亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        GaN基高電子遷移率晶體管器件的可靠性及退化機(jī)制研究進(jìn)展

        2024-04-11 00:00:00黃玲鈺修慧欣
        有色金屬材料與工程 2024年2期

        摘要:GaN基高電子遷移率晶體管(high electron mobility transistor,HEMT)器件在航天、通訊、雷達(dá)、電動(dòng)汽車(chē)等領(lǐng)域具有廣泛的應(yīng)用,近年來(lái)成為電力電子器件的研究熱點(diǎn)。在實(shí)際應(yīng)用中,GaN基HEMT器件隨著使用時(shí)間的延長(zhǎng)會(huì)發(fā)生退化甚至失效的情況,器件的可靠性問(wèn)題仍是進(jìn)一步提高HEMT器件應(yīng)用的絆腳石。因此,研究器件的可靠性及退化機(jī)制對(duì)于進(jìn)一步優(yōu)化器件性能具有極其重要的意義。將從影響器件可靠性的幾個(gè)關(guān)鍵因素如高電場(chǎng)應(yīng)力、高溫存儲(chǔ)、高溫電場(chǎng)和重離子輻照等進(jìn)行闡述,主要對(duì)近幾年文獻(xiàn)里報(bào)道的幾種失效機(jī)制及相應(yīng)的失效現(xiàn)象進(jìn)行了綜述和總結(jié),最后討論了進(jìn)一步優(yōu)化器件可靠性的措施,對(duì)進(jìn)一步提高HEMT器件的應(yīng)用起促進(jìn)作用。

        關(guān)鍵詞:GaN;高電子遷移率晶體管;可靠性;退化

        中圖分類(lèi)號(hào):TN 385文獻(xiàn)標(biāo)志碼:A

        Research progress on reliability and degradation mechanisms of GaN-based high electron mobility transistor devices

        HUANG Lingyu,XIU Huixin

        (School of Materials and Chemistry,University of Shanghai for Science and Technology,Shanghai 200093,China)

        Abstract:GaN-based high electron mobility transistor(HEMT)devices have been widely used in aerospace,communications,radar,electric vehicles and other fields,and have become a research hotspot in power electronic devices in recent years.In practical applications,GaN-based HEMT devices may suffer from degradations or even failures,and the reliability is still a stumbling block for further development.Therefore,it is critical to study the reliability and degradation mechanisms of the devices for further optimizing their performances.In this paper,several key factors which affect reliability of thedevices,such as highfieldstress,high temperature storage,high temperature and high field,and heavy ion irradiation are described,and several failure mechanisms and corresponding failure phenomena are summarized.Finally,measures to further optimize the reliability of the devices are discussed,which can promote the applications of HEMT devices.

        Keywords:GaN;high electron mobility transistor;reliability;degradation

        GaN是繼 Si、GaAs 之后的第三代半導(dǎo)體材料。與 Si 相比,具有禁帶寬度(3.4 eV)大、電子遷移率(1 500 cm2 /(V·s))高、臨界擊穿電場(chǎng)(3.3 MV/cm)高、相對(duì)介電常數(shù)(9)小等優(yōu)異特性,成為制備高功率器件、高頻率器件及高效率光電器件的理想材料 [1]。因此GaN材料制備的高電子遷移率晶體管(high electron mobility transistor,HEMT)器件在大功率、高頻率、高擊穿場(chǎng)強(qiáng)等航天、通訊、雷達(dá)等領(lǐng)域有著寬廣的應(yīng)用前景[2-5]。

        隨著加工技術(shù)的發(fā)展,GaN基 HEMT 的結(jié)構(gòu)越來(lái)越復(fù)雜,使可靠性問(wèn)題則成為發(fā)展之路的主要障礙 [6]。且GaN基 HEMT 器件在大電場(chǎng)、高溫、電子輻照的情況下,器件會(huì)發(fā)生退化或永久失效的情況。因此,研究失效分析是提高半導(dǎo)體器件可靠性的前提和基礎(chǔ)[7]。

        近些年,隨著器件可靠性問(wèn)題的凸顯,國(guó)內(nèi)外很多研究機(jī)構(gòu)以及高校都在研究器件的退化及失效機(jī)制。本文將從影響GaN基 HEMT 器件的可靠性機(jī)制,對(duì)近幾年幾種失效機(jī)制及相應(yīng)的失效現(xiàn)象進(jìn)行綜述和總結(jié),最后討論優(yōu)化器件的方法。

        1器件存在的可靠性問(wèn)題

        雖然GaN基HEMT器件在微波射頻領(lǐng)域具有領(lǐng)先地位,但是GaN材料因其獨(dú)特的二維電子氣(two-dimensional electron gas,2DEG)結(jié)構(gòu)使得器件在可靠性問(wèn)題上面臨一些新的問(wèn)題。而且,器件在結(jié)構(gòu)、加工工藝以及材料生長(zhǎng)方面均面臨許多制約的因素。器件可靠性問(wèn)題包括很多,有電場(chǎng)可靠性問(wèn)題、溫度可靠性問(wèn)題、輻照可靠性問(wèn)題等。影響器件的可靠性的機(jī)制(見(jiàn)圖1)可分為3類(lèi):(i)由熱電子引起的退化機(jī)制,包括在鈍化層SiN層或半導(dǎo)體材料中的電子捕獲,以及晶格缺陷的產(chǎn)生。(ii)由退化機(jī)制影響的AlGaN/GaN異質(zhì)結(jié)構(gòu)的性能,即由于反向偏壓導(dǎo)致柵極邊緣的退化,在高應(yīng)力條件下,缺陷的產(chǎn)生。(iii)熱激活退化機(jī)制,其中包括金屬互連退化、歐姆接觸退化、柵極金屬退化和鈍化的分層[8]。其中,電學(xué)可靠性問(wèn)題是目前研究比較多的一個(gè)可靠性問(wèn)題,影響GaN基HEMT器件的電場(chǎng)可靠性問(wèn)題的機(jī)制(見(jiàn)圖2)有:金屬接觸不穩(wěn)定、電子捕獲、熱電子注入、逆壓電效應(yīng)等[9]。

