摘要:抗生素亞胺培南(imipenem,IPM)用藥治療敗血癥患者感染需要快速做出反應(yīng),目前的血藥監(jiān)測(cè)方法嚴(yán)重延遲藥物注射。設(shè)計(jì)金屬元素?fù)诫s型石墨烯量子點(diǎn)(graphene quantum dots,GQDs),可實(shí)現(xiàn)熒光法快速測(cè)定IPM和開(kāi)辟熒光法檢測(cè)抗生素的新途徑。采用水熱法制備了鐵摻雜GQDs(Fe-GQDs),用于快速探測(cè)IPM。采用透射電子顯微鏡(transmission electron microscopy,TEM)、X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)以及熒光光譜等方法,探討不同鐵源起始劑對(duì)GQDs熒光性能及傳感性能的影響,并分析了乙酸鐵為鐵源制備的Fe-GQDs的微觀結(jié)構(gòu)及熒光性能。結(jié)果表明:以乙酸鐵為起始劑制備的Fe-GQDs熒光性能最佳,且對(duì)IPM具有顯著的熒光淬滅效應(yīng)。所制備的Fe-GQDs熒光淬滅強(qiáng)度(F/F0)與IPM濃度(concentration,C)呈線性關(guān)系,線性方程為F=F0=0.983-4.23×10-3 C,線性相關(guān)系數(shù)(R2)為0.997,線性范圍為0.007~0.073 g/L。Fe-GQDs探針?lè)肿訉?duì)血漿中常見(jiàn)有機(jī)分子和金屬離子具有良好的抗干擾性,檢測(cè)IPM誤差為1.6%~4.6%。
關(guān)鍵詞:石墨烯量子點(diǎn);摻雜;抗生素;熒光性能;傳感特性
中圖分類(lèi)號(hào):O 657.3;R 313;TQ 138.1文獻(xiàn)標(biāo)志碼:A
Design and sensing property of probe molecular for imipenem antibiotic
ZHU Yanxi1,CHEN Aiying1,MAO Yanfei2
(1.School of Materials and Chemistry,University of Shanghai for Science and Technology,Shanghai 200093,China;2.Department of Anesthesiology and Surgical Intensive Care Unit,Xinhua Hospital Affiliated to Shanghai Jiao TongUniversity School of Medicine,Shanghai,200092,China)
Abstract:Medication management of antibiotic imipenem(IPM)in the treatment of sepsis infection requires rapid response,however,the current monitoring methods of blood drugs severely delay drug injection.The aim of this work is to design metal element doped graphene quantum dots(GQDs),whichcan rapidly detect IPM by fluorescence method,opening up a new way for fluorescence detection of antibiotics.Iron doped GQDs(Fe-GQDs)were prepared by hydrothermal method for rapid detection of IPM.The effects of different precursors of iron sources on the fluorescence and sensing performance of GQDs were investigated using transmission electron microscopy(TEM),X-ray photoelectron spectroscopy(XPS),fluorescence spectroscopy,etc.The microstructure and fluorescence properties of Fe-GQDs prepared with iron acetate were analyzed.The results showed that Fe-GQDs prepared with iron acetate as the precursor exhibited the best fluorescence performance and a significant fluorescence quenching effect on IPM.The fluorescence quenching intensity(F/F0)of the as-prepared Fe-GQDs was linearly related to the concentration(C)of IPM,where the linear equation was F=F0=0.983-4.23×10-3 C with a linear correlation coefficient(R2)of 0.997 and a linear range of 0.007-0.073 g/L.The Fe-GQDs probe molecules delivered a good anti-interference performance against common organic molecules and metal ions in plasma with a detection error of 1.6%-4.6%for sensing IPM.
