亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        煤炭原位開(kāi)發(fā)地質(zhì)保障

        2024-05-03 09:40:31王雙明,孫強(qiáng),胡鑫,耿濟(jì)世,薛圣澤,劉浪,師慶民,魏江波

        王雙明,孫強(qiáng),胡鑫,耿濟(jì)世,薛圣澤,劉浪,師慶民,魏江波

        摘要:“雙碳”目標(biāo)下,面對(duì)“缺油、少氣、相對(duì)富煤”的資源稟賦特征,煤炭在一段時(shí)期內(nèi)仍占據(jù)中國(guó)的主體能源地位,但煤炭的低碳、清潔開(kāi)發(fā)轉(zhuǎn)型勢(shì)在必行。地下原位熱解、氣化、干餾、制氫等方式有望成為未來(lái)煤炭開(kāi)發(fā)的重要抓手。當(dāng)前對(duì)煤炭原位開(kāi)發(fā)已有較多探索,但地質(zhì)選址和開(kāi)發(fā)過(guò)程的地質(zhì)安全性、可靠性和環(huán)保性仍是制約其規(guī)?;蜕虡I(yè)化的科學(xué)難題。因此,煤炭原位開(kāi)發(fā)地質(zhì)保障的理論和技術(shù)研究亟待深入。秉持“安全、經(jīng)濟(jì)、環(huán)保、可持續(xù)”原則,從煤炭資源稟賦特征和地質(zhì)條件出發(fā),分析了煤炭原位開(kāi)發(fā)研究現(xiàn)狀;基于煤炭開(kāi)發(fā)全生命周期的科學(xué)理念,提出了“煤炭原位開(kāi)發(fā)地質(zhì)保障”的科學(xué)內(nèi)涵;在查明采前地質(zhì)條件的基礎(chǔ)上,從物理機(jī)制角度揭示深部原位開(kāi)發(fā)過(guò)程中圍巖地質(zhì)體響應(yīng)特征和損害規(guī)律,闡明原位開(kāi)發(fā)中巖體工程地質(zhì)力學(xué)行為,構(gòu)建原位開(kāi)發(fā)地質(zhì)條件動(dòng)態(tài)評(píng)價(jià)模型,形成原位開(kāi)發(fā)減損保障策略和方法,提出原位開(kāi)發(fā)空間的再利用途徑,并以煤炭地下氣化和地下熱解2種開(kāi)發(fā)模式為例闡述了原位開(kāi)發(fā)階段性,明確了原位開(kāi)發(fā)區(qū)設(shè)計(jì)的地質(zhì)條件要素,強(qiáng)調(diào)開(kāi)發(fā)過(guò)程中實(shí)時(shí)動(dòng)態(tài)監(jiān)測(cè)和評(píng)價(jià)圍巖地質(zhì)體響應(yīng)保證開(kāi)發(fā)區(qū)密封性與安全性,實(shí)現(xiàn)地質(zhì)條件時(shí)空演化的評(píng)價(jià)及地質(zhì)風(fēng)險(xiǎn)可控性,此外注重協(xié)同開(kāi)發(fā)深部熱能與共伴生資源,實(shí)現(xiàn)殘余資源利用和地下空間再利用。煤炭原位地質(zhì)保障研究體現(xiàn)了資源賦存條件、地質(zhì)環(huán)境約束、原位開(kāi)發(fā)技術(shù)、地質(zhì)風(fēng)險(xiǎn)防控、資源協(xié)同開(kāi)發(fā)等層面的要求,突出了原位擾動(dòng)條件下的地質(zhì)條件變化,強(qiáng)調(diào)開(kāi)發(fā)擾動(dòng)與地質(zhì)體結(jié)構(gòu)的整體研究,理解原位開(kāi)發(fā)時(shí)空效應(yīng)范疇的多相場(chǎng)耦合損傷機(jī)制,從多圈層角度揭示原位開(kāi)發(fā)擾動(dòng)效應(yīng)下地質(zhì)風(fēng)險(xiǎn)模式,破解資源開(kāi)發(fā)與地質(zhì)環(huán)境制約之間矛盾,對(duì)于推動(dòng)未來(lái)煤炭低碳開(kāi)發(fā),實(shí)現(xiàn)煤炭工業(yè)高質(zhì)量發(fā)展具有重要的理論和實(shí)踐指導(dǎo)意義。

        關(guān)鍵詞:深埋煤層;原位開(kāi)發(fā);碳中和;地質(zhì)儲(chǔ)能

        中圖分類號(hào):TD 823文獻(xiàn)標(biāo)志碼:A

        文章編號(hào):1672-9315(2024)01-0001-11

        DOI:10.13800/j.cnki.xakjdxxb.2024.0101開(kāi)放科學(xué)(資源服務(wù))標(biāo)識(shí)碼(OSID):

        Geological guarantee for in-situ development of coal

        WANG Shuangming1,2,3,SUN Qiang1,2,3,HU Xin1,2,3,GENG Jishi1,2,3,

        XUE Shengze1,2,3,LIU Lang4,SHI Qingmin1,2,3,WEI Jiangbo1,2,3(1.Shaanxi Provincial Key Laboratory of Geological Support for Coal Green Exploitation,

        Xian University of Science and Technology,Xian 710054,China;

        2.Geological Research Institute for Coal Green Mining,Xian University of Science and Technology,Xian? 710054,China;

        3.College of Geology and Environment,Xian University of Science and Technology,Xian 710054,China;

        4.College of? Energy Science and Engineering,Xian? University of Science and Technology,Xian 710054,China)