        2退化機(jī)制分析

        2.1電場(chǎng)退化現(xiàn)象及退化機(jī)制分析

        GaN基HEMT器件在高電場(chǎng)作用下的退化是大家最常研究的課題,常見(jiàn)的問(wèn)題有電流崩塌、自熱效應(yīng)、kink效應(yīng)等。2017年,Moultif等[10]使用光子發(fā)射特征光譜對(duì)AlGaN/GaN基HEMT的缺陷進(jìn)行定位和分析。在關(guān)態(tài)下給漏極加大電勢(shì),柵極電流的增加對(duì)應(yīng)光子發(fā)射(photon emission,PE)圖象發(fā)光點(diǎn)的產(chǎn)生,加大電場(chǎng)使得器件存在漏電傳導(dǎo)的路徑。當(dāng)將漏極電勢(shì)增加到50 V時(shí),漏電也會(huì)增加,PE發(fā)光點(diǎn)更突出。柵漏電流的增加與半導(dǎo)體材料或金屬?半導(dǎo)體界面上的缺陷產(chǎn)生的離散且局部化的電流注入或熱點(diǎn)有關(guān)。同年,Tajalli等[11]對(duì)GaN基功率金屬?絕緣體?半導(dǎo)體(metal-insulator-semiconductor,MIS)結(jié)構(gòu)的HEMT的場(chǎng)致和熱電子誘導(dǎo)退化進(jìn)行研究。(1)在低漏源極電壓(drain-source voltage,VDS)情況下器件發(fā)生應(yīng)力場(chǎng)依賴退化,在柵?源極電壓(gate-source voltage,VGS)lt;5 V時(shí),閾值電勢(shì)(threshold voltage,Vth)有小的變化,VGSgt;5 V時(shí),Vth有顯著地增加。其結(jié)果是電子從2DEG注入到SiN絕緣層被捕獲。(2)在高VDS情況下器件發(fā)生熱電子退化,在高VDS(gt;50 V)下,當(dāng)VGS在?10~0 V之間時(shí),樣品的Vth出現(xiàn)了額外的、非單調(diào)性的增加。對(duì)于?10 Vlt;VGSlt;0 V,場(chǎng)致發(fā)光(electro luminescences,EL)曲線呈鐘形。當(dāng)VGS超過(guò)Vth,EL隨著溝道電子數(shù)量的增加而增加。對(duì)于更高的VGS(?6 Vlt;VGSlt;0 V),EL隨著界面散射(熱電子被吸引更靠近界面)和器件溫度(更高的溫度導(dǎo)致更強(qiáng)的晶格散射,平均自由程減小,熱電子平均能量降低)增加而降低。2018年,Mazumdar等[12]研究逆壓電效應(yīng)下AlGaN/GaN基HEMT納米裂紋的形成。在AlGaN/GaN基HEMT中,高電場(chǎng)應(yīng)力下的退化,當(dāng)電勢(shì)超過(guò)臨界電勢(shì)時(shí),開(kāi)始發(fā)生不可逆的退化。如圖3所示,在高電勢(shì)作用下,晶體管的柵極邊緣出現(xiàn)了較大的電場(chǎng),從而引起晶體管內(nèi)部的高機(jī)械應(yīng)力。由于AlGaN在GaN上的晶格失配,使得其產(chǎn)生大的拉伸應(yīng)變,施加高電勢(shì)后,晶體中儲(chǔ)存了一定的彈性勢(shì)能。如果儲(chǔ)存的能量超過(guò)臨界值,晶體就會(huì)發(fā)生機(jī)械變形。裂紋的形成可以根據(jù)格里菲斯(Griffith)的脆性斷裂理論來(lái)描述,當(dāng)釋放的彈性勢(shì)能與產(chǎn)生新裂紋所需的能量相等時(shí),裂紋就會(huì)形成。2019年,Gao等[13]研究正柵偏置應(yīng)力對(duì)AlGaN/GaN基HEMT漏電的影響,觀察到在應(yīng)力過(guò)程中器件隨著柵極漏電的增加而退化,退化與肖特基勢(shì)壘高度的降低有關(guān)。退化的物理原因是由AlGaN/Ni柵極界面上的局部碳?xì)堅(jiān)鸬?,在?yīng)力過(guò)程中,隨著柵極電勢(shì)的增大,碳?xì)堅(jiān)惶蓟?,這導(dǎo)致碳向Ni層遷移。一旦碳遷移到Ni時(shí),在柵極處的肖特基勢(shì)壘高度局部減少而漏電流增加。2020年,Canato等[14]研究了GaN基HEMT在關(guān)態(tài)下的捕獲現(xiàn)象:柵極捕獲、受主電離和正電荷再分布之間的相互作用。當(dāng)漏極偏置電勢(shì)下降時(shí),一部分負(fù)電荷仍然儲(chǔ)存在p-GaN層,因?yàn)樾ぬ鼗Y(jié)是反向偏置的,電荷再分布是相對(duì)緩慢的過(guò)程,導(dǎo)致Vth正向漂移。另一種解釋可能是在勢(shì)壘層中的電子捕獲。2021年,Gao等[15]對(duì)110 nm AlN/GaN HEMT的短期可靠性和穩(wěn)健性進(jìn)行評(píng)估,通過(guò)對(duì)不同柵漏距離(gate-drain length,LGD)的器件采用關(guān)態(tài)、半開(kāi)態(tài)和開(kāi)態(tài)階梯式應(yīng)力測(cè)試。得出的結(jié)論是退化不取決于耗散的功率,而初步歸因于熱電子俘獲,電場(chǎng)增強(qiáng)。