Keywords: graphene quantum dots; doping; antibiotics; fluorescence performance; sensing property
石墨烯量子點(diǎn)(graphene quantum dots,GQDs)作為粒徑小于10 nm的新型零維納米材料,具有制備簡(jiǎn)單、生物相容性好、表面基團(tuán)易于功能化、熒光特性?xún)?yōu)良[1]等特點(diǎn),使其在分析檢測(cè)[2-3]、生物成像[4-5]、光電器件等方面表現(xiàn)出良好的應(yīng)用前景。眾多的研究表明元素?fù)诫s可有效提高GQDs的熒光性能,如氮[6]、銀[7]、錳[8]等,同時(shí)賦予GQDs在熒光檢測(cè)[9]方面的靈敏性和特異性。
亞胺培南(imipenem,IPM)作為臨床抗生素的典型藥物之一,常作為敗血癥患者因革蘭陽(yáng)性菌、陰性菌、厭氧菌所致的呼吸道感染、泌尿系統(tǒng)和腹腔感染等的治療用藥[10]。在制藥和生物系統(tǒng)中測(cè)定IPM的方法很多,包括高效液相色譜法(high performance liquid chromatography,HPLC)[11]、液相色譜質(zhì)譜聯(lián)用(liquid chromatography mass spectrometry,LC-MS)[12]等,但都存在檢測(cè)時(shí)間長(zhǎng)、操作復(fù)雜等缺點(diǎn)。延遲用藥管理可導(dǎo)致過(guò)度用藥或療效不佳,進(jìn)而影響患者生命。因而,發(fā)展簡(jiǎn)單快速檢測(cè)IPM方法具有重要的臨床意義。目前,少見(jiàn)報(bào)導(dǎo)熒光法檢測(cè)IPM,這是由于缺少特異性的IPM探針?lè)肿铀隆?/p>
本文設(shè)計(jì)了一種鐵摻雜GQDs(Fe-GQDs),其對(duì)IPM表現(xiàn)出特異性熒光猝滅性能。作為IPM的傳感探針?lè)肿?,具有突出的選擇性和靈敏度。相比于HPLC等方法,F(xiàn)e-GQDs熒光分子探測(cè)IPM方便快捷,從取血樣到檢測(cè)完畢可在5 min完成。該探針能夠快速檢測(cè)IPM,為抗生素藥物檢測(cè)提供了新方向。
1實(shí)驗(yàn)
1.1主要試劑與儀器
氧化石墨烯(graphene oxide,GO)購(gòu)置于蘇州恒球科技公司,質(zhì)量分?jǐn)?shù)為30%的H2O2、葡萄糖、甘氨酸、尿酸、尿素、抗壞血酸、KCl、NaCl、無(wú)水CaCl2、MgCl2、ZnCl2購(gòu)置于國(guó)藥集團(tuán)化學(xué)試劑有限公司;乙酸鐵、卟啉鐵、檸檬酸鐵、硝酸鐵、間苯二胺(m-phenylenediamine,MPD),購(gòu)置于上海阿拉丁生化科技股份有限公司;磷酸鹽緩沖液(0.01 mol/L,pH=7.4)購(gòu)自武漢賽維爾生物科技有限公司;實(shí)驗(yàn)室用水為超純水。利用RF-5301PC熒光分光光度計(jì)測(cè)量熒光光譜、紫外–可見(jiàn)吸收光譜由Perkin Elmer Lambda 750S紫外–可見(jiàn)分光光度計(jì)測(cè)試、拉曼光譜由Horiba Jobin Yvon HR800拉曼光譜儀測(cè)試;微觀形貌利用Philips?FEI TECNAI F30透射電子顯微鏡(transmission electron microscopy,TEM)觀察;表面形貌用Bruker Dimension Icon原子力顯微鏡(atomicforce microscopy,AFM)表征;X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)用ESCALAB?250XI測(cè)試分析。
1.2 Fe-GQDs制備
在10 mL的GO水溶液中加入15 mg乙酸鐵和1 mL 30%H2O2溶液,經(jīng)過(guò)超聲分散均勻后,放入聚四氟乙烯反應(yīng)釜中180℃反應(yīng)8 h,得到溶液A。然后將反應(yīng)好的溶液A按體積比為1∶5的比例用超純水稀釋后,再取10 mL,加入20 mg的MPD,溶解后,轉(zhuǎn)入聚四氟乙烯反應(yīng)釜中180℃反應(yīng)12 h。取上清液過(guò)濾,得到Fe-GQDs溶液。同理,以卟啉鐵、檸檬酸鐵、硝酸鐵為鐵源替換乙酸鐵,重復(fù)實(shí)驗(yàn)步驟,分別得到的FB-GQDs、FN-GQDs和FX-GQDs。
