亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        對稱度量空間上的一個注記

        2024-04-17 04:48:52鄭頂偉洪宇翔何慶明
        關(guān)鍵詞:度量性質(zhì)定理

        鄭頂偉,洪宇翔,何慶明

        (廣西大學(xué) 數(shù)學(xué)與信息科學(xué)學(xué)院, 廣西 南寧 530004)

        0 引言

        一個對稱度量空間[1]指的是一個序?qū)?X,d),其中X是一個非空集,d:X×X→[0,∞)是一個函數(shù),使得對x,y∈X,下列條件成立:

        ①d(x,y)=0當(dāng)且僅當(dāng)x=y。

        ②d(x,y)=d(y,x)。

        對稱度量與度量空間的區(qū)別在于缺失了三角不等式。盡管如此,一些度量空間中概念可以類似地在對稱度量空間中定義。在對稱度量空間(X,d)中,序列(xn)的極限定義如下:

        limd(xn,x)=0?limxn=x。

        以x為中心、r為半徑的開球定義如下:

        B(x,r)={y∈X:d(x,y)

        與度量公理比較,對稱度量缺少三角不等式,從而通常的ε球B(x,ε)={y∈X:d(x,y)<ε}不能形成拓?fù)涞幕?/p>

        一個對稱度量空間(X,d)稱為一個半度量空間,如果滿足對任意A?X,

        所以,對一個對稱度量空間(X,d),如果映射c:A→c(A)={x∈X:d(x,A)=0}是閉包運(yùn)算,則(X,d)是一個半度量空間。

        對稱度量與半度量的區(qū)別也可以反映在序列的收斂上[2]。在半度量空間中,d(xn,x)→0和以拓?fù)洇觗意義下xn→x是等價的。而在對稱度量空間中,以拓?fù)洇觗意義下xn→x是推不出d(xn,x)→0的,所以研究在什么條件下對稱度量空間是半度量空間是有意義的。

        1 預(yù)備知識

        定義1[1]對集合X,函數(shù)d:X×X→R+稱為X的對稱距離,若對x,y∈X,下述條件成立:

        ①d(x,y)=0當(dāng)且僅當(dāng)x=y。

        ②d(x,y)=d(y,x)。

        空間X稱為對稱度量空間,如果存在X的對稱距離d,滿足U∈τ(X)當(dāng)且僅當(dāng)對x∈U,存在ε>0,使B(x,ε)?U,這時d稱為X的對稱度量。

        若d是X的對稱距離,那么(X,d)是對稱度量空間當(dāng)且僅當(dāng)d滿足:A?X是X的閉集的充要條件是對x∈X-A,d(x,A)>0。易驗(yàn)證,對稱度量性是可加性、開遺傳性和閉遺傳性。

        定義2[1]設(shè)d是X的對稱距離,d稱為X的半度量,若(X,d)是對稱度量空間,并且對x∈X和ε>0,x∈B(x,ε)°,這時(X,d)稱為半度量空間。

        設(shè)(X,d)是對稱度量空間, 則有以下2種方式引入拓?fù)?

        方式1U是開集當(dāng)且僅當(dāng)對任意x∈U,存在ε>0,使得B(x,ε)?U。按照此種方式顯然生成一個拓?fù)?本文將這個拓?fù)溆洖棣?。

        下面證明這2個拓?fù)涫峭粋€拓?fù)?即τ2=τ1。

        證明首先證明τ1?τ2。

        任意取U∈τ1,要證U∈τ2,只需證X-U是τ2中的閉集。設(shè)x∈X,d(x,X-U)=0。下證x∈X-U。

        反證法。若x?X-U,則x∈U。由于U∈τ1,則存在ε>0,使得B(x,ε)?U,因此d(x,X-U)≥ε,與d(x,X-U)=0矛盾,故x∈X-U,即X-U是τ2中的閉集,則U∈τ2。τ1?τ2得證。

        其次證明τ2?τ1。

        設(shè)U∈τ2,則X-U是τ2中的閉集。下證U∈τ1。

        反證法。若U?τ1,則存在x∈U, 對任意ε>0, 有B(x,ε)?U。

        同理,可以驗(yàn)證下面關(guān)于半度量空間的定義是相同的。

        ① 一個對稱度量空間(X,d)稱為一個半度量空間,如果滿足對任意A?X,

        ② 一個對稱度量空間(X,d)稱為一個半度量空間,如果滿足對任意x∈X,ε>0,有x∈int(B(x,ε))。

        由①可知,d(x,X-B(x,ε))=0,但顯然d(x,X-B(x,ε))≥ε,矛盾。

        limd(x,yn)=0即d(x,A)=0。

        許多學(xué)者在對稱度量空間(X,d)提出新的條件來作為三角不等式的部分替代。1931年,Wilson[3]在半度量空間上提出性質(zhì)Wilson Ⅲ(以下簡稱W3)和性質(zhì)Wilson Ⅳ[3](以下簡稱W4)。1993年,Czerwik[4]提出度量型(metric type:MT)性質(zhì)。1995年,Jachymski等[5]提出了性質(zhì)(JMS)。2003年,Aamri等[6]提出性質(zhì)(HE)。2006年,Mihet[7]提出性質(zhì)(W)來替換性質(zhì)(W3)和(W4)。2008年,Cho等[8]提出了一個與對稱度量d的連續(xù)性有關(guān)的新性質(zhì)(CC)。2012年,Arandelovic等[9]提出性質(zhì)(SC)。

        定義3設(shè)(X,d)是一個對稱度量空間。定義下列性質(zhì):

        (MT)[4]: 存在s≥1使得對任意x、y、z有d(x,z)≤s(d(x,y)+d(y,z))。

        在文獻(xiàn)[9]中,Arandelovic和Keckic對對稱度量空間做了詳盡的討論,特別地,他們得到了下面的定理。

        定理1設(shè)(X,d)是一個對稱度量空間,則下列條件等價:

        ②(X,d)是一個半度量空間且每個B(x,r)是開集。

        問題1設(shè)(X,d)是一個對稱度量空間且滿足性質(zhì)(W4)和(HE),那么它滿足性質(zhì)(CC)嗎?