        Abstract:Under the “dual carbon” target,faced with the resource endowment characteristics of “shortage of oil,scarcity of gas,and relative abundance of coal”,coal still occupies a dominant position in Chinas primary energy sector for a certain period.And it is imperative to develop the low-carbon and clean? transformation of coal.Underground in-situ pyrolysis,gasification,dry distillation,hydrogen production and other methods are expected to become important approaches for future coal development.At present,there have been many explorations on in-situ coal development第1期王雙明,等:煤炭原位開(kāi)發(fā)地質(zhì)保障,but the geological safety,reliability,and environmental protection of geological site selection and development process are still scientific challenges that constrain its scale and commercialization.Therefore,the theoretical and technical research on geological guarantee for in-situ coal development? needs to be deepened urgently.Adhering to the principles of “safety,economy,environmental protection,and sustainability”,this paper analyzes the current research status of coal in-situ development,starting from the characteristics of coal resource endowment and geological conditions.Based on the scientific concept of the entire life cycle of coal development,the scientific connotation of “geological guarantee for coal in-situ development” is proposed.By identifying pre-mining geological conditions,the response characteristics and damage laws of surrounding rock geological bodies during the deep in-situ development process are revealed from the perspective of physical mechanisms,clarify the geological and mechanical behavior of rock mass engineering in in-situ development,construct a dynamic evaluation model for geological conditions in in-situ development,form a loss reduction guarantee strategy and method for in-situ development,and propose ways to reuse in-situ development space.Taking two development models of underground coal gasification and underground pyrolysis as examples,this paper elaborates on the phased nature of in-situ development,clarifies the geological conditions elements of in-situ Development Zone? design,emphasizes real-time dynamic monitoring and evaluation of surrounding rock geological response during the development process to ensure the sealing and safety of the development zone,and achieves the evaluation of geological conditionsspatiotemporal evolution and geological risk controllability.In addition,the emphasis is placed on collaborative development of deep thermal energy and co-associated resources,achieving the utilization of residual resources and the reuse of underground space.The research on in-situ geological guarantee of coal reflects the requirements of resource occurrence conditions,geological environment constraints,in-situ development technology,geological risk prevention and control,and resource collaborative development.It attaches importance on? the changes in geological conditions under in-situ disturbance conditions,emphasizes the overall study of development disturbance and geological body structure,and recognizes the multiphase field coupling damage mechanism in the field of spatiotemporal effects of in-situ development.To reveal the geological risk mode under the disturbance effect of in-situ development from a multi layer perspective,and to identify the contradiction between resource development and geological environmental constraints has important theoretical and practical guiding significance for promoting low-carbon coal development in the future and achieving high-quality development of the coal industry.

        Key words:deep-buried coal seams;in-situ development;carbon neutrality;geological energy-storage

        0引言

        面對(duì)“缺油、少氣、相對(duì)富煤”的資源稟賦特征,煤炭成為中國(guó)國(guó)民經(jīng)濟(jì)發(fā)展和能源戰(zhàn)略安全的兜底保障[1],在未來(lái)一段時(shí)期仍將占據(jù)能源消費(fèi)結(jié)構(gòu)主體地位[2-5]。然而,隨著煤炭資源的開(kāi)采,淺埋煤炭資源日益減少,開(kāi)采地球深部煤炭資源成為中國(guó)戰(zhàn)略能源開(kāi)發(fā)必將面臨的挑戰(zhàn)[6-8]。習(xí)近平總書記指出,地表至地下10 000 m范圍內(nèi)均為可利用的成礦空間,目前世界先進(jìn)水平勘探開(kāi)采深度可達(dá)2 500~4 000 m,國(guó)內(nèi)大多小于500 m。而據(jù)統(tǒng)計(jì),中國(guó)53%的煤炭埋深在千米以下,深部豐富的煤炭資源還有待開(kāi)發(fā)利用[9-10]。目前煤礦開(kāi)采深度以每年8~12 m的速度增加,預(yù)計(jì)未來(lái)幾十年中國(guó)很多煤礦將進(jìn)入到1 000~1 500 m的深度[11],但深部煤炭開(kāi)發(fā)存在勘探難度大、地溫高、地應(yīng)力大等問(wèn)題[12-14]。同時(shí),隨著東部煤炭資源逐漸枯竭,西部生態(tài)脆弱區(qū)已成為中國(guó)煤炭開(kāi)采的主戰(zhàn)場(chǎng)[15]。傳統(tǒng)煤炭開(kāi)采方法面臨著保護(hù)煤柱、極薄煤層等資源難以利用的問(wèn)題,且對(duì)地質(zhì)環(huán)境條件擾動(dòng)損害大。為實(shí)現(xiàn)習(xí)近平總書記提出的“綠水青山就是金山銀山”的生態(tài)文明發(fā)展理念,推動(dòng)煤炭工業(yè)高質(zhì)量發(fā)展,必須協(xié)調(diào)煤炭開(kāi)發(fā)與“綠水青山”生態(tài)文明建設(shè)的矛盾,減損開(kāi)采已成大勢(shì)所趨[16-18]。

        自2020年中國(guó)提出“碳達(dá)峰、碳中和”目標(biāo)以來(lái),煤炭工業(yè)必然朝著“綠色低碳減排、清潔高效利用”發(fā)展路徑推進(jìn),對(duì)常規(guī)采煤工藝轉(zhuǎn)型提出了嚴(yán)峻的要求[19],探索與應(yīng)用新的開(kāi)采技術(shù)愈加重要[20-23]。煤炭原位開(kāi)發(fā)是通過(guò)把煤炭資源原位轉(zhuǎn)化為氣態(tài)和液態(tài)物質(zhì)(如CH4、H2、CO、低碳烷烴、焦油等)進(jìn)而開(kāi)發(fā)利用的方法,包括原位熱解、氣化、干餾、制氫等,具有預(yù)防地面塌陷、實(shí)現(xiàn)煤炭高效利用、降低生產(chǎn)成本、空間封存CO2等優(yōu)勢(shì)[24-26],為深部煤炭資源高效、安全、清潔開(kāi)發(fā)提供了好的思路,能夠有效提升資源的利用率,也響應(yīng)了低碳的時(shí)代主題[27-29]。

        在闡明煤炭原位開(kāi)發(fā)模式的基礎(chǔ)上,論述了煤炭原位開(kāi)發(fā)地質(zhì)保障的科學(xué)內(nèi)涵,理清了煤炭原位開(kāi)發(fā)與地質(zhì)條件的約束關(guān)系,提出了煤炭原位開(kāi)采減損地質(zhì)保障理論研究的關(guān)鍵科學(xué)問(wèn)題,構(gòu)建了原位開(kāi)發(fā)地質(zhì)保障體系,服務(wù)于煤炭資源原位開(kāi)發(fā)全過(guò)程,破解國(guó)家能源需求與地質(zhì)條件損害的矛盾。

        1原位開(kāi)發(fā)地質(zhì)保障內(nèi)涵

        “碳達(dá)峰、碳中和”國(guó)家戰(zhàn)略目標(biāo)的落地和實(shí)施,將推動(dòng)國(guó)家能源生產(chǎn)與消費(fèi)體系變革。如何在低碳目標(biāo)要求下增強(qiáng)中國(guó)能源自給能力,保障能源安全,筑牢強(qiáng)國(guó)和可持續(xù)發(fā)展基石,是當(dāng)前能源科技領(lǐng)域亟待攻關(guān)的重要議題。面對(duì)“缺油、少氣、相對(duì)富煤”的能源稟賦條件,未來(lái)一段時(shí)期內(nèi),煤炭在中國(guó)的能源結(jié)構(gòu)中依然占據(jù)主體地位,但逐漸轉(zhuǎn)向清潔高效開(kāi)發(fā)利用[30]。當(dāng)前,西部煤炭基地已經(jīng)成為中國(guó)煤炭開(kāi)發(fā)的主戰(zhàn)場(chǎng),傳統(tǒng)開(kāi)采面臨著生態(tài)環(huán)境脆弱,地質(zhì)條件損害嚴(yán)重的難題。因此,煤炭開(kāi)發(fā)利用需要根本性變革,才能在“雙碳”背景下實(shí)現(xiàn)中國(guó)能源的安全、綠色與可持續(xù)供給[31-32],同時(shí)實(shí)現(xiàn)“綠水青山”的生態(tài)文明建設(shè)要求。