        2.2溫度退化現(xiàn)象及機(jī)制分析

        與溫度相關(guān)的霍爾結(jié)果表明,當(dāng)溫度超過(guò)一定值時(shí),由于聲子散射和載流子熱逃逸,2DEG的遷移率和載流子濃度都會(huì)急劇下降,導(dǎo)致HEMT器件退化[16]。2017年,Lee等[17]研究了AlGaN/GaN基HEMT的高溫存儲(chǔ)測(cè)試以及其對(duì)熱穩(wěn)定性和電性的影響。實(shí)驗(yàn)采用階梯式的溫度存儲(chǔ)方式,隨著溫度的升高,器件的電性能發(fā)生了顯著的變化,漏極電流和跨導(dǎo)呈逐漸減小的趨勢(shì),此外Vth正向漂移,泄漏電流顯著減小。高溫儲(chǔ)存后電流崩塌主要是與柵漏和柵源區(qū)域形成的表面陷阱有關(guān)。閾值電勢(shì)與肖特基接觸材料有關(guān)。由于閾值電勢(shì)主要依賴于柵極接觸的物理狀態(tài),電參數(shù)的退化可能意味著柵極區(qū)域發(fā)生了物理變化。2018年,Jabbari等[18]研究SiC基Al0.22Ga0.78N/GaN HEMT電容?深能級(jí)瞬態(tài)光譜(capacitance-deep level transient spectroscopy,C-DLTS)界面缺陷:E2陷阱的空間位置。主要是用電容?電勢(shì)?溫度(capacitance-voltage-temperature,C-V-T)和DLTS方法研究SiC基AlGaN/GaN基HEMT,電容下降,特別在低溫下,它與AlGaN/GaN異質(zhì)結(jié)界面區(qū)2DEG的總損耗有關(guān)。隨著溫度升高,電容朝負(fù)電勢(shì)減緩,這種行為主要是由在高溫下柵極漏電增加,在勢(shì)壘層中載流子積累從而減緩2DEG損耗效應(yīng)。同年,Dammann等[19]比較100 nm T型柵極(T-gate)和SiN輔助柵(silicon nitride assisted gate,SAG-gate)的AlGaN/GaN基HEMT可靠性。直流應(yīng)力下溝道溫度242℃、600 h下,T-gate具有8柵指的器件退化了22%,在關(guān)態(tài)下柵極漏電增加了2倍。如圖4中,圖(c)和圖(f)在開(kāi)態(tài)(以及圖(a)和圖(d)在關(guān)態(tài))下由于應(yīng)力的作用,最下面兩個(gè)柵指變暗了。在關(guān)態(tài)和靠近閾值電勢(shì)下EL強(qiáng)度增大,相同的兩個(gè)柵指出現(xiàn)局部夾斷的現(xiàn)象。圖4(f)中3個(gè)位置的透射電子顯微鏡(transmission electron microscope,TEM)薄片柵指如圖5所示,在柵極靠近漏極的位置2處,低EL強(qiáng)度形成了深度為2 nm的凹陷坑。在EL高強(qiáng)度下位置1和3沒(méi)有凹陷坑。凹陷坑的形成是導(dǎo)致飽和電流降低的主要退化機(jī)制。同年,Chihani等[20]研究不同的電勢(shì)和溫度應(yīng)力下AlGaN/GaN基HEMT的高溫反向偏置(high temperaturereverse bias,HTRB)壽命測(cè)試的影響。在高溫反向偏置?電勢(shì)(high temperature reverse bias-voltage,HTRB-V)和高溫反向偏置?溫度(high temperaturereverse bias-temperature,HTRB-T)兩種模式下的高溫反向偏置實(shí)驗(yàn)下,HTRB-V下的柵源閾值電勢(shì)(gate source threshold voltage,VGSTH)沒(méi)有明顯變化,在溫度超過(guò)150℃老化的HTRB-T階梯式應(yīng)力下,VGSTH明顯增加了。2019年,Liang等[21]研究Si(111)襯底上超薄InAlN/GaN基HEMT的陷阱輔助隧穿電流特性。實(shí)驗(yàn)中器件的反向柵漏電流隨著溫度和反向偏置電勢(shì)的增加而增加。實(shí)驗(yàn)中用與溫度相關(guān)的機(jī)制,如熱離子發(fā)射(thermionic emission,TE),Poole-Frenkel發(fā)射(Poole-Frenkel,PF)和陷阱輔助隧穿(trap-assisted tunneling,TAT)3種機(jī)制研究InAlN/GaN基HEMT樣品的反向漏電流。兩種樣品在有和沒(méi)有N2等離子體表面處理的情況下均存在高電場(chǎng)導(dǎo)致的較大漏電流,電子通過(guò)肖特基勢(shì)壘的隧穿?;趯?shí)驗(yàn)漏電機(jī)制分析,大范圍的反向偏置(reverse voltage,VR)(?30Vlt;VRlt;0V)和溫度在237~473 K之間,兩種樣品的主要漏電流均為T(mén)AT機(jī)制。2020年,Bouchour等[22]估算基于實(shí)驗(yàn)表征的GaN HEMT功率開(kāi)關(guān)損耗。隨著溫度的增加,導(dǎo)通電阻(drain-source on-resistance,RDS(on))增加了,跨導(dǎo)減少了。漏極電流的減小伴隨著閾值電勢(shì)的微小負(fù)移。閾值電勢(shì)與溫度的這種變化已經(jīng)在文獻(xiàn)[23]中得到證實(shí)。根據(jù)文獻(xiàn)[24],器件溫度升高時(shí)RDS(on)的升高主要是因?yàn)闇系纼?nèi)電子遷移率和電子速度降低。在文獻(xiàn)[25]中,有效電子速度的溫度依賴性遠(yuǎn)小于溝道中電子遷移率的溫度依賴性。2021年,Liu等[26]研究490 mA/mm的漏極電流和1.9 V的閾值電勢(shì)增強(qiáng)模式p-GaN HEMTs和高溫特性。在溫度依賴性的轉(zhuǎn)移和跨導(dǎo)特性中,Vth變溫時(shí)幾乎不漂移,穩(wěn)定性好。隨著溫度的升高,漏?源極間的電流(drain-source current,IDS)和跨導(dǎo)減小,這是由于散射增強(qiáng)導(dǎo)致電子遷移率降低所致[27]。同時(shí),實(shí)驗(yàn)中p-GaN HEMT表現(xiàn)出獨(dú)特的雙峰跨導(dǎo)特性,這表明p-GaN孔洞注入溝道會(huì)導(dǎo)致第二個(gè)跨導(dǎo)峰出現(xiàn)[28]。隨著溫度的升高,C-V曲線的峰值減小,上升斜率發(fā)生變化。測(cè)得的電容與溝道電阻有關(guān),隨著溝道電阻的增大,電容減小[29]。當(dāng)溫度升高時(shí),電子遷移率降低,溝道電阻增加,導(dǎo)致電容降低。

