胡唯伊 王運濤 徐友才 張世全
非Kerr光纖中的亮孤子的演化可以用具有三次-五次競爭非線性項的非線性薛定諤方程來描述. 為數(shù)值求解該方程的初值問題,本文將無界區(qū)域截斷為有界區(qū)域,根據(jù)亮孤子在遠場的漸近行為構造了合理的邊界條件,從而將該初值問題轉換為初邊值問題. 對這個初邊值問題,本文分別提出了Crank-Nicolson有限差分(Crank-Nicolson Finite Difference, CNFD)格式和時間分裂有限差分(Time-Splitting Finite Difference, TSFD)格式. 這兩種格式在空間和時間維度上都具有二階精度,其中CNFD格式是全隱格式,可以守恒離散能量和質量,TSFD是線性隱式格式,可以守恒離散質量. 在以數(shù)值算例驗證兩種方法的計算效率后,本文用TSFD格式研究了非Kerr光纖中亮孤子的穩(wěn)定性與相互作用.
亮孤子; 薛定諤方程; 三次-五次非線性; 非Kerr光纖
O241.82 A 2024.011001
Stability and interaction of bright solitons in non-Kerr fiber
HU Wei-Yi ?1 , WANG Yun-Tao ?2 , XU You-Cai ?1,2 , ZHANG Shi-Quan ?1
(1. School of Mathematics, Sichuan University, Chengdu 610064, China;
2. Tianfu Engineering-Oriented Numerical Simulation & Software Innovation Center, Chengdu 610207, China)
Dynamical behaviors of bright solitons can be described by the nonlinear Schrdinger equation (NLSE) with cubic-quintic competing nonlinear terms. In this paper, to numerically solve the initial value problem of the NLSE, two difference schemes are proposed. Firstly, we transfer the initial value problem into the initial value problem with boundary conditions, truncate the unbounded region into a bounded region and constructe a reasonable boundary condition based on the asymptotic behaviors of bright solitons in the far field. Then we design the Crank-Nicolson finite difference (CNFD) and time-splitting finite difference (TSFD). The CNFD scheme is fully implicit and can conserve discrete energy and mass. Meanwhile, the TSFD scheme is linear implicit and can only conserve discrete mass. Finally, after the performance of the two schemes is compared by some examples, we explore the stability and interaction of bright solitons by using the TSFD scheme.
Bright soliton; Schrodinger equation; Cubic-quintic nonlinearity; Non-Kerr fiber
(2010 MSC 65M60)
5 結 論
本文對具有三次-五次非線性項的非線性薛定諤方程初邊值問題提出了兩種差分格式,并對比了它們的計算效率. CNFD格式在時間和空間方向都具有二階精度.因其是全隱格式,計算過程更耗時,計算量更大. TSFD格式在時間和空間方向也都具有二階精度.對于固定的網(wǎng)格尺寸 h ,時間步長 τ 取不同值時TSFD格式的離散誤差小于CNFD格式,因而TSFD格式在時間維度上具有更高精度. 同時,因TSFD格式是線性隱式格式,計算效率較高,計算時間明顯低于CNFD格式,因而計算效率更好. 另一方面,CNFD格式可以守恒離散能量和質量而 TSFD格式只守恒離散質量,所以在守恒性上CNFD格式更好.
然后,我們利用TSFD格式研究了非克爾光纖中亮孤子的穩(wěn)定性與相互作用.結果表明:首先,亮孤子的演化是動態(tài)穩(wěn)定的;其次,兩個亮孤子在碰撞后可以完全分離,分離后仍保持勻速運動,密度分布均勻,且亮孤子的速度越快則碰撞后產(chǎn)生的振蕩越強烈.
參考文獻:
[1] ??Pelinovsky ?D, Kivshar Y, Afanasjev V. Instability-induced dynamics of dark solitons [J]. Phys Rev, 1996, 54: 2015.