        煤炭原位開(kāi)發(fā)(In-Situ Coal Development,ISCD)是變革性開(kāi)發(fā)途徑,有望成為實(shí)現(xiàn)煤炭清潔低碳開(kāi)發(fā)的重要抓手[33]。ISCD的開(kāi)發(fā)理念是指在適宜的地質(zhì)條件下,構(gòu)建原位開(kāi)發(fā)區(qū)(In-Situ Development Zone,ISDZ),將深部煤炭資源原位轉(zhuǎn)化為氣態(tài)和液態(tài)物質(zhì)(如CH4、H2、CO、低碳烷烴、焦油等)進(jìn)而開(kāi)發(fā)利用,同時(shí)實(shí)現(xiàn)深部取熱、儲(chǔ)能以及碳封存等(圖1)。前人在原位開(kāi)發(fā)領(lǐng)域進(jìn)行了大量開(kāi)發(fā)利用試驗(yàn)和探索工作,其主要開(kāi)發(fā)方式如圖2所示。

        地質(zhì)條件是制約ISCD推廣的重要因素之一,其中原位開(kāi)發(fā)區(qū)的封閉性、安全性、環(huán)保性、經(jīng)濟(jì)性和可靠性是亟待解決的科學(xué)問(wèn)題。原位開(kāi)發(fā)時(shí),巖層結(jié)構(gòu)會(huì)隨著開(kāi)發(fā)時(shí)間與空間出現(xiàn)顯著的變化,造成地質(zhì)條件和功能的損害[34-36],體現(xiàn)在原位開(kāi)發(fā)區(qū)的封閉性和地質(zhì)環(huán)境協(xié)調(diào)性,進(jìn)而影響工程的可靠和安全性(圖3),這也是制約深部煤炭資源原位安全開(kāi)發(fā)的瓶頸。

        原位開(kāi)發(fā)地質(zhì)保障的科學(xué)內(nèi)涵主要體現(xiàn)在:以深部煤炭原位開(kāi)發(fā)為背景,采取理論研究、室內(nèi)試驗(yàn)和數(shù)值分析相結(jié)合的方法,從物理機(jī)制角度揭示深部原位開(kāi)發(fā)過(guò)程中圍巖地質(zhì)體響應(yīng)特征和損害規(guī)律,闡明原位開(kāi)發(fā)中巖體工程地質(zhì)力學(xué)行為,提出原位開(kāi)發(fā)地質(zhì)條件動(dòng)態(tài)評(píng)價(jià)模型,形成原位開(kāi)發(fā)減損保障策略和方法,提出空間的再利用途徑,為原位安全開(kāi)采提供系統(tǒng)性的基礎(chǔ)理論支撐。

        2原位開(kāi)發(fā)模式的地質(zhì)約束

        原位開(kāi)發(fā)是深部煤炭資源減損利用的重要抓手,關(guān)于煤炭原位開(kāi)發(fā)的途徑已有探討,如圖1、圖2所示,目前對(duì)煤炭原位氣化和原位熱解已有探索性工程試驗(yàn)研究[37-38],原位生物氣化和液化開(kāi)發(fā)多集中在試驗(yàn)階段,這里以原位氣化(Underground Coal Gasification,UCG)和熱解(Underground Coal Pyrolysis,UCP)為例闡釋原位開(kāi)發(fā)模式 。

        2.1原位開(kāi)發(fā)地質(zhì)條件

        與傳統(tǒng)井工開(kāi)采相比,原位開(kāi)發(fā)受到更為嚴(yán)格的地質(zhì)條件制約。地質(zhì)構(gòu)造、巖(煤)層空間組合和展布特征、地應(yīng)力、煤及圍巖力學(xué)性質(zhì)、水文地質(zhì)、地質(zhì)環(huán)境等構(gòu)成了原位開(kāi)發(fā)核心地質(zhì)要素,體現(xiàn)在資源稟賦特征和開(kāi)發(fā)條件約束2個(gè)方面。因此,煤炭原位開(kāi)發(fā)地質(zhì)條件研究包含了開(kāi)發(fā)前地質(zhì)結(jié)構(gòu)精準(zhǔn)探查與評(píng)價(jià)(圖4),開(kāi)發(fā)過(guò)程中圍巖地質(zhì)結(jié)構(gòu)響應(yīng)機(jī)制與風(fēng)險(xiǎn)調(diào)控技術(shù)、開(kāi)發(fā)后殘留資源開(kāi)發(fā)與環(huán)境保護(hù)3個(gè)層面的內(nèi)容,需要對(duì)開(kāi)發(fā)前靜態(tài)地質(zhì)條件和開(kāi)發(fā)擾動(dòng)地質(zhì)條件進(jìn)行探索(圖5)。

        2.2煤炭原位開(kāi)發(fā)模式

        2.2.1煤炭原位氣化

        煤炭地下氣化(UCG)通過(guò)對(duì)地下煤炭進(jìn)行有控制地燃燒,在高溫?zé)嶙饔眉盎瘜W(xué)作用下產(chǎn)生可利用的CH4、H2、CO等氣體的煤炭開(kāi)發(fā)方式(圖6)[39-41]。在煤炭地下原位氣化的開(kāi)發(fā)過(guò)程中,主要包括建設(shè)前評(píng)價(jià)、氣化設(shè)施建設(shè)、煤炭氣化和產(chǎn)物分級(jí)處理4個(gè)階段。建設(shè)前評(píng)價(jià)階段主要是基于煤炭賦存地質(zhì)條件的精細(xì)勘查,對(duì)地質(zhì)條件進(jìn)行系統(tǒng)評(píng)價(jià),揭示煤炭地下原位氣化場(chǎng)地內(nèi)煤、巖、水賦存特征及其與周邊生態(tài)環(huán)境的時(shí)空聯(lián)系。依據(jù)注入孔與出氣孔的位置來(lái)選址建設(shè)氣化設(shè)施,煤炭氣化過(guò)程和產(chǎn)物分級(jí)處理如圖7所示。