        2.3輻照退化現(xiàn)象及退化機(jī)制分析

        輻射會(huì)在GaN器件中引入空位、間隙原子以及一些絡(luò)合物等輻射缺陷[30-31],嚴(yán)重影響器件的性能。2017年,Poling等[32]進(jìn)行商業(yè)化AlGaN/GaN基HEMT器件在重離子輻照下的可靠性研究。在重離子Ne、Si和Ar輻照下,器件直流特性沒(méi)有變化。但隨著溫度升高,重離子輻照的器件比沒(méi)有輻照的器件有了不同程度的退化,表明器件在重離子暴露下對(duì)長(zhǎng)期可靠性產(chǎn)生了復(fù)雜的影響。2018年,Hu等[33]采用不同強(qiáng)度的快速重離子輻照AlGaN/GaN基HEMT器件,在器件內(nèi)發(fā)現(xiàn)退化軌跡。在輻照后器件的轉(zhuǎn)移特性有顯著變化,Vth增加,因此,在1 540-MeV209Bi離子輻照下,器件的Vth增加了85%,而漏極電流下降到初始值的1%。在2 300-MeV129Xe離子輻照的器件中也觀察到類(lèi)似的現(xiàn)象。從相應(yīng)的輻照參數(shù)來(lái)看,電學(xué)性能的退化與入射離子的(dE/dx)密切相關(guān)。輻照誘導(dǎo)缺陷和紊亂導(dǎo)致了載流子遷移率和載流子密度的降低從而導(dǎo)致器件退化。2019年,Islam等[34]研究重離子輻照對(duì)關(guān)態(tài)下AlGaN/GaN基HEMT器件的影響。實(shí)驗(yàn)結(jié)果表明,Au4+等重離子可以在器件層中產(chǎn)生大量的空位、間隙和位錯(cuò)等缺陷。這些缺陷在器件層中扮演電荷陷阱的角色,產(chǎn)生的電荷積累降低了擊穿電勢(shì)。用連續(xù)的能量色散X射線光譜圖可以在實(shí)驗(yàn)中追蹤單個(gè)的化學(xué)元素,并且結(jié)果表明,器件層的退化可能是由O和N空位引起的。2020年,Qi等[35]研究X射線輻照分別對(duì)p-GaN和MIS結(jié)構(gòu)的AlGaN/GaN基HEMT器件的閾值電勢(shì)的影響。在實(shí)驗(yàn)中,以100 rad/s的正常劑量率對(duì)GaN器件的上表面進(jìn)行X射線照射,累積劑量從100 krad到200 krad不等,以研究對(duì)器件A(p-GaN)和器件B(MIS-HEMT)電參數(shù)的影響,沒(méi)有明顯的漏極電流衰減和閾值電勢(shì)漂移,而閾值電勢(shì)在正方向上有輕微漂移,可歸因于類(lèi)受主陷阱。當(dāng)存在外延層,高密度的H+污染可以降低外延生長(zhǎng)過(guò)程中受體雜質(zhì)的激活速率。在高能X射線照射下,失活的受體雜質(zhì)(Mg2+)可以被激活,從而導(dǎo)致閾值電勢(shì)漂移。對(duì)GaN基HEMT的高強(qiáng)度輻照的一種解釋是,GaN材料本身缺陷,以致輻照產(chǎn)生更多的缺陷幾乎對(duì)器件性能沒(méi)有影響[36],另一種解釋是,GaN原子漂移的閾值高于其他III-V材料(如GaAs)的,因此可以漂移的原子相對(duì)較少[37]。漏極電流隨照射劑量(從100 krad增加到200 krad)的增加而增加,這可歸因于在X射線輻照下二維電子氣體密度的增加,退火1h后該值會(huì)返回到較低的水平。在X射線輻照過(guò)程中,能量從入射粒子轉(zhuǎn)移到價(jià)帶中的電子,使其上升到導(dǎo)帶,在價(jià)帶中產(chǎn)生相應(yīng)的空穴,產(chǎn)生電子?空穴對(duì)(電離)[38]。電子?空穴對(duì)的密度受樣品質(zhì)量和摻雜水平的影響。2021年,Tang等[39]利用γ射線輻照GaN功率HEMT器件研究其無(wú)線功率傳輸?shù)姆€(wěn)定性。器件在100 kGyγ射線輻照后,漏極電流增加了8.34%,柵極下降了?7.79%,這表明輻照后GaN器件的性能得到了改善。另一方面,導(dǎo)通電阻降低了,這意味著輻照后GaN器件可以改善導(dǎo)通損失。γ射線照射后漏極電流增加的可能原因可以由兩個(gè)因素來(lái)區(qū)分。首先,之前工作有γ射線輻照過(guò)程中N空位的產(chǎn)生,X射線光電子能譜(X-ray photoelectron spectroscopy,XPS)分析結(jié)果證實(shí)了N含量的降低。N空位在導(dǎo)電溝道中作為供體提供電子。另外,部分退火效應(yīng)可以提高GaN器件溝道遷移率,是由于表面的化學(xué)重組結(jié)構(gòu)和接觸層的原因[40-41]。

