摘""""" 要: 通過高能粒子與材料表面相互作用,探究材料的微觀結(jié)構(gòu)、化學(xué)成分、原子排布等信息是材料表征的主要方式,但是對于輕元素的精確測定,仍具有很大的局限性。中子散射具有高分辨率,滲透深度深,可檢測材料的晶體結(jié)構(gòu)、動力學(xué)性質(zhì)和磁學(xué)性質(zhì),鑒別原子序數(shù)差別小的元素、同位素及輕元素。如可應(yīng)用于表征微觀結(jié)構(gòu)、氫元素的含量、鐵電性質(zhì)等。與多種表征技術(shù)和第一性原理計算結(jié)合,可精確地在精確的在納米尺度探究材料的晶體結(jié)構(gòu),獲得動力學(xué)性質(zhì)。本篇論文綜述了中子散射技術(shù)的工作原理及在材料化學(xué)中的應(yīng)用現(xiàn)狀。
關(guān)" 鍵" 詞:中子散射技術(shù);表征技術(shù);材料化學(xué);晶體結(jié)構(gòu);動力學(xué)性質(zhì)
中圖分類號:O571.5文獻(xiàn)標(biāo)識碼: A"""" 文章編號: 1004-0935(20202024)0×3-00000413-0×4
中子散射技術(shù)利用中子與物質(zhì)間的相互作用,產(chǎn)生動量和能量的傳遞,可在空間和時間上對原子結(jié)構(gòu)、晶格動力學(xué)等信息進(jìn)行檢測[1, -2]。中子束可通過核裂變或分裂反應(yīng)獲得,由核裂變反應(yīng)產(chǎn)生能量連續(xù)的中子束,能量在25 MeV,而分裂反應(yīng)得到強(qiáng)烈的脈沖中子束,能量在0-~150 MeV,波長范圍在1-~10 ?,在物質(zhì)相互作用時,可發(fā)生中子的吸收、散射和穿過三種過程,散射過程可分為彈性散射和非彈性散射[3, -4]。中子具有波粒二象性,當(dāng)與物質(zhì)相互作用時,遵循布拉格法則,中子散射強(qiáng)度與散射距離成正比。中子散射過程包括了相干和非相干散射,其中,相干散射過程可獲得晶格中原子結(jié)構(gòu)和占位及原子核的動力學(xué)的信息,而非相干散射可獲得最近鄰原子相互作用的信息。
作為一種非破壞性的檢測技術(shù),相比于X射線衍射中光子與原子核外電子相互作用,中子散射對于氧和氫等元素的散射系數(shù)較高,因此在表征此類元素時具備較高靈敏度[5]。如對于螢石型氧化物R2MoO6-δ (R=Tb, Dy, Y, Ho, Er, Tm, Yb),結(jié)合中子衍射技術(shù)進(jìn)行鑒定氧原子的亞晶格結(jié)構(gòu)、化學(xué)計量比、氧空位濃度和晶體結(jié)構(gòu)的熱演化過程[6]。中子在區(qū)分不同的原子核方面具備較高敏感性,可用于檢測同位素[1]。另外,中子與原子核的相互作用不受形狀因子的影響,可在較高的散射角范圍內(nèi)進(jìn)行測量,并得到原子的熱因子。中子散射是一種較弱的相互作用,盡管需要較長的時間獲得散射譜,但樣品穿透深度較高,且對樣品表面沒有輻照損傷[7]。由于中子的自旋量子數(shù)為1/2,當(dāng)原子核外存在未成對電子時,可通過磁力與原子核外未成對的電子相互作用,測量磁性結(jié)構(gòu)和磁學(xué)特性。
中子散射技術(shù)還包括了小角中子散射、全中子散射、極化中子散射等方式,其中,小角中子散射技術(shù)主要用于非平整表面的性質(zhì)檢測,極化中子散射技術(shù)可測量磁化強(qiáng)度,而全中子散射技術(shù)通常用于獲得對分布函數(shù),進(jìn)而求得最近鄰原子間距。在中子在散射過程中,中子與原子核間相互作用遵循,
(?ω=?^2/2m (k_zf^2-k_zi^2 )#(1) )
其式中:中,?=h/2π,;
h為—普朗克常量,;
ω—為中子的頻率,;
m—為中子的質(zhì)量 (1.675×10-27 kg) [8]。