        2.2.2煤炭原位熱解

        煤炭原位熱解是將熱量導(dǎo)入地下煤層并對(duì)其直接加熱,煤炭的固態(tài)有機(jī)質(zhì)受熱發(fā)生裂解后,將產(chǎn)生的液態(tài)和氣態(tài)有機(jī)質(zhì)提取至地面進(jìn)行處理加工的過(guò)程[42-43](圖8)。與煤炭地下氣化相似,煤炭地下熱解過(guò)程中煤層在熱效應(yīng)下的物理力學(xué)性質(zhì)變化也會(huì)導(dǎo)致煤層圍巖損害,從而引起巖層開(kāi)裂失穩(wěn),熱解區(qū)封閉性失效,影響熱解進(jìn)程的連續(xù)性和安全性,因此,深入研究煤及圍巖在原位地應(yīng)力、地層溫度、地質(zhì)結(jié)構(gòu)等賦存環(huán)境下對(duì)熱解的響應(yīng)行為和評(píng)價(jià)方法極為關(guān)鍵(圖9)。

        2.3原位開(kāi)發(fā)階段劃分及保障系統(tǒng)

        煤炭原位開(kāi)發(fā)分為采前、采中、采后3個(gè)階段(圖10)。采前階段需要結(jié)合地質(zhì)條件因素根據(jù)戰(zhàn)略需求、資源數(shù)量、資源稟賦、開(kāi)發(fā)模式對(duì)原位開(kāi)發(fā)戰(zhàn)略進(jìn)行評(píng)價(jià)與規(guī)劃。依據(jù)地質(zhì)勘探結(jié)果設(shè)計(jì)原位開(kāi)發(fā)區(qū),保證開(kāi)發(fā)區(qū)的密封性與安全性。采中階段監(jiān)測(cè)原位開(kāi)發(fā)過(guò)程中圍巖地質(zhì)體響應(yīng),及時(shí)預(yù)測(cè)與防控地質(zhì)風(fēng)險(xiǎn)。協(xié)同開(kāi)發(fā)熱能與共伴生能源,提升資源利用率的同時(shí)保障原位開(kāi)發(fā)的順暢性與產(chǎn)物潔凈性。原位開(kāi)發(fā)采后階段回收利用殘余資源,依據(jù)采后地質(zhì)條件評(píng)價(jià)空間封閉性與可儲(chǔ)性,探索資源可持續(xù)性[45-46]。做到煤炭原位開(kāi)發(fā)全生命周期與地質(zhì)條件的緊密結(jié)合,保障資源安全、經(jīng)濟(jì)、環(huán)保、可持續(xù)開(kāi)發(fā)。

        煤炭原位開(kāi)發(fā)地質(zhì)保障是涉及到多學(xué)科的系統(tǒng)性研究[47-52]。煤炭原位開(kāi)發(fā)需要做到地質(zhì)條件透明化、信息反饋實(shí)時(shí)化、分析監(jiān)控全程化、潛在風(fēng)險(xiǎn)可控化、開(kāi)發(fā)過(guò)程信息化、科學(xué)研究系統(tǒng)化(圖11)。

        2.3.1透明化

        原位開(kāi)發(fā)前應(yīng)精細(xì)查明場(chǎng)地范圍內(nèi)的地質(zhì)條件與地質(zhì)環(huán)境,在開(kāi)發(fā)區(qū)域內(nèi)的地表及地下反應(yīng)區(qū)建立可視化監(jiān)控測(cè)試體系,健全數(shù)據(jù)共享及全面評(píng)價(jià)體系,為地質(zhì)保障技術(shù)的應(yīng)用與實(shí)施提供專業(yè)支持,便于全面深入研究原位開(kāi)發(fā)過(guò)程中涉及的演化機(jī)制,有利于提高原位開(kāi)發(fā)技術(shù)水平,優(yōu)化開(kāi)發(fā)進(jìn)程。

        2.3.2實(shí)時(shí)化

        實(shí)時(shí)監(jiān)測(cè)原位開(kāi)發(fā)全過(guò)程中的地質(zhì)條件變化信息,根據(jù)地質(zhì)環(huán)境特征隨開(kāi)發(fā)進(jìn)程的演化規(guī)律,構(gòu)建三維可視化地質(zhì)模型,結(jié)合數(shù)值模擬手段和監(jiān)測(cè)數(shù)據(jù)進(jìn)行實(shí)時(shí)反演和超前預(yù)測(cè),準(zhǔn)確評(píng)價(jià)原位開(kāi)發(fā)過(guò)程中各參數(shù)的變化特征及穩(wěn)定性。

        2.3.3全程化

        確保對(duì)煤炭原位開(kāi)發(fā)的地質(zhì)保障在原位開(kāi)發(fā)前、中、后各階段貫穿始終。在開(kāi)發(fā)前開(kāi)展精準(zhǔn)深入的地質(zhì)條件及風(fēng)險(xiǎn)評(píng)價(jià)工作[53];在開(kāi)發(fā)過(guò)程中建立全面有效的動(dòng)態(tài)實(shí)時(shí)監(jiān)測(cè)體系,堅(jiān)持“持續(xù)監(jiān)測(cè)—及時(shí)反饋—精準(zhǔn)調(diào)控”的原則,對(duì)原位開(kāi)發(fā)全過(guò)程進(jìn)行科學(xué)保障。

        2.3.4可控化

        根據(jù)“井下無(wú)人”的指導(dǎo)原則,建立針對(duì)煤炭原位開(kāi)發(fā)全過(guò)程的地上智能操控系統(tǒng),針對(duì)覆巖變形破壞特征、煤炭開(kāi)發(fā)進(jìn)程、安全性評(píng)價(jià)指標(biāo)等建立監(jiān)測(cè)預(yù)警防控機(jī)制[54]。根據(jù)實(shí)時(shí)數(shù)據(jù)對(duì)原位開(kāi)發(fā)進(jìn)程進(jìn)行精細(xì)化參數(shù)調(diào)整與過(guò)程控制,及時(shí)有效處置突發(fā)情況,確保原位開(kāi)發(fā)進(jìn)程安全穩(wěn)定推進(jìn)。

        2.3.5信息化

        按照時(shí)間順序,對(duì)原位開(kāi)發(fā)全過(guò)程中的各項(xiàng)信息進(jìn)行數(shù)據(jù)化整理與存儲(chǔ),建立可根據(jù)開(kāi)發(fā)進(jìn)程、評(píng)價(jià)指標(biāo)參數(shù)和開(kāi)發(fā)區(qū)域進(jìn)行索引的分類分級(jí)數(shù)據(jù)庫(kù),便于研究過(guò)程中隨時(shí)調(diào)取各項(xiàng)數(shù)據(jù)進(jìn)行對(duì)比分析。

