝狀納米纖維膜及其性能[J]. 紡織學(xué)報, 2022, 43(10): 1-9.
YAO Ying, ZHAO Weitao, ZHANG Desuo, et al. Preparation of dendritic nanofiber membrane induced by hyperbranched quaternary ammonium salt and its properties[J]. Journal of Textile Research, 2022, 43(10): 1-9.
[11]JU J G, SHI Z J, FAN L L, et al. Preparation of elastomeric tree-like nanofiber membranes using thermoplastic polyurethane by one-step electrospinning[J]. Materials Letters, 2017, 205: 190-193.
[12]殷妮, 劉福娟. 空氣過濾用納米纖維膜研究進(jìn)展[J]. 現(xiàn)代紡織技術(shù), 2021, 29(5): 26-36.
YIN Ni, LIU Fujuan. Research progress on nanofiber membranes in air filtration[J]. Advanced Textile Technology, 2021, 29(5): 26-36.
[13]ZHAO X L, WANG S, YIN X, et al. Slip-effect functional air filter for efficient purification of PM2.5[J]. Scientific Reports, 2016, 6: 35472.
[14]曹元鳴, 鄭蜜, 李一飛, 等. 二硫化鉬/聚氨酯復(fù)合纖維膜的制備及其光熱轉(zhuǎn)換性能[J]. 紡織學(xué)報, 2021, 42(9): 46-51.
CAO Yuanming, ZHENG Mi, LI Yifei, et al. Preparation of MoS2/polyurethane composite fibrous membranes and their photothermal conversion properties[J]. Journal of Textile Research, 2021, 42(9): 46-51.
[15]秦瑞霞, 于世濤. 四正丁基溴化銨的合成[J]. 當(dāng)代化工, 2018, 47(4): 696-698.
QIN Ruixia, YU Shitao. Study on synthesis of tetrabutyl ammonium bromide[J]. Contemporary Chemical Industry, 2018, 47(4): 696-698.
Preparation and performance of polyurethane nanofiber membrane for air filtration
LI" Jinchao1," MEI" Shuo2," DU" Yujia1," MA" Biao1," LI" Hong2
(1.Department of Textile Engineering, Henan University of Engineering, Zhengzhou 451191, China; 2.College of Textiles, Zhongyuan University of Technology, Zhengzhou 450007, China)
Abstract: "The damage of air pollution to human health is receiving more and more attention with the development of society. Protective materials for isolating harmful particles, bacteria, viruses and other harmful microorganisms have attracted unprecedented attention due to the unexpected COVID-19 in the past three years. Preparing more efficient and low-resistance air filter materials has important practical significance.
Nanofiber membranes prepared by electrospinning technology have the advantages of smaller fiber diameter and higher porosity compared with traditional filter materials. They have been a hot research in the field of high efficiency air filtration in recent years. To expand the application of electrospun nanofiber membranes in the air filtration field and to develop more efficient and low-resistance air filtration materials, polyurethane was used as the raw material, tetrahydrofuran (THF) and N, N-dimethylformamide (DMF) were used as solvents in this paper. The polyurethane nanofibers prepared by electrospinning had dendritic branches by adding different kinds of salts to the spinning solution, and the conductivity of the spinning solution was increased. The dendritic structures made the pore size of the nanofiber membranes smaller to further improve the filtration efficiency. The influences of the spinning voltage, salt type and addition on the morphology, hydrophobicity and air filtration of the fiber membrane were studied. The results show that at a solution concentration of 14%, the type of salt and spinning voltage have great influence on the branching structure, and the branching structure of polyurethane nanofiber membranes is most obvious when the TBAC is added with the spinning voltage being 35 kV. Meanwhile, The contact angle of fiber membranes decreases from 99.1° to 82.8° with the addition of the salts (the hydrophilicity of membrane materials increases), which can improve the moisture absorption and moisture conductivity of air filter materials in a certain level. The filtration performance is significantly improved (the filtration efficiency increases from 50.8% to 93.6%). The branching superfine nanofibers can further reduce the pore size of the ninafiber membrane, which can separate smaller size particles; the specific surface area increases as the fiber becomes thinner, and thus the contact area between particles and fibers increases; the probability of adsorbing and capturing particles increases, and thus increases the filtration efficiency of the fiber membrane.
At the same time, due to the smaller diameter, the resistance of the branched ultrafine nanofibers is correspondingly reduced, so that the filtration resistance of the filter material is also maintained at a low level, and the quality factor that can reflect the comprehensive filtration performance of the filter material is improved from 0.009 to 0.073. Therefore, ultrafine nanofibers are suitable for high-efficiency and low-resistance air filtration materials.
Keywords: polyurethane; electrospinning; nanofiber membrane; air filtration; filter performance