        3改善器件退化的措施

        3.1利用場(chǎng)板結(jié)構(gòu)提高器件可靠性

        場(chǎng)板通常指的是和器件電極形成金屬連接的金屬板,通常場(chǎng)板結(jié)構(gòu)有源場(chǎng)板、柵場(chǎng)板、漏場(chǎng)板、浮空?qǐng)霭逡约敖Y(jié)場(chǎng)板。2017年,Ma等[42]在研究?jī)A斜三柵結(jié)構(gòu),發(fā)現(xiàn)其可以提高橫向GaN器件的電勢(shì)阻塞性能,為電場(chǎng)分布的工程設(shè)計(jì)提供了一個(gè)新的自由度。同年,Nirmal等[43]在柵極層的頂部加一個(gè)場(chǎng)板,減少了高漏極電壓時(shí)漏極電流崩塌。Wu等[44]研究場(chǎng)板技術(shù)對(duì)GaN基HEMT功率器件的可靠性,得出場(chǎng)板結(jié)構(gòu)減小了器件中的電場(chǎng)峰值和界面陷阱,產(chǎn)生了更高的擊穿電勢(shì),更低的泄漏電流,使電流崩塌更小,從而使閾值電勢(shì)控制得更好。2018年,Kwak等[45]通過(guò)研究AlGaN/GaN基HEMT的熱分析以及基于源橋場(chǎng)板結(jié)構(gòu)(source-bridged field-plate,SBFP)晶體管的射頻功率效率優(yōu)化,從中分析得到,利用場(chǎng)板技術(shù)可以實(shí)現(xiàn)峰值電場(chǎng)的重新分布和溝道溫度的控制。SBFP在大功率、高溫情況下,其結(jié)構(gòu)的最高溫度低于T型柵極結(jié)構(gòu),還可以優(yōu)化漏極側(cè)柵極邊緣與SBFP之間的距離,以提高器件的擊穿電勢(shì)。Rossetto等[46]證明,隨著場(chǎng)板長(zhǎng)度的減小,由于場(chǎng)板邊緣離歐姆接觸更遠(yuǎn),突變失效穩(wěn)定性顯著提高。

        3.2通過(guò)淀積鈍化層提高器件可靠性

        鈍化層是在器件的表面沉積薄膜介質(zhì)形成的一種保護(hù)層。2017年,Liu等[47]比較有無(wú)鈍化層的AlGaN/GaN金屬?氧化物?半導(dǎo)體(metal oxide semiconductor,MOS)HEMT的電性輸運(yùn)和壓電效應(yīng),得出結(jié)論:在直流特性上,有鈍化層SiO2層的性能要優(yōu)于沒(méi)有鈍化層的HEMT。鈍化層SiO2在增大飽和漏極電流和減小柵極泄露電流時(shí)是很有效的柵極介質(zhì)。2018年,Kim等[48]用等離子增強(qiáng)化學(xué)氣相沉積SiO2柵極氧化物介質(zhì)的Si基AlGaN/GaN基MOS-HEMT凹槽柵進(jìn)行時(shí)間依賴性的介質(zhì)擊穿研究。通常器件是常關(guān)器件,隨著SiO2薄膜厚度的增加,閾值電勢(shì)會(huì)正向漂移。隨著SiO2厚度的增加,與時(shí)間相關(guān)的介電擊穿(time dependent dielectric breakdown,TDDB)的時(shí)間依賴性特征表現(xiàn)出更長(zhǎng)的壽命。同年,Zhang等[49]在對(duì)AlGaN表面進(jìn)行多晶AlN鈍化處理,2DEG遷移率、峰值跨導(dǎo)率和飽和漏極電流提高,靜態(tài)導(dǎo)通電阻降低。類(lèi)施主陷阱主要來(lái)源于在AlGaN表面的Ga氧化和N空穴,其充電過(guò)程導(dǎo)致電流崩塌和動(dòng)態(tài)導(dǎo)通電阻增加。表面鈍化過(guò)程減小Ga-O懸垂鍵缺陷,被廣泛應(yīng)用于改善AlGaN/GaN基HEMT器件的可靠性。2020年,Cheng等[50]從直流靜態(tài)特性、電流崩塌、小信號(hào)性能三個(gè)角度比較發(fā)現(xiàn),SiON鈍化層的HEMT的漏極電流最大值和跨導(dǎo)值比SiOx和SiNx的鈍化層的有所增加,SiOx鈍化層的HEMT器件有最小的柵極漏電,脈沖I-V表明,與SiNx和SiON鈍化層器件相比,SiOx鈍化層的HEMT有嚴(yán)重電流崩塌,主要是因?yàn)樯顚酉葳逡雽?dǎo)致的。小信號(hào)性能表明,由于跨導(dǎo)率的提高,SiON鈍化層器件具有較高的截止頻率。對(duì)于高GaN基微波HEMT器件來(lái)說(shuō),SiON作為鈍化層有很好的應(yīng)用前景。