        問題2設(shè)(X,d)是一個對稱度量空間且滿足性質(zhì)(W),那么它滿足性質(zhì)(CC)嗎?

        問題3設(shè)(X,d)是一個對稱度量空間且滿足度量型(metric type:MT)性質(zhì),那么它是一個半度量空間嗎?

        MT性質(zhì)的對稱度量空間也被稱為度量型空間或b-度量空間。許多學(xué)者討論和研究了其上的拓?fù)湫再|(zhì)以及不動點(diǎn)理論,獲得了一系列不動點(diǎn)定理,可參看文獻(xiàn)[9]及其參考文獻(xiàn)。

        引理1[9]設(shè)(X,d)是一個對稱度量空間且具有MT性質(zhì),則(X,d)具有性質(zhì) (W)、(W3)、(W4)、(HE)、(W) 及(JMS)。

        本文主要解決上述問題:其中肯定回答問題3,而問題1和問題2則是否定回答。

        2 主要結(jié)果

        定理2設(shè)(X,d)是一個對稱度量空間并且滿足MT性質(zhì), 也就是說,存在s>1使得對任意x,y,z∈X,d(x,z)≤s(d(x,y)+d(y,z)), 則(X,d)是一個半度量空間。

        d(x,A)=inf{d(x,a):a∈A}。

        為了證明(X,d)是一個半度量空間,本文只需要驗(yàn)證映射c是拓?fù)洇觗中的閉包運(yùn)算,其中

        c:A→c(A)={x∈X:d(x,A)=0}。

        首先,證明若A?X是一個閉集,則c(A)=A。

        因?yàn)閏(A)?A恒成立,所以只需要證明相反的包含關(guān)系c(A)?A。對x∈c(A),則d(x,A)=0,由于A是τd中的閉集,由拓?fù)涞亩x知x∈A,即c(A)?A,從而可證c(A)=A。

        其次,證明對任意一個非空集A?X,c(A) 是τd中的閉集。

        設(shè)x∈X使得d(x,c(A))=0, 則存在序列(xn)?c(A) 使得

        (1)

        (2)

        由MT性質(zhì),得

        (3)

        那么由式(1)-(3),可得

        (4)

        最后,容易看出,若B是閉集且B?A, 則B?c(A)。

        從以上證明可以看出,c(A)是包含A的最小閉集,從而說明映射c是拓?fù)洇觗中的閉包運(yùn)算,其中c:A→c(A)={x∈X:d(x,A)=0},也就是說(X,d)是一個半度量空間。

        由定理2,本文可正面回答問題3。基于定理1、引理1和文獻(xiàn)[9]中的一個例子,給出問題1與問題2否定回答。順便提一下問題2已由Shahzad等在文獻(xiàn)[10]中解決。

        例1設(shè)δ>0,X=[0,1]∪{2}賦予歐氏距離d。定義d*如下:

        則對x,y,z∈X,

        猜你喜歡
        度量性質(zhì)定理
        有趣的度量
        J. Liouville定理
        模糊度量空間的強(qiáng)嵌入
        隨機(jī)變量的分布列性質(zhì)的應(yīng)用
        完全平方數(shù)的性質(zhì)及其應(yīng)用
        A Study on English listening status of students in vocational school
        迷向表示分為6個不可約直和的旗流形上不變愛因斯坦度量
        九點(diǎn)圓的性質(zhì)和應(yīng)用
        厲害了,我的性質(zhì)
        “三共定理”及其應(yīng)用(上)
        国产爆乳无码一区二区在线 | 久久露脸国产精品| 久久尤物AV天堂日日综合| 中文字幕一区二区三区97| 亚洲女同同性一区二区| 国内女人喷潮完整视频| 精品国产黑色丝袜高跟鞋| 亚洲AV无码久久久久调教| av一区二区在线网站| 青青草国产精品一区二区| 97久久久久人妻精品专区| 国产 无码 日韩| 日本一区二区国产精品| 999国内精品永久免费观看| 99福利在线| 久久天堂av综合合色| 午夜福利理论片在线观看播放| 国产美女自慰在线观看| 久久这里只精品国产2| 97中文乱码字幕在线| 久久综合香蕉国产蜜臀av| 无尽动漫性视频╳╳╳3d| 国产成人精品视频网站| 日本在线一区二区三区视频观看| 亚洲av无码专区在线播放| 精品免费福利视频| 手机在线观看成年人视频| 久久婷婷五月综合色高清| 国产精品福利视频一区| 久久亚洲aⅴ精品网站婷婷| 被灌醉的日本人妻中文字幕| 亚洲成av人影院| 亚洲另类欧美综合久久图片区 | 国产自拍偷拍视频免费在线观看| 少妇仑乱a毛片| 欧美国产日本精品一区二区三区| 国产人妖直男在线视频| 久久天天躁夜夜躁狠狠 | 中文字幕精品人妻丝袜| 99久久亚洲精品日本无码| 84pao强力打造免费视频34|