劉澤厚,王琴,葉美金,萬(wàn)洪深,楊寧,楊漫宇,楊武云,李俊
人工合成小麥和地方品種穗發(fā)芽抗性育種利用效率
劉澤厚1,王琴1,葉美金2,萬(wàn)洪深1,楊寧1,楊漫宇1,楊武云1,李俊1
1四川省農(nóng)業(yè)科學(xué)院作物研究所/農(nóng)業(yè)農(nóng)村部西南地區(qū)小麥生物學(xué)與遺傳育種重點(diǎn)實(shí)驗(yàn)室/糧食作物綠色種質(zhì)創(chuàng)新與遺傳改良四川省重點(diǎn)實(shí)驗(yàn)室,成都 610066;2成都師范學(xué)院化學(xué)與生命科學(xué)學(xué)院,四川溫江 611130
【目的】小麥穗發(fā)芽是影響小麥產(chǎn)量和品質(zhì)的重要限制因子。具有抗穗發(fā)芽特性的人工合成小麥和地方品種是改良栽培小麥穗發(fā)芽抗性的重要基因資源,通過(guò)分子標(biāo)記輔助選擇轉(zhuǎn)育人工合成小麥和地方品種穗發(fā)芽抗性位點(diǎn),評(píng)價(jià)人工合成小麥和地方品種導(dǎo)入系抗穗發(fā)芽育種利用效率,篩選抗穗發(fā)芽小麥新材料,為小麥穗發(fā)芽抗性育種提供數(shù)據(jù)和材料支撐?!痉椒ā恳钥顾氚l(fā)芽的人工合成小麥SYN792和四川地方品種涪陵須須麥為母本,以穗發(fā)芽敏感品種川麥45為輪回親本,構(gòu)建2個(gè)BC1F7群體。2017年,通過(guò)整穗發(fā)芽鑒定法對(duì)2個(gè)BC1F7群體的1 796個(gè)株系進(jìn)行穗發(fā)芽表型初篩,然后利用與人工合成小麥和地方品種穗發(fā)芽抗性位點(diǎn)連鎖的SSR標(biāo)記進(jìn)行分子標(biāo)記選擇,篩選出整穗發(fā)芽率(SGR)小于35%且攜帶和抗性位點(diǎn)的導(dǎo)入系;2018和2019年,連續(xù)2年對(duì)初篩選出的和導(dǎo)入系進(jìn)行整穗發(fā)芽率、籽粒發(fā)芽指數(shù)(GI)和產(chǎn)量相關(guān)性狀鑒定,其中,籽粒發(fā)芽鑒定試驗(yàn)設(shè)置25 ℃(18GI)和32 ℃(19GI)2個(gè)發(fā)芽溫度。通過(guò)不同環(huán)境下穗發(fā)芽抗性和產(chǎn)量數(shù)據(jù),分析人工合成小麥和地方品種導(dǎo)入系抗穗發(fā)芽育種利用效率,篩選抗穗發(fā)芽且綜合性狀好的優(yōu)異導(dǎo)入系。【結(jié)果】經(jīng)整穗發(fā)芽鑒定初篩,從1 796個(gè)衍生系中篩選出SGR值小于35%的株系537個(gè);進(jìn)一步對(duì)篩選出的537個(gè)株系進(jìn)行分子標(biāo)記檢測(cè),發(fā)現(xiàn)332個(gè)株系導(dǎo)入了人工合成小麥和地方品種穗發(fā)芽抗性位點(diǎn),包括人工合成小麥導(dǎo)入系73個(gè)、地方品種導(dǎo)入系259個(gè);地方品種導(dǎo)入系的頻率顯著高于人工合成小麥導(dǎo)入系。2018和2019年通過(guò)對(duì)332個(gè)穗發(fā)芽抗性位點(diǎn)導(dǎo)入系穗發(fā)芽鑒定發(fā)現(xiàn),不同年份穗發(fā)芽指標(biāo)間均呈極顯著正相關(guān),穗發(fā)芽指標(biāo)SGR和GI表現(xiàn)出相對(duì)穩(wěn)定的趨勢(shì);人工合成小麥和地方品種導(dǎo)入系的3個(gè)穗發(fā)芽指標(biāo)平均值(18GI、18SGR和19SGR)均低于23%,差異不顯著。