        4結(jié)論

        近些年來(lái)對(duì)于GaN基HEMT器件的研究一直都很熱門(mén),GaN基HEMT器件的可靠性問(wèn)題一直是阻礙其發(fā)展應(yīng)用的絆腳石。常見(jiàn)的問(wèn)題就有電流崩塌、自熱效應(yīng)以及Kink效應(yīng)等。本文從電場(chǎng)、溫度和輻照角度去綜述不同類(lèi)型失效機(jī)制及相關(guān)失效現(xiàn)象。在關(guān)態(tài)下給器件加漏極偏置電勢(shì),會(huì)導(dǎo)致器件產(chǎn)生很大的漏電現(xiàn)象,根據(jù)Griffith脆性斷裂理論,在高壓下,器件在柵極靠近漏極一側(cè)有很大電場(chǎng),導(dǎo)致晶體管內(nèi)部產(chǎn)生高的機(jī)械應(yīng)力。由于AlGaN在GaN上的晶格失配,晶體發(fā)生機(jī)械變形,產(chǎn)生裂紋,晶體缺陷導(dǎo)致柵極漏電。與溫度相關(guān)的機(jī)制主要分為熱離子發(fā)射、Poole-Frenkel發(fā)射和陷阱輔助隧穿。重離子輻照加快器件的退化,主要是重離子在器件層中產(chǎn)生大量的空位、間隙和位錯(cuò)等缺陷。最后討論了利用場(chǎng)板結(jié)構(gòu)和鈍化層來(lái)優(yōu)化GaN基HEMT器件

        對(duì)于未來(lái),器件的可靠性問(wèn)題仍然是各研究單位研究的重中之重??蓮囊韵聨讉€(gè)角度去突破:①改進(jìn)器件的生長(zhǎng)工藝,減少器件材料內(nèi)部的體位錯(cuò)、界面位錯(cuò)等;②繼續(xù)優(yōu)化鈍化層,減少器件勢(shì)壘層與鈍化層界面的缺陷問(wèn)題;③改進(jìn)設(shè)計(jì)晶體管勢(shì)壘層結(jié)構(gòu),優(yōu)化量子阱防止溝道熱電子的外溢;④優(yōu)化材料結(jié)構(gòu),減少材料與材料間的應(yīng)變。若從以上幾個(gè)角度去改善,GaN基HEMT器件的性能將得到極大提高,對(duì)于未來(lái)在雷達(dá)、航天等方向的應(yīng)用更具前景。

        參考文獻(xiàn):

        [1]郝躍,張金風(fēng),張進(jìn)成.氮化物寬禁帶半導(dǎo)體材料與電子器件[M].北京:科學(xué)出版社,2013.

        [2]湯大衛(wèi),梁斌明,季景.基于硅透鏡與光子晶體的逆古斯?jié)h欣位移監(jiān)測(cè)系統(tǒng)及其溫度特性研究[J].光學(xué)儀器,2022,44(1):49–54.

        [3]MONACO E,ANZALONE G,ALBASINI G,etal.A 2-11 GHz 7-bit high-linearity phase rotator based on wideband injection-locking multi-phase generation for high-speed serial links in 28-nm CMOS FDSOI[J].IEEE Journal of Solid-State Circuits,2017,52(7):1739–1752.

        [4]MAMMEI E,LOI F,RADICE F,etal.A power-scalable 7-tap FIR equalizer with tunable active delay line for 10-to-25 Gb/s multi-mode fiber EDC in 28 nm LP-CMOS[C]//2014 IEEE International Solid-State Circuits Conference Digest of Technical Papers(ISSCC).San Francisco:IEEE,2014:142–143.

        [5]HADIPOUR K,GHILIONI A,MAZZANTI A,etal.A 40GHz to 67 GHz bandwidth 23 dB gain 5.8 dB maximum NF mm-wave LNA in 28 nm CMOS[C]//2015 IEEE Radio Frequency Integrated Circuits Symposium(RFIC).Phoenix:IEEE,2015:327–330.

        [6]MENEGHINI M,MENEGHESSO G,ZANONI E.Analysis of the reliability of AlGaN/GaN HEMTs submitted to on-state stress based on electroluminescence investigation[J].IEEE Transactions on Device and Materials Reliability,2013,13(2):357–361.

        [7]HAT N,SABATE A,YUSOF K A.Development of failure analysis technique for temperature dependent failures[C]//Proceedings of the 20th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits(IPFA).Suzhou:IEEE,2013:563–568.

        [8]MENEGHESSO G,MENEGHINI M,STOCCO A,etal.Degradation of AlGaN/GaN HEMT devices:Role of reverse-bias and hot electron stress[J].Microelectronic Engineering,2013,109:257–261.

        [9]MENEGHESSO G,VERZELLESI G,DANESIN F,etal.Reliability of GaN high-electron-mobility transistors:state of the art and perspectives[J].IEEE Transactions on Device and Materials Reliability,2008,8(2):332–343.

        [10]MOULTIF N,DIVAY A,JOUBERT E,etal.Localizing and analyzing defects in AlGaN/GaN HEMT using photon emission spectral signatures[J].Engineering Failure Analysis,2017,81:69–78.