1.3亞胺培南的檢測(cè)
采用PBS緩沖溶液按體積比為1∶5的比例稀釋摻雜型GQDs溶液。在室溫下,激發(fā)波長(zhǎng)為342 nm,發(fā)射波長(zhǎng)為434 nm,測(cè)量熒光光譜的初始熒光強(qiáng)度(F0)。在相同的條件下,分別滴入配置的一系列不同濃度(concentration,C)的IPM標(biāo)準(zhǔn)溶液(0~0.13 g/L),并分別測(cè)量其熒光強(qiáng)度(fluorescenceintensity,F(xiàn)),得到IPM的線性標(biāo)準(zhǔn)曲線。
2結(jié)果與討論
2.1不同鐵源制備的GQDs的熒光性能
不同鐵源(乙酸鐵、卟啉鐵、檸檬酸鐵、硝酸鐵)制備Fe-GQDs、FB-GQDs、FN-GQDs、FX-GQDs的熒光光譜圖見(jiàn)圖1。其中以乙酸鐵為鐵源合成的Fe-GQDs的F最強(qiáng)。所合成的GQDs均為淡黃色溶液,在紫外光照射下,發(fā)射強(qiáng)藍(lán)色熒光,見(jiàn)表1所示。采用同條件下在GQDs中加入濃度為0.02 g/L的IPM來(lái)測(cè)定F,分析不同鐵源的GQDs對(duì)IPM熒光淬滅現(xiàn)象。結(jié)果表明,以乙酸鐵為鐵源合成的Fe-GQDs熒光性能最佳,淬滅強(qiáng)度(F/F0)最為明顯為0.898 4,表明其對(duì)IPM靈敏度最佳。其中,3種鐵基有機(jī)化合物中,卟啉鐵與鐵的絡(luò)合效應(yīng)最強(qiáng),其次是檸檬酸鐵和乙酸鐵。因此,乙酸鐵中鐵離子可能更易與GO形成新的絡(luò)合物,制備的Fe-GQDs熒光性能最佳,對(duì)IPM表現(xiàn)出顯著熒光淬滅效應(yīng)。而無(wú)機(jī)鹽硝酸鐵可能因其氧化性太強(qiáng),導(dǎo)致其F下降,具體機(jī)制尚需進(jìn)一步研究。
2.2 Fe-GQDs的表征
Fe-GQDs樣品的UV-Vis和熒光光譜譜圖見(jiàn)圖2(a)。在UV-Vis中,290 nm出現(xiàn)的強(qiáng)吸收峰可歸因于C=O鍵的π?π*躍遷[13],而360 nm處有一個(gè)弱吸收峰,是GQDs中C=N鍵的n?π*躍遷導(dǎo)致[14]。根據(jù)Fe-GQDs的熒光激發(fā)光譜和發(fā)射光譜得出,最大激發(fā)波長(zhǎng)為342 nm,最大發(fā)射波長(zhǎng)為434 nm。Fe-GQDs的Raman光譜圖見(jiàn)圖2(b),分別在1 355 cm?1(D峰)和1 566 cm?1(G峰)處有兩個(gè)峰。其中,D峰代表的是C原子晶格缺陷,G峰代表C原子sp2雜化面的伸縮振動(dòng)。拉曼光譜表明兩步水熱法合成的GQDs含有大量缺陷結(jié)構(gòu)。
圖3(a)和(b)給出Fe-GQDs的形貌,可以發(fā)現(xiàn)合成的Fe-GQDs呈球形,晶格間距為0.33 nm,對(duì)應(yīng)石墨的(002)平面間距[15]。而Fe-GQDs的AFM圖(見(jiàn)圖3c和d)給出了同樣的球形形貌,顆粒厚度在0.2~1.7 nm范圍內(nèi),對(duì)應(yīng)于1~6個(gè)石墨烯層。使用XPS對(duì)Fe-GQDs的化學(xué)狀態(tài)進(jìn)行表征。圖4(a)為XPS全譜圖,在284.8、399.5、532.4 eV有強(qiáng)峰,分別對(duì)應(yīng)C 1s、N 1s、O 1s。圖4(b)為Fe-GQDs的C 1s譜,可以擬合成兩個(gè)化學(xué)鍵,其中284.9 eV峰為C=C/C=O鍵[16],286.1 eV峰為C―O鍵[17]。N 1s的光譜圖中于399.1、401.5 eV處有兩個(gè)明顯的峰(見(jiàn)圖4c),分別為吡啶氮和石墨氮[18-19]。此外,圖4(d)中的O 1s于532.2 eV出現(xiàn)峰,歸因于C=O鍵[20]。XPS全譜中Fe的信號(hào)很微弱,在842.1 eV處。
2.3 IPM 檢測(cè)