不同發(fā)芽溫度導(dǎo)入系的GI值差異較大,發(fā)芽溫度32 ℃時(shí),人工合成小麥導(dǎo)入系的GI值顯著低于地方品種導(dǎo)入系。篩選出的73個(gè)人工合成小麥導(dǎo)入系中,紅粒系穗發(fā)芽指標(biāo)值均低于白粒系;其中,11個(gè)人工合成小麥白粒導(dǎo)入系表現(xiàn)中抗及以上抗性水平,14個(gè)紅粒導(dǎo)入系在不同發(fā)芽溫度時(shí)GI值均低于35%。2年產(chǎn)量相關(guān)性狀分析表明,人工合成小麥導(dǎo)入系的千粒重顯著高于地方品種導(dǎo)入系,而穗粒數(shù)顯著小于地方品種導(dǎo)入系。根據(jù)產(chǎn)量性狀和穗發(fā)芽抗性表現(xiàn),篩選出23個(gè)穗發(fā)芽抗性和綜合性狀均較好的優(yōu)異導(dǎo)入系,包括7個(gè)人工合成小麥導(dǎo)入系、16個(gè)地方品種導(dǎo)入系;人工合成小麥優(yōu)異導(dǎo)入系中有2個(gè)白粒導(dǎo)入系穗發(fā)芽抗性中抗以上,2個(gè)紅粒導(dǎo)入系不同發(fā)芽溫度的GI值均低于25%,表現(xiàn)出穩(wěn)定的穗發(fā)芽抗性。【結(jié)論】人工合成小麥和地方品種均可用于改良現(xiàn)代栽培小麥穗發(fā)芽抗性,利用地方品種進(jìn)行穗發(fā)芽抗性育種改良效率優(yōu)于人工合成小麥;但人工合成小麥導(dǎo)入系的穗發(fā)芽抗性的穩(wěn)定性優(yōu)于地方品種導(dǎo)入系。篩選出的23個(gè)人工合成小麥和地方品種導(dǎo)入系是小麥穗發(fā)芽抗性和產(chǎn)量性狀改良的重要基因資源;特別是人工合成小麥白粒導(dǎo)入系(編號(hào)5201)和紅粒導(dǎo)入系(編號(hào)5497和5505)是非常有育種利用價(jià)值的穗發(fā)芽抗性育種親本材料。
小麥;人工合成小麥;地方品種;穗發(fā)芽;產(chǎn)量相關(guān)性狀
【研究意義】小麥穗發(fā)芽(pre-harvest sprouting,PHS)是指在小麥?zhǔn)斋@前遇連續(xù)陰雨或潮濕環(huán)境下出現(xiàn)籽粒在麥穗上萌動(dòng)、發(fā)芽的現(xiàn)象[1]。穗發(fā)芽不僅導(dǎo)致小麥營(yíng)養(yǎng)和加工品質(zhì)劣化、種用價(jià)值降低,而且嚴(yán)重時(shí)導(dǎo)致產(chǎn)量損失,對(duì)小麥生產(chǎn)造成較大的經(jīng)濟(jì)損失[2-3]。由于穗發(fā)芽而導(dǎo)致的全球小麥?zhǔn)袌?chǎng)價(jià)值下降,直接經(jīng)濟(jì)損失超過(guò)10億美元[4]。中國(guó)約有83%的小麥種植區(qū)均發(fā)生過(guò)嚴(yán)重的穗發(fā)芽危害,特別是長(zhǎng)江中下游、西南麥區(qū)等濕熱地區(qū)[5];近幾年,穗發(fā)芽在中國(guó)江蘇、安徽、四川、河南等省頻繁發(fā)生,影響了小麥品質(zhì)和產(chǎn)量,給種植大戶和企業(yè)造成較大經(jīng)濟(jì)損失[6]。