        [11]TAJALLI A,MENEGHINI M,ROSSETTO I,etal.Field and hot electron-induced degradation in GaN-based power MIS-HEMTs[J].Microelectronics Reliability,2017,76–77:282–286.

        [12]MAZUMDAR K,KALA S,GHOSAL A.Nanocrack formation due to inverse piezoelectric effect in AlGaN/GaN HEMT[J].Superlattices and Microstructures,2019,125:120–124.

        [13]GAO Y,SASANGKA W A,THOMPSON C V,etal.Effects of forward gate bias stressing on the leakage current of AlGaN/GaN high electron mobility transistors[J].Microelectronics Reliability,2019,100–101:113432.

        [14]CANATO E,MENEGHINI M,DE SANTI C,etal.OFF-state trapping phenomena in GaNHEMTs:Interplay between gate trapping,acceptor ionization and positive charge redistribution[J].Microelectronics Reliability,2020,114:113841.

        [15]GAO Z,MENEGHINI M,HARROUCHE K,etal.Short term reliability and robustness of ultra-thin barrier,110nm-gateAlN/GaN HEMTs[J].Microelectronics Reliability,2021,123:114199.

        [16]KO T S,LIN D Y,LIN C F,etal.High-temperature carrier density and mobility enhancements in AlGaN/GaN HEMT using AlN spacer layer[J].Journal of Crystal Growth,2017,464:175–179.

        [17]LEE J M,MIN B G,JU C W,etal.High temperature storage test and its effect on the thermal stability and electrical characteristics of AlGaN/GaN high electron mobility transistors[J].Current Applied Physics,2017,17(2):157–161.

        [18]JABBARI I,BAIRA M,MAAREF H,etal.C-DLTS interface defects in Al0.22Ga0.78N/GaN HEMTs on SiC:spatial location of E2 traps[J].Physica E:Low-Dimensional Systems and Nanostructures,2018,104:216–222.

        [19]DAMMANN M,BAEUMLER M,BRüCKNER P,etal.Comparison of reliability of 100 nm AlGaN/GaN HEMTs with T-gate and SAG-gate technology[J].Microelectronics Reliability,2018,88–90:385–388.

        [20]CHIHANI O,THEOLIER L,BENSOUSSAN A,etal.Effect of HTRB lifetest on AlGaN/GaN HEMTs under different voltages and temperatures stresses[J].Microelectronics Reliability,2018,88–90:402–405.

        [21]LIANG J X,LAI L K,ZHOU Z K,etal.Trap-assisted tunneling current of ultrathin InAlN/GaN HEMTs on Si(1 1 1)substrate[J].Solid-State Electronics,2019,160:107622.

        [22]BOUCHOUR A M,OUALKADI A E,LATRY O,etal.Estimation of losses of GaN HEMT in power switching applications based on experimental characterization[J].Computersamp;Electrical Engineering,2020,84:106622.

        [23]ALIM M A,REZAZADEH A A,GAQUIERE C.Temperature dependence of the threshold voltage of AlGaN/GaN/SiC high electron mobility transistors[J].Semiconductor Science and Technology,2016,31(12):125016.

        [24]ARULKUMARAN S,EGAWA T,ISHIKAWA H,etal.High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates[J].Applied Physics Letters,2002,80(12):2186–2188.

        [25]AKITA M,KISHIMOTO K,MIZUTANI T.Temperature dependence of high-frequency performances of ALGaN/GaN HEMTs[J].Physica Status Solidi(a),2001,188(1):207–211.

        [26]LIU K,WANG C,ZHENG X F,et al.490 mA/mm drain current and 1.9 V threshold voltage enhancement-mode p-GaN HEMTs and high-temperature characteristics[J].Solid-State Electronics,2021,186:108109.

        [27]VITANOV S,PALANKOVSKI V,MAROLDT S,etal.High-temperature modeling of AlGaN/GaN HEMTs[J].Solid-State Electronics,2010,54(10):1105–1112.

        [28]UEMOTO Y,HIKITA M,UENO H,etal.Gate injection transistor(GIT)—a normally-off AlGaN/GaN power transistor using conductivity modulation[J].IEEE Transactions on Electron Devices,2007,54(12):3393–3399.

        [29]TANG G F,KWAN M H,SU R Y,etal.High-capacitance-density p-GaN Gate capacitors for high-frequency power integration[J].IEEE Electron Device Letters,2018,39(9):1362–1365.

        [30]PINOS A,MARCINKEVI?IUS S,USMAN M,etal.Time-resolved luminescence studies of proton-implanted GaN[J].Applied Physics Letters,2009,95(11):112108.

        [31]BOYKO V M,VEREVKIN S S,KOLIN N G,etal.The effect of neutron irradiation and annealing temperature on the electrical properties and lattice constant of epitaxial gallium nitride layers[J].Semiconductors,2011,45(1):134–140.

        [32]POLING B S,VIA G D,BOLE K D,etal.Commercial-off-the-shelf AlGaN/GaN HEMT device reliability study after exposure to heavy ion radiation[J].Microelectronics Reliability,2017,68:13–20.

        [33]HU P P,LIU J,ZHANG S X,etal.Degradation in AlGaN/GaN HEMTs irradiated with swift heavy ions:Role of latent tracks[J].Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,2018,430:59–63.

        [34]ISLAM Z,PAOLETTA A L,MONTERROSA A M,etal.Heavy ion irradiation effects on GaN/AlGaN high electron mobility transistor failure at off-state[J].Microelectronics Reliability,2019,102:113493.

        [35]QI Y L,WANG D G,ZHOU J J,etal.Effect of X-ray irradiation on threshold voltage of AlGaN/GaN HEMTs with p-GaN and MIS Gates[J].Nanotechnology and Precision Engineering,2020,3(4):241–243.