        2.3.6系統(tǒng)化

        根據(jù)煤炭原位開(kāi)發(fā)過(guò)程中收集到的各指標(biāo)數(shù)據(jù),對(duì)原位開(kāi)發(fā)過(guò)程中的地質(zhì)演化過(guò)程及圍巖高溫?zé)釗p傷機(jī)制進(jìn)行準(zhǔn)確闡述與揭示。針對(duì)原位開(kāi)發(fā)過(guò)程中的宏觀變化特征,結(jié)合數(shù)值模擬預(yù)測(cè)結(jié)果,有針對(duì)性地采用科學(xué)技術(shù)手段為煤炭原位開(kāi)發(fā)保駕護(hù)航。

        3原位開(kāi)發(fā)地質(zhì)保障科學(xué)問(wèn)題

        煤炭開(kāi)發(fā)地質(zhì)保障體系的科學(xué)研究主要表現(xiàn)為6個(gè)方面。①原位開(kāi)發(fā)靜態(tài)基礎(chǔ)地質(zhì)條件分析與評(píng)價(jià)研究;②煤系與巖層結(jié)構(gòu)精細(xì)刻畫及力學(xué)、水文參數(shù)研究;③開(kāi)發(fā)條件下圍巖地質(zhì)體動(dòng)態(tài)演化規(guī)律及損傷機(jī)制;④原位開(kāi)發(fā)地質(zhì)風(fēng)險(xiǎn)模式及判識(shí)方法;⑤地質(zhì)風(fēng)險(xiǎn)應(yīng)對(duì)策略及關(guān)鍵減損技術(shù);⑥污染-廢棄物(固-液-氣)防控與剩余資源再利用。上述6個(gè)方面體現(xiàn)了資源賦存條件、地質(zhì)環(huán)境約束、原位開(kāi)發(fā)技術(shù)、地質(zhì)風(fēng)險(xiǎn)防控、資源協(xié)同開(kāi)發(fā)等層面的要求,突出原位擾動(dòng)條件下的地質(zhì)條件變化,強(qiáng)調(diào)開(kāi)發(fā)擾動(dòng)與地質(zhì)體結(jié)構(gòu)整體研究;理解原位開(kāi)發(fā)時(shí)空效應(yīng)范疇的多相場(chǎng)耦合損傷機(jī)制(圖12)。從多圈層角度揭示原位開(kāi)發(fā)擾動(dòng)效應(yīng)下地質(zhì)風(fēng)險(xiǎn)模式,提出原位開(kāi)發(fā)剩余資源開(kāi)發(fā)策略,破解資源開(kāi)發(fā)與地質(zhì)環(huán)境制約的矛盾(圖13)。

        4結(jié)論

        1)隨著中國(guó)“雙碳”戰(zhàn)略實(shí)施和生態(tài)文明建設(shè)的推進(jìn)以及煤炭開(kāi)采深度的增加,亟待創(chuàng)新煤炭開(kāi)發(fā)方式。以煤炭地下氣化、熱解、制氫、發(fā)電等代表的原位開(kāi)發(fā)模式有望成為未來(lái)煤炭開(kāi)發(fā)利用的重要抓手,但受煤炭賦存地質(zhì)條件的復(fù)雜性和開(kāi)發(fā)過(guò)程中潛在的圍巖地質(zhì)體損傷誘發(fā)地質(zhì)風(fēng)險(xiǎn)影響,原位開(kāi)發(fā)地質(zhì)選址、評(píng)價(jià)和開(kāi)發(fā)全生命周期的安全性、可靠性和環(huán)保性仍是制約其規(guī)?;蜕虡I(yè)化的關(guān)鍵瓶頸。

        2)基于“安全、經(jīng)濟(jì)、環(huán)保、可持續(xù)”原則,煤炭原位開(kāi)發(fā)地質(zhì)保障的科學(xué)內(nèi)涵體現(xiàn)在:煤炭開(kāi)發(fā)全生命周期的地質(zhì)條件的精細(xì)探查和評(píng)價(jià),深部圍巖地質(zhì)體動(dòng)態(tài)響應(yīng)特征的實(shí)時(shí)監(jiān)測(cè)與反演,煤巖工程地質(zhì)力學(xué)行為及時(shí)空演化模式的分析,原位開(kāi)發(fā)地質(zhì)條件動(dòng)態(tài)評(píng)價(jià)模型的構(gòu)建,包含殘留資源及空間再利用途徑的開(kāi)發(fā)減損保障策略和方法的形成。

        3)原位開(kāi)發(fā)地質(zhì)保障涵蓋了資源賦存條件、地質(zhì)環(huán)境約束、原位開(kāi)發(fā)技術(shù)、地質(zhì)風(fēng)險(xiǎn)防控、資源協(xié)同開(kāi)發(fā)等層面要求,強(qiáng)調(diào)原位開(kāi)發(fā)過(guò)程中原位開(kāi)發(fā)區(qū)設(shè)計(jì)的地質(zhì)條件要素構(gòu)成,明確動(dòng)態(tài)監(jiān)測(cè)和評(píng)價(jià)圍巖地質(zhì)體響應(yīng)是保證開(kāi)發(fā)區(qū)密封性與開(kāi)發(fā)安全性的核心內(nèi)容,突出原位擾動(dòng)條件下的地質(zhì)條件變化,破解資源開(kāi)發(fā)與地質(zhì)環(huán)境制約的矛盾。煤炭原位開(kāi)發(fā)地質(zhì)保障研究對(duì)于推動(dòng)未來(lái)煤炭低碳開(kāi)發(fā),實(shí)現(xiàn)煤炭工業(yè)高質(zhì)量發(fā)展具有重要的理論和實(shí)踐指導(dǎo)意義。

        參考文獻(xiàn)(References):

        [1]劉耀彬,吳學(xué)平,傅春.中國(guó)煤炭城市分類及其經(jīng)濟(jì)運(yùn)行軌跡分析[J].資源科學(xué),2007,29(3):2-7.

        LIU Yaobin,WU Xueping,F(xiàn)U Chun.Classification and economic development track of coal mining cities in China[J].Resources Science,2007,29(3):2-7.

        [2]張建強(qiáng),寧樹(shù)正,陳美英,等.我國(guó)煤炭資源開(kāi)發(fā)前景及對(duì)策[J].地質(zhì)論評(píng),2020,66(S1):143-145.

        ZHANG Jianqiang,NING Shuzheng,CHEN Meiying,et al.Prospects and countermeasures of coal resources development in China[J].Geological Review,2020,66(S1):143-145.

        [3]謝和平,任世華,謝亞辰,等.碳中和目標(biāo)下煤炭行業(yè)發(fā)展機(jī)遇[J].煤炭學(xué)報(bào),2021,46(7):2197-2211.

        XIE Heping,REN Shihua,XIE Yachen,et al.Development opportunities of the coal industry towards the goal of carbon neutrality[J].Journal of China Coal Society,2021,46(7):2197-2211.

        [4]來(lái)興平,方賢威.“雙碳”目標(biāo)驅(qū)動(dòng)西部煤炭分階控碳減熵增效與協(xié)同發(fā)展路徑[J].西安科技大學(xué)報(bào),2022,42(5):841-848.