目前,利用抗穗發(fā)芽種質(zhì)資源培育抗穗發(fā)芽小麥品種是解決小麥穗發(fā)芽問(wèn)題最有效的途徑?!厩叭搜芯窟M(jìn)展】穗發(fā)芽是一個(gè)復(fù)雜的數(shù)量性狀,受遺傳和環(huán)境等多種因素影響[7]。休眠是影響小麥穗發(fā)芽的主要因素,除此之外,籽粒顏色、種皮成分和結(jié)構(gòu)、穗部形態(tài)、穎殼內(nèi)發(fā)芽抑制物質(zhì)、溫度等也不同程度地影響穗發(fā)芽抗性[8]。小麥穗發(fā)芽QTL已被定位到21條染色體上[2, 9-15],其中,第3同源群和4A染色體上的抗穗發(fā)芽主效QTL在多個(gè)環(huán)境和多個(gè)遺傳背景中均能被檢測(cè)到,是穗發(fā)芽抗性輔助轉(zhuǎn)育的有效位點(diǎn)[13-14, 16-22]。人工合成小麥(synthetic hexaploid wheat,SHW,2n=6x=42,AABBDD)和地方品種(wheat landraces,WL,2n=6x=42,AABBDD)含有豐富的抗病、抗逆、優(yōu)質(zhì)、高產(chǎn)等優(yōu)異基因,是改良現(xiàn)代小麥的重要基因資源[7, 17]。人工合成小麥和地方品種穗發(fā)芽抗性QTL已被定位在小麥眾多染色體上[7, 17, 23-27]。位于3D染色體上源于節(jié)節(jié)麥的穗發(fā)芽抗性QTL與種皮顏色相關(guān),如早期被定位到的、等SSR標(biāo)記所在的染色體區(qū)段[7, 23, 25-26];He等[28]利用節(jié)節(jié)麥-普通小麥染色體片段代換系進(jìn)一步將節(jié)節(jié)麥的穗發(fā)芽抗性QTL定位在SSR標(biāo)記和KASP標(biāo)記間;Lang等[29]通過(guò)多組學(xué)和功能分析,發(fā)現(xiàn)來(lái)自人工合成小麥穗發(fā)芽抗性位點(diǎn)的抗性作用源自的多效性。位于4AL染色體上來(lái)自小麥地方品種的穗發(fā)芽抗性QTL與種子休眠有關(guān),Chen等[17]和Mares等[27]將中國(guó)小麥地方品種SW95-50213和禿頭麥的穗發(fā)芽抗性QTL定位到、和等SSR標(biāo)記所在的染色體區(qū)段;Zhou等[24]對(duì)717份中國(guó)小麥地方品種穗發(fā)芽抗性進(jìn)行全基因組關(guān)聯(lián)分析,也在4AL染色體上檢測(cè)到與穗發(fā)芽抗性相關(guān)的位點(diǎn)。近年來(lái),利用3DL和4AL染色體上的穗發(fā)芽抗性QTL進(jìn)行分子標(biāo)記輔助選擇,成功改良了栽培小麥的穗發(fā)芽抗性,為小麥穗發(fā)芽抗性育種提供了新的遺傳資源[6, 19, 30-31]?!颈狙芯壳腥朦c(diǎn)】自20世紀(jì)90年代以來(lái),中國(guó)研究者已篩選出一批抗穗發(fā)芽的人工合成小麥和地方品種,但由于人工合成小麥野生性強(qiáng)、穎殼堅(jiān)硬難脫粒,以及地方品種稈子高、產(chǎn)量低等問(wèn)題限制了它們的育種應(yīng)用[32]。