為了考察 Fe-GQDs 檢測(cè) IPM 的準(zhǔn)確性和靈敏度,將不同濃度 IPM (0~0.13 g/L)加入 Fe-GQDs 溶液,如圖 5(a)、(b)所示。隨著 IPM 濃度增加,F(xiàn) 保持下降趨勢(shì),IPM 濃度及 Fe-GQDs 的 F 變化呈線性關(guān) F/F0=0.983?4.23×10 系,線性回歸方程為 ?3 C,線性相關(guān)系數(shù) R 2 為 0.997,線性濃度范圍為 0.007~0.073 g/L,檢測(cè)限為 0.005 g/L。熒光分子探針的熒光檢測(cè)可在 1 min 內(nèi)響應(yīng),且 F 在10 min 內(nèi)保持穩(wěn)定。
為了評(píng)估Fe-GQDs探針對(duì)IPM的選擇性,分別加入有機(jī)分子和金屬離子,例如甘氨酸、抗壞血酸、L-半胱氨酸、尿酸、尿素、葡萄糖、Ca2+、K+、Mg2+、Na+、CI?、Zn2+。干擾物濃度為0.02 g/L,進(jìn)行選擇性試驗(yàn)。如圖5(c)和(d)所示,F(xiàn)e-GQDs僅被IPM猝滅,其他有機(jī)物和金屬離子對(duì)熒光猝滅的影響可以忽略不計(jì),熒光淬滅比值(F/F0)基本保持不變,檢測(cè)IPM誤差為1.6%~4.6%。這些結(jié)果證實(shí)了Fe-GQDs對(duì)IPM有優(yōu)異的選擇性。
3結(jié)論
合成了摻雜鐵的石墨烯量子點(diǎn)作為探針?lè)肿樱糜跈z測(cè)IPM。通過(guò)優(yōu)化不同鐵源,得到以乙酸鐵為鐵源合成的Fe-GQDs探針在熒光性能和對(duì)IPM檢測(cè)性能方面均為最佳。Fe-GQDs對(duì)IPM具有靈敏檢測(cè)性能,在0.007~0.073 g/L的范圍內(nèi)線性良好,線性方程為F=F0=0.983-4.23×10-3 C,線性相關(guān)系數(shù)R2為0.997。Fe-GQDs探針?lè)肿訉?duì)血漿中常見(jiàn)有機(jī)分子和金屬離子具有良好的抗干擾性,檢測(cè)IPM誤差為1.6%~4.6%。Fe-GQDs的熒光光譜檢測(cè)可在1 min內(nèi)測(cè)定完成,可實(shí)現(xiàn)快速檢測(cè)IPM。
參考文獻(xiàn):
[1]GE J,MA D M,DUAN G H,etal.A novel probe for tetracyclines detection and its applications in cellimaging based on fluorescent WS2 quantum dots[J].Analytica Chimica Acta,2022,1221:340130.
[2]李文博,江鴻.石墨烯結(jié)構(gòu)型氨氣傳感器研究進(jìn)展[J].有色金屬材料與工程,2022,43(5):28–35.
[3]李港,胡玉峰.石墨烯碳量子點(diǎn)用于氟喹諾酮類(lèi)抗生素的熒光檢測(cè)[J].應(yīng)用化工,2023,52(1):309–313.
[4]WEI Y Y,CHEN L,WANG J L,etal.Rapidsynthesisof B-N co-doped yellow emissive carbon quantum dots for cellular imaging[J].Optical Materials,2020,100:109647.
[5]YANG J,YANG Y H,SU L J,etal.Diethylenetriamine-β-CD-modified carbon quantum dots for selective fluorescence sensing of Hg2+and Fe3+and cellular imaging[J].Spectrochimica Acta Part A:Molecular and Biomolecular Spectroscopy,2023,291:122364.
[6]ZHANG Q C,TIAN F L,MENG F F,etal.Nitrogen-doped quantum dots as high-efficiency nanoprobes for vanillin detection in complex samples and cell imaging applications[J].Optical Materials,2022,131:112743.