[2] ?Khater A, Callebaut D, Seadawy A. General soliton solutions of an ?N -dimensional complex Ginzburg-Landau equation [J]. Phys Scr, 2000, 62: 353.
[3] ?Khater A, Seadawy A, Helal M. General soliton solutions of an ?N -dimensional nonlinear Schrodinger equation [J]. Nuov Ciment B, 2000, 115: 1303.
[4] ?Khater A, Callebaut D, Helal M, ?et al . Variational method for the nonlinear dynamics of an elliptic magnetic stagnation line [J]. J Phys B, 2006, 39: 237.
[5] ?Seadawy ?A, Sayed A. Soliton solutions of cubic-quintic nonlinear Schrodinger and variant Boussinesq equations by the first integral method [J]. Filomat, 2017, 31: 4199.
[6] ?Kim W, Moon H. Dark and bright soliton exchange in a nonlinear dispersive medium [J]. J Korean Phys Soc, 2001, 38: 558.
[7] ?Youssoufa ?M, Dafounansou O, Mohamadou A. Bright, dark and kink solitary waves in a cubic-quintic-septic-nonical medium, nonlinear optics—from solitons to similaritons [M]. Britain: Intech Open, 2020.
[8] ?Kudryashov N. Traveling wave solutions of the generalized nonlinear Schrodinger equation with cubic-quintic nonlinearity [J]. Optik, 2019, 188: 27.
[9] ?Serkin V, Belyaeva T, Alexandrov I, et al . Optical pulse and beam propagation (Ⅲ) [J]. SPIE Proc, 2001, 4271: 292.
[10] ?Antoine ?X, Bao W Z, Besse C. Computational methods for the dynamics of the nonlinear Schrodinger/Gross-Pitaevskii equations [J]. Comput Phys Commun, 2013, 184: 2621.
[11] Shen J, Tang T, Wang L. Spectral methods: algorithms, analysis and applications [M]. Berlin: Springer, 2011.
[12] Seshu P. Textbook of finite element analysis [M]. New Deli: PHI Learning Private Ltd, 2012.
[13] ?Li X. Luo J F. Feng M F. A nonllnear 1ocal projection-based finite element method for unsteady Navier-Stokes equations [J]. J Sichuan Univ(Nat Sci Ed), 2021. 58: 031002.[李西, 羅加福, 馮民富. 非定常Navier-Stokes方程的一種非線性局部投影穩(wěn)定化有限元方法[J]. 四川大學學報(自然科學版), 2021, 58: 031002.]
[14] Delfour M, Fortin M, Payr G. Finite-difference solutions of a non-linear Schrodinger equation [J]. J Comput Phys, 1981, 44:277.
[15] Akrivis G. Finite difference discretization of the cubic Schrodinger equation [J]. IMA J Numer Anal, 1993, 13: 115.
[16] Akrivis G, Dougalis V A, Karakashian O. Solving the systems of equations arising in the discretization ofsome nonlinear PDEs by implicit Runge-Kutta methods [J]. ESAIM Math Model Num, 1997, 31: 251.
[17] Karakashian O, Akrivis G, Dougalis V. On optimal order error estimates for the nonlinear Schrodinger equation [J]. SIAM J Numer Anal, 1993, 30: 377.
[18] Loscalzo F, Talbot T. Spline function approximations for solutions of ordinary differential equations [J]. SIAM J Numer Anal, 1967, 4: 433.
[19] McLachlan R, Quispel G. Splitting methods [J]. Acta Numer, 2002, 11: 341.
收稿日期: ?2023-02-16
基金項目: ?國家重大專項(GJXM92579); 四川省自然科學基金(2023NSFSC0075)
作者簡介: ??胡唯伊(1998-), 女, 碩士研究生, 主要研究方向為微分方程數(shù)值解.E-mail: huweiyi2020@163.com
通訊作者: ?徐友才. E-mail: xyc@scu.edu.cn