        LAI Xingping,F(xiàn)ANG Xianwei.Exploration of carbon control,entropy reducton,effcency increase and their coordinated development for coal in Western China under “Dual Carbon” target[J].Journal of Xian University of Science and Technology,2022,42(5):841-848.

        [5]張吉雄,張強(qiáng),巨峰,等.深部煤炭資源采選充綠色化開(kāi)采理論與技術(shù)[J].煤炭學(xué)報(bào),2018,43(2):377-389.

        ZHANG Jixiong,ZHANG Qiang,JU Feng,et al.Theory and technique of greening mining integrating mining,separating and backfilling in deep coal resources[J].Journal of China Coal Society,2018,43(2):377-389.

        [6]孫強(qiáng),張衛(wèi)強(qiáng),耿濟(jì)世,等.利用煤炭開(kāi)發(fā)地下空間儲(chǔ)能的技術(shù)路徑與地質(zhì)保障[J].煤田地質(zhì)與勘探,2023,51(2):229-242.

        SUN Qiang,ZHANG Weiqiang,GENG Jishi,et al.Technological path and geological guarantee for energy storage in underground space formed by coal mining[J].Coal Geology & Exploration,2023,51(2):229-242.

        [7]侯梅芳.碳中和目標(biāo)下中國(guó)能源轉(zhuǎn)型和能源安全的現(xiàn)狀、挑戰(zhàn)與對(duì)策[J].西南石油大學(xué)學(xué)報(bào)(自然科學(xué)版),2023,45(2):1-10.

        HOU Meifang.Current situation,challenges and countermeasures of Chinas energy transformation and energy security under the goal of carbon neutrality[J].Journal of Southwest Petroleum University(Science & Technology Edition),2023,45(2):1-10.

        [8]TENG J W,QIAO Y H,SONG P H.Analysis of exploration,potential reserves and high efficient utilization of coal in China[J].Chinese Journal of Geophysics,2016,59(12):4633-4653.

        [9]劉淑琴,暢志兵,劉金昌.深部煤炭原位氣化開(kāi)采關(guān)鍵技術(shù)及發(fā)展前景[J].礦業(yè)科學(xué)學(xué)報(bào),2021,6(3):261-270.

        LIU Shuqin,CHANG Zhibing,LIU Jinchang.Key technologies and prospect for in-situ gasification mining of deep coal resources[J].Journal of Mining Science and Technology,2021,6(3):261-270.

        [10]魏迎春,夏永翊,武玉良,等.深部煤炭資源探采對(duì)比與勘探方法探討[J].煤田地質(zhì)與勘探,2016,44(4):25-29.

        WEI Yingchun,XIA Yongxu,WU Yuliang,et al.Comparison of exploration and exploitation of coal resources and discussion on exploration methods[J].Coal Geology & Exploration,2016,44(4):25-29.

        [11]JIANG L L,CHEN S S,CHEN Y P,et al.Underground coal gasification modelling in deep coal seams and its implications to carbon storage in a climate-conscious world[J].Fuel,2023,332:126016.

        [12]袁亮.破解深部煤炭開(kāi)采重大科技難題的思考與建議[J].科技導(dǎo)報(bào),2016,34(2):1.

        YUAN Liang.Thoughts and suggestions on solving major scientific and technological difficulties in deep coal mining[J].Science & Technology Review,2016,34(2):1.

        [13]王永,王佟,康高峰,等.中國(guó)可供性煤炭資源潛力分析[J].中國(guó)地質(zhì),2009,36(4):845-852.

        WANG Yong,WANG Tong,KANG Gaofeng,et al.A potential analysis of the availability of coal resources in China[J].Geology in China,2009,36(4):845-852.

        [14]彭蘇萍.深部煤炭資源賦存規(guī)律與開(kāi)發(fā)地質(zhì)評(píng)價(jià)研究現(xiàn)狀及今后發(fā)展趨勢(shì)[J].煤,2008,17(2):1-11,27.

        PENG Suping.Present study and development trend of the deepen coal resource distribution and mining geologic evaluation[J].Coal,2008,17(2):1-11,27.

        [15]林建法.試析煤炭資源的安全保證問(wèn)題[J].煤田地質(zhì)與勘探,2006,34(4):6-9.

        LIN Jianfa.Analysis of coal resource guarantee[J].Coal Geology & Exploration,2006,34(4):6-9.

        [16]謝和平,高峰,鞠楊,等.深地煤炭資源流態(tài)化開(kāi)采理論與技術(shù)構(gòu)想[J].煤炭學(xué)報(bào),2017,42(3):547-556.

        XIE Heping,GAO Feng,JU Yang,et al.Theoretical and technological conception of the fluidization mining for deep coal resources[J].Journal of China Coal Society,2017,42(3):547-556.

        [17]CUI J F,WANG W J,YUAN C.Application of stability analysis in surrounding rock control and support model of deep roadway[J].International Journal of Oil,Gas and Coal Technology,2022,29(2):180-192.

        [18]王雙明,申艷軍,孫強(qiáng),等.西部生態(tài)脆弱區(qū)煤炭減損開(kāi)采地質(zhì)保障科學(xué)問(wèn)題及技術(shù)展望[J].采礦與巖層控制工程學(xué)報(bào),2020,2(4):5-19.

        WANG Shuangming,SHEN Yanjun,SUN Qiang,et al.Scientific issues of coal detraction mining geological assurance and their technology expectations in ecological fragile mining areas of Western China[J].Journal of Mining and Strata Control Engineering,2020,2(4):5-19.

        [19]王雙明,段中會(huì),馬麗,等.西部煤炭綠色開(kāi)發(fā)地質(zhì)保障技術(shù)研究現(xiàn)狀與發(fā)展趨勢(shì)[J].煤炭科學(xué)技術(shù),2019,47(2):1-6.

        WANG Shuangming,DUAN Zhonghui,MA Li,et al.Research status and future trends of geological assurance technology for coal green development in Western China[J].Coal Science and Technology,2019,47(2):1-6.

        [20]WANG B,CUI C Q,ZHAO Y X,et al.Climate change mitigation in the coal mining industry:low-carbon pathways and mine safety indicators[J].Natural Hazards,2019,95,25-38.

        [21]王雙明,孫強(qiáng),喬軍偉,等.論煤炭綠色開(kāi)采的地質(zhì)保障[J].煤炭學(xué)報(bào),2020,45(1):8-15.

        WANG Shuangming,SUN Qiang,QIAO Junwei,et al.Geological guarantee of coal green mining[J].Journal of China Coal Society,2020,45(1):8-15.