對于彈性散射過程,?ω=0,能量守恒,而對于非彈性散射過程,?ω≠0。
中子散射最早在1960s歐洲開展,如STFC Rutherford Appleton Laboratory位于英國牛津,可進(jìn)行中子和μ介子散射、小角中子散射、中子呈像、中子反射等測試[9]。德國柏林的The Berlin Neutron Scattering Center 配備冷中子散射及高磁場 (17 T),高溫、低溫和超低溫,高壓等不同的可控環(huán)境參數(shù)進(jìn)行中子散射實驗[10]。美國的The Center for High Resolution Neutron Scattering 可開展小角中子散射、多軸晶體譜儀、高通量背反射譜儀、中子自旋回波譜儀和反射譜儀[11],Oak Ridge National Laboratory 具備高通量同位素反應(yīng)堆和散列中子源[12]。目前,國內(nèi)的中子散射實驗可在東莞市大朗鎮(zhèn)的中國散裂中子源、中國綿陽研究堆和中國先進(jìn)研究堆進(jìn)行,可開展中子散射、中子活化分析、核物理化學(xué)等實驗,具備的功率在20-~100 MW,中子注射率在1014-~1016 n·.cm-2·s-1,更多關(guān)于中子散射技術(shù)的國內(nèi)外發(fā)展現(xiàn)狀,可參考文獻(xiàn)[13][13]。
1" 在材料動力學(xué)中的應(yīng)用
中子散射技術(shù)通過測量時間和空間尺度下的結(jié)構(gòu)因子S(Q, ω),獲得材料的離子輸運(yùn)動力學(xué)和自旋動力學(xué)信息,鑒定離子傳輸和晶體結(jié)構(gòu)的演變規(guī)律[14, -15]。運(yùn)用中子散射技術(shù)通過在不同溫度下對Ba2In2O5中Mo原子占位和晶體結(jié)構(gòu)的表征,檢測Ba2In2O5中氧離子的傳輸軌跡,結(jié)果表明,在高溫下氧離子占據(jù)In和In/Mo 八面體層傳輸,而這些傳輸層具有低于氧離子化學(xué)計量比的特征[16]。在鈣鈦礦型氧化物L(fēng)aGaO3中,氧離子導(dǎo)電機(jī)理可通過精確測定不同溫度下氧原子晶格格點(diǎn)的占位比例來實現(xiàn)[17]。LaGaO3在低溫時由斜方晶系組成,而在高溫下由菱面體組成,當(dāng)摻雜Mg和Sr時,對LaGaO3低溫相的對稱性有很大影響,并可提高相變溫度。磷灰石型La8Y2Ge6O27具有高的氧離子導(dǎo)電性,在對其氧離子傳輸機(jī)理的研究中,Kendrick等[18]發(fā)現(xiàn)氧離子存在于GeO4四面體間,并導(dǎo)致局域的晶格畸變,La8Y2Ge6O27中氧離子傳輸機(jī)理為沿著四面體的晶格格點(diǎn)進(jìn)行。δ-Bi2O3具有25%的氧空位濃度,在600°C時可發(fā)生有序-無序相變,導(dǎo)致氧離子電導(dǎo)率降低,通過中子衍射實驗,結(jié)果表明由于氧原子晶格有序化,導(dǎo)致氧離子偏離四面體的8c位置而占據(jù)32f位置,氧空位則沿著111晶向有序排列[19]。在鈣鈦礦型 (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33-δ中,Itoh等[20]通過中子衍射技術(shù)表征720 K和300 K時氧化物的各向異性原子位移參數(shù)Uaniso,并結(jié)合最大熵法,得出720 K氧離子的擴(kuò)散軌跡沿著O1(4c) 和O1(4c),O1(4c) 和O2(4d),且O1(4c) 的中子散射長度密度向O1(4c)和O2(8d)延展。
2" 在含氫元素檢測中的應(yīng)用
由于中子對于氫元素的散射能力高于X射線,因此,在含氫元素的材料的檢測和表征中具有優(yōu)