[7]徐丹,DJIMA H A,李瑞怡,等.銀銅雙金屬/組氨酸功能化石墨烯量子點(diǎn)/石墨烯雜化物的制備及其在電化學(xué)法測(cè)定黃瓜中毒死蜱、克百威和多菌靈上的應(yīng)用[J].理化檢驗(yàn)-化學(xué)分冊(cè),2022,58(9):1063–1070.
[8]LI B Y,XIAO X,HU M L,etal.Mn,B,N co-doped graphene quantum dots for fluorescence sensing and biological imaging[J].Arabian Journal of Chemistry,2022,15(7):103856.
[9]樊雪梅,劉衍丹,范新會(huì),等.氮硫共摻雜石墨烯量子點(diǎn)熒光探針檢測(cè)博萊霉素[J].分析試驗(yàn)室,2022,41(9):1029–1033.
[10]HAGHI F,NEZHAD B B,ZEIGHAMI H.Effectofsubinhibitory concentrations of imipenem and piperacillin on Pseudomonas aeruginosa toxA and exoS transcriptional expression[J].New Microbes and New Infections,2019,32:100608.
[11]CARO Y S,CáMARA M S,DE ZAN M M.A review of bioanalytical methods for the therapeutic drug monitoring ofβ-lactam antibiotics in critically ill patients:evaluation of the approaches used to develop and validate quality attributes[J].Talanta,2020,210:120619.
[12]MU F Y,ZHOU X G,F(xiàn)AN F,etal.A fluorescence biosensor for therapeutic drug monitoring of vancomycin using in vivo microdialysis[J].Analytica Chimica Acta,2021,1151:338250.
[13]WANG G Q,ZHANG S R,CUI J Z,etal.Preparation of nitrogen-doped carbon quantum dots from chelating agent and used as fluorescent probes for accurate detection of ClO?and Cr(Ⅵ)[J].Analytica Chimica Acta,2022,1195:339478.
[14]WANG J,ZHU Y X,XIE X F,etal.Effect of ultra-trace Ag doping on the antibacterial performance of carbon quantum dots[J].Journal of Environmental Chemical Engineering,2022,10(2):107112.
[15]XU J Y,WANG Y S,SUN L L,etal.Chitosanandκ-carrageenan-derived nitrogen and sulfur co-doped carbon dots“on-off-on”fluorescent probe for sequential detection of Fe3+and ascorbic acid[J].International Journal of Biological Macromolecules,2021,191:1221–1227.
[16]BRECZKO J,GRZESKIEWICZ B,GRADZKA E,etal.Synthesis of polyaniline nanotubes decorated with graphene quantum dots:structuralamp;electrochemical studies[J].Electrochimica Acta,2021,388:138614.
[17]GANESAN S,KALIMUTHU R,KANAGARAJ T,etal.Microwave-assisted green synthesis of multi-functional carbon quantum dots as efficient fluorescence sensor for ultra-trace level monitoring of ammonia in environmental water[J].Environmental Research,2022,206:112589.
[18]DU F F,LI G,GONG X J,etal.Facile,rapid synthesis of N,P-dual-doped carbon dots as a label-free multifunctional nanosensor for Mn(VII)detection,temperature sensing and cellular imaging[J].Sensors and Actuators B:Chemical,2018,277:492–501.
[19]JIANG H,ZHONG Y,TIAN K X,etal.Enhanced photocatalytic degradation of bisphenol A over N,S-doped carbon quantum dot-modified MIL-101(Fe)heterostructure composites under visible light irradiation by persulfate[J].Applied Surface Science,2022,577:151902.
[20]ZHAO X Y,WANG L M,LIU Q,etal.Facile synthesis of B,N-doped CQDs as versatile fluorescence probes for sensitive detection of cobalt ions in environmental water and biological samples[J].Microchemical Journal,2021,163:105888.
文章編號(hào):2096?2983(2024)02?0055?07 DOI:10.13258/j.cnki.nmme.20230320001
引文格式:朱彥西,陳愛(ài)英,毛燕飛.抗生素亞胺培南探針?lè)肿釉O(shè)計(jì)及傳感性能研究[J].有色金屬材料與工程,2024,45(2):55-61.DOI:10.13258/j.cnki.nmme.20230320001.ZHU Yanxi,CHENAiying,MAO Yanfei.Design and sensing property of probe molecular for imipenem antibiotic[J].Nonferrous Metal Materials and Engineering,2024,45(2):55-61.