        [22]于海洋,許永彬,陳智明,等.雙碳目標(biāo)下煤炭深部流態(tài)化開(kāi)采及前景[J].潔凈煤技術(shù),2023,29(1):15-32.

        YU Haiyang,XU Yongbin,CHEN Zhiming,et al.Deep fluidized coal mining and its prospect under the target of carbon peak and carbon neutralization[J].Clean Coal Technology,2023,29(1):15-32.

        [23]易同生,秦勇,周永峰,等.煤炭地下氣化項(xiàng)目技術(shù)經(jīng)濟(jì)評(píng)價(jià)研究進(jìn)展述評(píng)[J].煤田地質(zhì)與勘探,2023,51(7):1-16.

        YI Tongsheng,QIN Yong,ZHOU Yongfeng,et al.Research advances on the techno-economic evaluation of UCG projects[J].Coal Geology & Exploration,2023,51(7):1-16.

        [24]潘月軍.新形勢(shì)下我國(guó)煤炭資源高效清潔利用途徑分析[J].潔凈煤技術(shù),2023,29(S2):807-809.

        PAN Yuejun.Analysis on the approaches of efficient and clean utilization of Chinas coal resources under the new situation[J].Clean Coal Technology,2023,29(S2):807-809.

        [25]葛世榮.深部煤炭化學(xué)開(kāi)采技術(shù)[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2017,46(4):679-691.

        GE Shirong.Chemical mining technology for deep coal resources[J].Journal of China University of Mining & Technology,2017,46(4):679-691.

        [26]BAI B,QIANG L Y,ZHANG S S,et al.Influence of coal structure change caused by different pretreatment me-thods on Shengli lignite pyrolysis[J].Fuel,2023,332:126089.

        [27]王雙明,申艷軍,孫強(qiáng),等.“雙碳”目標(biāo)下煤炭開(kāi)采擾動(dòng)空間CO2地下封存途徑與技術(shù)難題探索[J].煤炭學(xué)報(bào),2022,47(1):45-60.

        WANG Shuangming,SHEN Yanjun,SUN Qiang,et al.Underground CO2 storage and technical problems in coal mining area under the“dual carbon” target[J].Journal of China Coal Society,2022,47(1):45-60.

        [28]孔令峰,東振,陳艷鵬,等.基于中深層煤原位清潔轉(zhuǎn)化技術(shù)構(gòu)建低碳能源生態(tài)圈[J].天然氣工業(yè),2022,42(9):166-175.

        KONG Lingfeng,DONG Zhen,CHEN Yanpeng,et al.Construction of low-carbon energy ecosystem based on in-situ clean conversion technology of medium-deep coal[J].Natural Gas Industry,2022,42(9):166-175.

        [29]劉峰,郭林峰,趙路正.雙碳背景下煤炭安全區(qū)間與綠色低碳技術(shù)路徑[J].煤炭學(xué)報(bào),2022,47(1):1-15.

        LIU Feng,GUO Linfeng,ZHAO Luzheng.Research on coal safety range and green low-carbon technology path under the dual-carbon background[J].Journal of China Coal Society,2022,47(1):1-15.

        [30]卞正富,伍小杰,周躍進(jìn),等.煤炭零碳開(kāi)采技術(shù)[J].煤炭學(xué)報(bào),2023,48(7):2613-2625.

        BIAN Zhengfu,WU Xiaojie,ZHOU Yuejin,et al.Coal mining technology with net zero carbon emission[J].Journal of China Coal Society,2023,48(7):2613-2625.

        [31]王雙明,耿濟(jì)世,李鵬飛,等.煤炭綠色開(kāi)發(fā)地質(zhì)保障體系的構(gòu)建[J].煤田地質(zhì)與勘探,2023,51(1):33-43.

        WANG Shuangming,GENG Jishi,LI Pengfei,et al.Construction of geological guarantee system for green coal mining[J].Coal Geology & Exploration,2023,51(1):33-43.

        [32]CHANG S Y,ZHUO J K,MENG S,et al.Clean coal technologies in China:Current status and future perspectives[J].Engineering,2016,2(4),447-459.

        [33]王雙明,申艷軍,宋世杰,等.“雙碳”目標(biāo)下煤炭能源地位變化與綠色低碳開(kāi)發(fā)[J].煤炭學(xué)報(bào),2023,48(7):2599-2612.

        WANG Shuangming,SHEN Yanjun,SONG Shijie,et al.Change of coal energy status and green and low-carbon development under the “dual carbon” goal[J].Journal of China Coal Society,2023,48(7):2599-2612.

        [34]ZHONG C,DONG F L,GENG Y,et al.Toward carbon neutrality:The transition of the coal industrial chain in China[J].Frontiers in Environmental Science,2022,10:962257.

        [35]謝和平,王金華,王國(guó)法,等.煤炭革命新理念與煤炭科技發(fā)展構(gòu)想[J].煤炭學(xué)報(bào),2018,43(5):1187-1197.

        XIE Heping,WANG Jinhua,WANG Guofa,et al.New ideas of coal revolution and layout of coal science and technology development[J].Journal of China Coal Society,2018,43(5):1187-1197.

        [36]謝和平,鞠楊,高明忠,等.煤炭深部原位流態(tài)化開(kāi)采的理論與技術(shù)體系[J].煤炭學(xué)報(bào),2018,43(5):1210-1219.

        XIE Heping,JU Yang,GAO Mingzhong,et al.Theories and technologies for in-situ fluidized mining of deep underground coal resources[J].Journal of China Coal Society,2018,43(5):1210-1219.

        [37]秦勇,王作棠,韓磊.煤炭地下氣化中的地質(zhì)問(wèn)題[J].煤炭學(xué)報(bào),2019,44(8):2516-2530.

        QIN Yong,WANG Zuotang,HAN Lei.Geological problems in underground coal gasification[J].Journal of China Coal Society,2019,44(8):2516-2530.

        [38]LI H Z,GUO G L,ZHA J F,et al.Research on the surface movement rules and prediction method of underground coal gasification[J].Bulletin of Engineering Geology and the Environment,2016,75:1133-1142.

        [39]LAOUAFA F,F(xiàn)ARRET R,VIDAL-GILBERT S,et al.Overview and modeling of mechanical and thermomechanical impact of underground coal gasification exploitation[J].Mitigation and Adaptation Strategies for Global Change,2016,21:547-576.

        [40]張金華,張夢(mèng)媛,陳艷鵬,等.煤炭地下氣化現(xiàn)場(chǎng)試驗(yàn)進(jìn)展與啟示[J].煤炭科學(xué)技術(shù),2022,50(2):213-222.

        ZHANG Jinhua,ZHANG Mengyuan,CHEN Yanpeng,et al.Progresses and revelation of underground coal gasification field test[J].Coal Science and Technology,2022,50(2):213-222.