勢[21, -22]。如非相干非彈性中子散射技術(shù)可精確地的測定氫化物如NaAlH4和NH3BH3的結(jié)構(gòu),將氫化物負(fù)載到納米孔結(jié)構(gòu)的支架中,結(jié)果表明,滲入過程會導(dǎo)致NaAlH4聲子帶的峰寬化程度增加、光滑程度增加,空隙尺寸控制著低能量聲子的擾動程度[23]。水綠榴石Ca3Al2(SiO4)3-x(OH)4x,通常含有大量的晶體缺陷,4個氫原子替代1個硅原子形成H4O4四面體,運(yùn)用全中子散射技術(shù)對含有重氫的水綠榴石Ca3Al2(O4D4)3在不同溫度下的結(jié)構(gòu)進(jìn)行測定[24],表明重氫原子可與氧原子構(gòu)成四面體結(jié)構(gòu),每個O4四面體結(jié)構(gòu)可容納一個重氫原子,D4O4四面體體積高于SiO4四面體,O-D鍵長為0.954(1) ?。通過非彈性中子散射技術(shù)表征儲氫材料,可得到基體-氫原子間的相互作用信息,另外,通過將第一性原理與非彈性中子散射結(jié)合對吸附氫氣的金屬有機(jī)框架的晶體結(jié)構(gòu)進(jìn)行解析,結(jié)果表明,所吸附的氫氣分子的取向?qū)ζ浣Y(jié)合能有重要影響,取向勢能呈現(xiàn)二維特征,且氫氣分子所在平面與Cu-Cu鍵垂直[25]。利用共振中子反射技術(shù)可對Nb薄膜中氫含量進(jìn)行原位測定,建立氫含量與物理性質(zhì)之間的關(guān)聯(lián)規(guī)律[26]。相比于間接測量膜厚的X射線反射技術(shù),中子反射技術(shù)可定量地的檢測不同薄膜深度下的氫含量,且最低檢測量在每分鐘 0.5 at% ,靈敏度可達(dá)1 at%。
3" 在鐵電性質(zhì)檢測中的應(yīng)用
在鐵電材料的磁性和結(jié)構(gòu)解析中,運(yùn)用中子散射技術(shù),可獲取鐵電材料的磁性能、鐵電相變、聲子模式等信息[27, -28]。多鐵性材料Sr0.56Ba0.44MnO3的自旋動力學(xué)、磁序和晶體結(jié)構(gòu)可通過彈性和非彈性中子散射獲得,結(jié)果表明磁性和鐵電性之間存在強(qiáng)耦合性[29]。Ondrejkovic等[30]通過中子散射技術(shù)在不同溫度和壓力的條件下,對Sn2P2S6半導(dǎo)體單晶體鐵電相變的研究中,發(fā)現(xiàn)鐵電有序度參數(shù)在轉(zhuǎn)變溫度處消失,在0.6 GPa以下,Sn2P2S6發(fā)生順電-鐵電相變過程。通過中子散射技術(shù)探究K1-xLixTaO3的區(qū)域中心的橫波光學(xué)支聲子模式,當(dāng)x=0.1時,
K1-xLixTaO3在115 K存在鐵電相變[31]。當(dāng)x=0.05時,隨著溫度的降低,區(qū)域中心的橫向光學(xué)支聲子顯示單一的軟化現(xiàn)象,說明對于x=0.1時的化學(xué)組分,當(dāng)溫度在臨界溫度以下,鐵電相將分解。
4" 結(jié)論(結(jié)束語)
中子的自旋量子數(shù)為1/2,是具有波粒二象性的電中性粒子,在中子散射過程中,與原子核相互作用,因而中子散射對于輕元素的散射能力強(qiáng)于X射線衍射技術(shù),而中子的能量低于X射線,具有較高的滲透深度。可檢測較高深度中材料的化學(xué)組成,并在極端條件如極高和極低溫度、高壓、高磁場和電場存在時材料的性質(zhì),探究材料的微觀結(jié)構(gòu)、原子排布、離子傳輸動力學(xué)、鐵電性質(zhì)等。且具有高精確度和靈敏度,是目前及未來材料化學(xué)領(lǐng)域不可或缺的表征技術(shù)。
參考文獻(xiàn):
[1]""" KARLSSON, M. Perspectives of neutron scattering on proton conducting oxides[J]. Dalton Transactions. ,2013. ,42(2), :317-329.