        [36]NORDLUND K,GHALY M,AVERBACK R S,etal.Defect production in collision cascades in elemental semiconductors and fcc metals[J].Physical Review B,1998,57(13):7556–7570.

        [37]IONASCUT-NEDELCESCU A,CARLONE C,HOUDAYER A,etal.Radiation hardness of gallium nitride[J].IEEE Transactions on Nuclear Science,2002,49(6):2733–2738.

        [38]HENKE B L,SMITH J A,ATTWOOD D T.0.1-10-keV X-ray-induced electron emissions from solids-models and secondary electron measurements[J].Journal of Applied Physics,1977,48(5):1852–1866.

        [39]TANG S W,YAO P Y,CHAO D S,etal.Stability of wireless power transfer using gamma-ray irradiated GaN power HEMTs[J].Microelectronics Reliability,2021,126:114425.

        [40]SHARMA C,MODOLO N,CHEN H H,etal.Investigation of the degradations in power GaN-on-Si MIS-HEMTs subjected to cumulativeγ-ray irradiation[J].Microelectronics Reliability,2019,100–101:113349.

        [41]SHARMA C,SINGH R,CHAO D S,etal.Effectsofγ-ray irradiation on AlGaN/GaN heterostructures and high electron mobility transistor devices[J].Journal of Electronic Materials,2020,49(11):6789–6797.

        [42]MA J,MATIOLIE.Slanted tri-gates for high-voltage GaN power devices[J].IEEE Electron Device Letters,2017,38(9):1305–1308.

        [43]NIRMAL D,ARIVAZHAGAN L,F(xiàn)LETCHER A S A,etal.Current collapse modeling in AlGaN/GaN HEMT using small signal equivalent circuit for high power application[J].Superlattices and Microstructures,2018,113:810–820.

        [44]WU W H,LIN Y C,CHIN P C,etal.Reliability improvement in GaN HEMT power device using a field plate approach[J].Solid-State Electronics,2017,133:64–69.

        [45]KWAK H T,CHANG S B,JUNG H G,etal.Thermal analysis of AlGaN/GaN high-electron-mobility transistor and its RF power efficiency optimization with source-bridged field-plate structure[J].Journal of Nanoscience and Nanotechnology,2018,18(9):5860–5867.

        [46]ROSSETTO I,MENEGHINI M,BARBATO M,etal.Demonstration of field-and power-dependent ESD failure in AlGaN/GaN RF HEMTs[J].IEEE Transactions on Electron Devices,2015,62(9):2830–2836.

        [47]LIU T,JIANG C Y,HUANG X,etal.Electrical transportation and piezotronic-effect modulation in AlGaN/GaN MOS HEMTs and unpassivated HEMTs[J].Nano Energy,2017,39:53–59.

        [48]KIM H S,EOM S K,SEO K S,etal.Time-dependent dielectric breakdown of recessed AlGaN/GaN-on-Si MOS-HFETs with PECVD SiO2 gate oxide[J].Vacuum,2018,155:428–433.

        [49]ZHANG D L,CHENG X H,ZHENG L,etal.Effects of polycrystalline AlN film on the dynamic performance of AlGaN/GaN high electron mobility transistors[J].Materialsamp;Design,2018,148:1–7.

        [50]CHENG K Y,WU S C,YU C J,etal.Comparative study on performance of AlGaN/GaN MS-HEMTs with SiNx,SiOx,andSiNO surface passivation[J].Solid-State Electronics,2020,170:107824.

        文章編號(hào):2096?2983(2024)02?0046?09 DOI:10.13258/j.cnki.nmme.20220322002

        引文格式:黃玲鈺,修慧欣.GaN基高電子遷移率晶體管器件的可靠性及退化機(jī)制研究進(jìn)展[J].有色金屬材料與工程,2024,45(2):46-54.DOI:10.13258/j.cnki.nmme.20220322002.HUANG Lingyu,XIUHuixin.Research progress on reliability and degradation mechanisms of GaN-based high electron mobility transistor devices[J].Nonferrous Metal Materials and Engineering,2024,45(2):46-54.

        91精品国产闺蜜国产在线| 国产精成人品日日拍夜夜免费| 久久人人爽天天玩人人妻精品| 91天堂素人精品系列全集亚洲| 亚洲有码转帖| 亚洲成在人线电影天堂色| 国产精品黄色av网站| 水野优香中文字幕av网站| 久久精品国产亚洲av麻豆| 欧美va免费精品高清在线| 国产后入内射在线观看| 少妇被按摩出高潮了一区二区| 女同同性av观看免费| 国产av无码专区亚洲av中文| 无码人妻精一区二区三区| 中文字幕大屁股熟女乱| 精品国产麻豆免费人成网站| 国产禁区一区二区三区| 久久久久人妻精品一区蜜桃| 91伊人久久| 亚洲精品99久91在线| 国产亚洲视频在线播放| 一性一交一口添一摸视频| 国产无套视频在线观看香蕉| 色婷婷一区二区三区77| 97人妻人人揉人人躁九色| 日本aⅴ大伊香蕉精品视频 | 男女好痛好深好爽视频一区| 午夜一区二区三区免费观看| 2018天天躁夜夜躁狠狠躁| 亚洲∧v久久久无码精品| 欧美1区二区三区公司| 不卡视频在线观看网站| 少女韩国电视剧在线观看完整 | 亚洲色偷偷综合亚洲AVYP| 成人黄色片久久久大全| 精品国产黄一区二区三区| 18黑白丝水手服自慰喷水网站| 国产视频毛片| 日本一区二区日韩在线| 色偷偷色噜噜狠狠网站30根|