        [41]MOCEK P,PIESZCZEK M,WIADROWSKI J,et al.Pilot-scale underground coal gasification(UCG)experiment in an operating Mine “Wieczorek” in Poland[J].Energy,2016,111:313-321.

        [42]步學(xué)朋,忻仕河,王鵬,等.煤炭氣化發(fā)展及應(yīng)用中的熱點(diǎn)問(wèn)題探討[J].潔凈煤技術(shù),2007,13(2):37-41.

        BU Xuepeng,XIN Shihe,WANG Peng,et al.Discussion of the hotspot in the development and application of coal gasification[J].Clean Coal Technology,2007,13(2):37-41.

        [43]邱立新,雷仲敏,周田君.潔凈煤技術(shù)的評(píng)價(jià)方法研究——以煤炭氣化技術(shù)的分析與評(píng)價(jià)為例[J].潔凈煤技術(shù),2006,12(1):5-8.

        QIU Lixin,LEI Zhongmin,ZHOU Tianjun.Research on the evaluation method of clean coal technology:Taking the analysis and evaluation of coal gasification technology as an example[J].Clean Coal Technology,2006,12(1):5-8.

        [44]MICHAEL GRecent developments and current position of underground coal gasification[J].Proceedings of the Institution of Mechanical Engineers,Part A:Journal of Power and Energy,2018,232(1):39-46.

        [45]王雙明,師慶民,王生全,等.富油煤的油氣資源屬性與綠色低碳開(kāi)發(fā)[J].煤炭學(xué)報(bào),2021,46(5):1365-1377.

        WANG Shuangming,SHI Qingmin,WANG Shengquan,et al.Resource property and exploitation concepts with green and low-carbon of tar-rich coal as coal-based oil and gas[J].Journal of China Coal Society,2021,46(5):1365-1377.

        [46]馬麗,段中會(huì),楊甫,等.“雙碳”背景下煤炭原位地下熱解采油意義研究[J].中國(guó)煤炭地質(zhì),2022,34(4):5-7.

        MA Li,DUAN Zhonghui,YANG Fu,et al.Study on the significance of coal in-situ underground pyrolytic oil production under carbon peaking and carbon neutrality background[J].Coal Geology of China,2022,34(4):5-7.

        [47]SCHIFFRIN D J.The feasibility of in situ geological sequestration of supercritical carbon dioxide coupled to underground coal gasification[J].Energy & Environmental Science,2015,8(8):2330-2340.

        [48]劉瀟鵬.煤炭地下氣化高溫?zé)儑鷰r移動(dòng)破壞機(jī)制研究[J].巖石力學(xué)與工程學(xué)報(bào),2022,41(7):1512.

        LIU Xiaopeng.Study on high temperature burnt surrounding rock movement and failure mechanism in underground coal gasification[J].Chinese Journal of Rock Mechanics and Engineering,2022,41(7):1512.

        [49]錢鳴高,繆協(xié)興,許家林.資源與環(huán)境協(xié)調(diào)(綠色)開(kāi)采[J].煤炭學(xué)報(bào),2007,32(1):1-7.

        QIAN Minggao,MIAO Xiexing,XU Jialin.Green mining of coal resources harmonizing with environment[J].Journal of China Coal Society,2007,32(1):1-7.

        [50]錢鳴高.加強(qiáng)煤炭開(kāi)采理論研究 實(shí)現(xiàn)科學(xué)開(kāi)采[J].采礦與安全工程學(xué)報(bào),2017,34(4):615.

        QIAN Minggao.Strengthening theoretical research on coal mining to achieve scientific mining[J].Journal of Mining & Safety Engineering,2017,34(4):615.

        [51]SHI J H,F(xiàn)ENG Z C,ZHOU D,et al.Analysis of fracture structure evolution of bituminous coal subjected to in situ steam pyrolysis combined with in situ micro-computed tomography technology[J].Energy Sources,Part A:Recovery,Utilization,and Environmental Effects,2023,45(2):6010-6026.

        [52]JU Y,ZHU Y,ZHOU H W,et al.Microwave pyrolysis and its applications to the in situ recovery and conversion of oil from tar-rich coal:An overview on fundamentals,methods,and challenges[J].Energy Reports,2021(7):523-536.

        [53]郭威,劉召,孫友宏,等.富油煤原位熱解開(kāi)發(fā)地下體系封閉方法探討[J].煤田地質(zhì)與勘探,2023,51(1):107-114.

        GUO Wei,LIU Zhao,SUN Youhong,et al.Discussion on underground system sealing methods in in-situ pyrolysis exploitation of tar-rich coal[J].Coal Geology & Exploration,2023,51(1):107-114.

        [54]姚強(qiáng)嶺,李學(xué)華,朱柳,等.煤巖體地質(zhì)力學(xué)參數(shù)原位測(cè)試系統(tǒng)開(kāi)發(fā)與應(yīng)用[J].中國(guó)礦業(yè)大學(xué)學(xué)報(bào),2019,48(6):1169-1176.

        YAO Qiangling,LI Xuehua,ZHU Liu,et al.Development and application of in-situ testing system for geomechanical parameters of coal and rock mass[J].Journal of China University of Mining & Technology,2019,48(6):1169-1176.

        (責(zé)任編輯:劉潔)

        日本a在线看| 国产女人高潮叫床免费视频| 国产av剧情刺激对白| 不卡的av网站在线观看| 亚洲无线一二三四区手机| 屁屁影院ccyy备用地址| 中文字幕久无码免费久久| 国产午夜福利精品久久2021| 日韩精品久久久一区| 欧美精品日韩一区二区三区| 国产三级伦理视频在线| 男女一区视频在线观看| 91精品国产一区国产二区久久 | 国产精品沙发午睡系列990531| 亚洲国产区男人本色| 毛片无码高潮喷白浆视频| 中文字幕乱码中文乱码毛片| 中文字幕亚洲乱码熟女1区2区| 成人自拍一二在线观看| 国产av天堂亚洲国产av天堂| 国产成人亚洲综合色婷婷| 亚洲精品国产v片在线观看| 亚洲av午夜成人片精品| 中文字幕丰满人妻被公强| 中国少妇久久一区二区三区| 亚洲人成77777在线播放网站| 又黄又爽又色的视频| 国产美熟女乱又伦av果冻传媒| 成美女黄网站18禁免费| 精品亚洲av一区二区| 男女主共患难日久生情的古言| 国产va免费精品观看精品| 国精品无码一区二区三区在线| 国产一区曰韩二区欧美三区| 99日本亚洲黄色三级高清网站| 蜜桃av在线播放视频| 亚洲av无码精品色午夜app| 熟妇高潮一区二区三区| 女同中的p是什么意思| 色婷婷一区二区三区四| 国产av剧情刺激对白|