[2]""" CHENG, Y., STONE, M. B. AND ,RAMIREZ-CUESTA, A. J. A database of synthetic inelastic neutron scattering spectra from molecules and crystals[J]. Scientific Data. ,2023. ,10(54), :1-7.
[3]""" ZHANG, X., SUN, Y., XIA, G., et al. Light-weight solid-state hydrogen storage materials characterized by neutron scattering[J]. Journal of Alloys and Compounds.,2022.,899(163254), :1-19.
[4]""" CHOUDHURY, N. AND ,CHAPLOT, S. L. Inelastic neutron scattering and lattice dynamics of minerals[J]. Pramana-Journal of Physics.,2008.,71, :819-828.
[5]""" ALONSO, J. A., MARTINEZ-LOPE, M. J., AGUADERO, A., et al. Neutron powder diffraction as a characterization tool of solid oxide fuel cell materials[J]. Progress in Solid State Chemistry. ,2007. ,36, :134-150.
[6]""" AGUADERO, A., MARTINEZ-LOPE, M. J., POMJAKUSHIN, V., et al. Oxygen-deficient R2MoO6-δ (R=Tb, Dy, Y, Ho, Er, Tm, Yb) with fluorite structure as potential anodes in solid oxide fuel cells[J]. European Journal of Inorganic Chemistry. ,2011. ,2011(21), :3226-3231.
[7]""" FURRER, A., MESOT, J. AND ,STRASSLE, T., Neutron scattering in condensed matter physics[M]. Neutron Techniques and Applications, ed. J.L. Finney and D.L. Worcester. Vol. 4. 2009: World Scientific Publishing Co. Pte. Ltd. 301.
[8]""" BOOTHROYD, A. T., Principles of neutron scattering from condensed matter[M]. 2020: Oxford University Press.
[9]""" PYNN, R. AND ,F(xiàn)ENDER, B. E. F. Neutron scattering in Europe[J]. Physics Today. ,1985. ,38(1), :46-53.
[10]" MICHAELSEN, R. Berlin neutron scattering center (BENSC)[EB/OL]. 2005; https://cordis.europa.eu/project/id/HPRI-CT-1999-00020.
[11]" KIRBY, B. NIST CENTER FOR NEUTRON RESEARCH[EB/OL]. 2021; https://www.nist.gov/ncnr/neutron-instruments.
[12]" ANDERSEN, K. Neutron Sciences Directorate[EB/OL]. https://neutrons.ornl.gov/.
[13]" 李天富, 武梅梅, 焦學(xué)勝, 等. 中國先進(jìn)研究堆中子科學(xué)平臺發(fā)展現(xiàn)狀及展望[J]. 原子核物理評論. ,2020. ,37(3), :364-376.
[14]" OVSYANIKOV, A. K., ZOBKALO, I. A., SCHMIDT, W., et al. Neutron inelastic scattering study of rare-earth orthoferriteHoFeO3[J]. Journal of Magnetism and Magnetic Materials.,2020.,507(166855).
[15]" SHAH, A. R., SHUTT, R.R. C., SMITH, K., et al. Neutron studies of Na-ion battery materials[J]. Journal of Physics: Materials. ,2021. ,4(042008).
[16]" ROLLE, A., ROUSSEL, P., GIRIDHARAN, N. V., et al. A neutron diffraction study of the oxygen diffusion in molybdenum doped Ba2In2O5[J].Solid State Ionics.,2008. ,179(35-36), :1986-1995.
[17]" KAJITANI, M., MATSUDA, M., HOSHIKAWA, A., et al. In situ neutron diffraction study on fast oxide ion conductor LaGaO3-based perovskite compounds[J]. Chemistry of Materials. ,2005. ,17(16), :4235-4243.
[18]" KENDRICK, E., ORERA, A. AND ,SLATER, P. R. Neutron diffraction structural study of the apatite-type oxide ion conductor, La8Y2Ge6O27: location of the interstitial oxide ion site[J]. Journal of Materials Chemistry. ,2019. ,19(42), :7955-7958.
[19]" BOYAPATI, S., WACHSMAN, E. D. AND ,CHAKOUMAKOS, B. C. Neutron diffraction study of occupancy and positional order of oxygen ions in phase stabilized cubic bismuth oxides[J]. Solid State Ionics. ,2001., 138(3-4), :293-304.
[20]" ITOH, T., HIRAI, T., YAMASHITA, J., et al. Study of oxygen ion diffusion in (Ba0.5Sr0.5)(Co0.8Fe0.2)O2.33–δ through in-situ neutron diffractions at 300 and 720 K[J]. Physica B. ,2010. ,405(8), :2091-2096.
[21]" SKRIPOV, A. V., SOLONININ, A. V., VALEEVA, A.A., et al. Hydrogen in nonstoichiometric cubic titanium monoxides: X-ray and neutron diffraction, neutron vibrational spectroscopy and NMR studies[J].Journal of Alloys and Compounds. ,2021.,887(161353).
[22]" JUNG, M., PARK, J., MUHAMMAD, R., et al. Elucidation of diffusivity of hydrogen isotopes in flexible MOFs by quasi-elastic neutron scattering[J]. Advanced Materials.,2021.,33(20),:1-7.
[23]" COLOGNESI, D., ULIVI, L., ZOPPI, M., et al. Hydrogen-storage materials dispersed into nanoporous substrates studied through incoherent inelastic neutron scattering[J].Journal of Alloys and Compounds.,2012. ,538, :91-99.
[24]" KEEN, D. A., KEEBLE, D. S. AND ,BENNETT, T. D. Neutron and X-ray total scattering study of hydrogen disorder in fully hydrated hydrogrossular, Ca3Al2(O4H4)3[J]. Physics and Chemistry of Minerals. ,2018. ,45, :333-342.
[25]" BROWN, C. M., LIU, Y., YILDIRIM, T., et al. Hydrogen adsorption in HKUST-1: a combined inelastic neutron scattering and first-principles study[J]. Nanotechnology. ,2009. ,20(204025), :1-11.
[26]" GUASCO, L., KHAYDUKOV, Y. N., PUTTER, S., et al. Resonant neutron reflectometry for hydrogen detection[J]. Nature Communications. ,2022., 13(1486), :1-8.
[27]" LU, Y., XU, J., MA, B., et al. Giant piezoelectric response in Ho-doped PbMg1/3Nb2/3TiO3relaxor ferroelectric single crystals via in-situ neutron scattering[J]. Materials Today Advances.,2023.,17.
[28]" ZHANG, M.-H., DING, H., EGERT, S., et al. Tailoring high-energy storage NaNbO3-based materials from antiferroelectric to relaxorstates[J].Nature Communications. ,2023.,14(1525),:1-11.
[29]" PRATT, D. K., LYNN, J. W., MAIS, J., et al. Neutron scattering studies of the ferroelectric distortion and spin dynamics in the type-1 multiferroic perovskite Sr0.56Ba0.44MnO3[J].Physical Review B.,2014. ,90(14041),: 1-5.
[30]" ONDREJKOVIC, P., KEMPA, M., VYSOCHANSKII, Y., et al. Neutron scattering study of ferroelectric Sn2P2S6 under pressure[J]. Physical Review B.,2012.,86(224106),:1-8.
[31]" WAKIMOTO, S., SAMARA, G. A., GRUBBS, R. K., et al. Neutron scattering study of the relaxor ferroelectric K1-xLixTaO3[J]. Nuclear Instruments and Methods in Physics Research A.,2009.,600(1), :254-256.
Current status of studying materials chemistry via neutron scattering techniques
QU Liu1
(1.Shenyang Ligong University, Liaoning Shenyang 110159,China)
Abstract:In materials characterization, the microstructure, chemical composition and atomic scale information are determined via the interaction of high-energy source with the surface of the sample. However, the accuracy in the detection of light elements limits the application in further characterizing materials. Because neutron has a large penetration depth when interacting with solid matter, it has the capability of investigating the crystal structure, dynamic motion of atoms and magnetic properties, and distinguishing atoms with similar atomic number, isotopes, and light elements. For example, neutron scattering has been applied for studying the atomic structure, hydrogen concentration and ferroelectric properties. Combining with various characterization methods and first-principle theory, the atomic scale information and dynamic properties can be determined. This article has reviewed the principles of neutron scattering and the current status of its application in materials chemistry.
Key words:neutron scattering; characterization; materials chemistry; crystal structure; dynamic properties