小麥種質(zhì)資源創(chuàng)新與遺傳育種課題組前期發(fā)現(xiàn)人工合成小麥SYN792和地方品種涪陵須須麥具有高抗穗發(fā)芽的特性,利用SYN792和涪陵須須麥分別與穗發(fā)芽敏感品種川麥45雜交,構(gòu)建了2個(gè)F2群體;根據(jù)前人定位的人工合成小麥和地方品種分別在3DL和4AL染色體上的抗穗發(fā)芽QTL位置,利用與穗發(fā)芽抗性QTL連鎖的SSR標(biāo)記掃描2個(gè)群體,發(fā)現(xiàn)人工合成小麥SYN792在3DL染色體上的穗發(fā)芽抗性位點(diǎn)位于SSR標(biāo)記和之間,地方品種涪陵須須麥在4AL染色體上的穗發(fā)芽抗性位點(diǎn)位于SSR標(biāo)記和之間,這4個(gè)SSR標(biāo)記可有效區(qū)分穗發(fā)芽抗感基因型,可用于分子標(biāo)記輔助選擇?!緮M解決的關(guān)鍵問(wèn)題】為了利用來(lái)源于人工合成小麥和地方品種的穗發(fā)芽抗性位點(diǎn)和改良普通小麥,本研究利用抗穗發(fā)芽的人工合成小麥SYN792和地方品種涪陵須須麥,分別與穗發(fā)芽敏感品種川麥45構(gòu)建BC1F7群體,通過(guò)基因型、穗發(fā)芽抗性和農(nóng)藝性狀鑒定,分析人工合成小麥和地方品種抗穗發(fā)芽育種利用效率及其導(dǎo)入系穗發(fā)芽抗性差異,篩選抗穗發(fā)芽且綜合農(nóng)藝性狀優(yōu)良的小麥新材料,為利用人工合成小麥和地方品種改良栽培品種穗發(fā)芽抗性提供數(shù)據(jù)和材料支撐。
試驗(yàn)材料包括抗穗發(fā)芽的親本人工合成小麥SYN792(紅粒)和地方品種涪陵須須麥(白粒)、穗發(fā)芽敏感親本川麥45(白粒),及其構(gòu)建的2個(gè)穩(wěn)定的BC1F7衍生群體。衍生群體分別以SYN792和涪陵須須麥為母本,川麥45為輪回親本雜交,連續(xù)自交獲得2個(gè)包括1 796個(gè)株系的BC1F7群體;其中,SYN792與川麥45構(gòu)建的BC1F7群體有1 069個(gè)株系,涪陵須須麥與川麥45構(gòu)建的BC1F7群體有727個(gè)株系。親本人工合成小麥SYN792是四倍體小麥(,2n=4x=28,AABB)與節(jié)節(jié)麥(,2n=2x=14,DD)雜交、染色體加倍獲得,由國(guó)際玉米小麥改良中心(CIMMYT)提供;涪陵須須麥和川麥45由四川省農(nóng)業(yè)科學(xué)院作物研究所提供。
2017年,通過(guò)對(duì)人工合成小麥和地方品種構(gòu)建的2個(gè)BC1F7群體的1 796個(gè)株系及其親本進(jìn)行整穗發(fā)芽初篩和SSR分子標(biāo)記選擇,選出整穗發(fā)芽率小于35%且導(dǎo)入人工合成小麥和地方品種穗發(fā)芽抗性位點(diǎn)的導(dǎo)入系,用于后續(xù)研究。2018—2019年連續(xù)2年對(duì)2017年篩選出的導(dǎo)入系進(jìn)行整穗發(fā)芽、籽粒發(fā)芽、產(chǎn)量相關(guān)性狀鑒定,比較人工合成小麥導(dǎo)入系和地方品種導(dǎo)入系的穗發(fā)芽抗性和產(chǎn)量性狀,篩選穗發(fā)芽抗性和綜合性狀好的優(yōu)異導(dǎo)入系。為了比較不同溫度對(duì)2種類型導(dǎo)入系籽粒萌發(fā)的影響,籽粒發(fā)芽鑒定設(shè)置2個(gè)溫度。
2017年將親本SYN792、涪陵須須麥及其2個(gè)BC1F7衍生群體種植于四川省農(nóng)業(yè)科學(xué)院成都錦江區(qū)網(wǎng)室,2018—2019年將篩選出的2種類型導(dǎo)入系同時(shí)種植于四川省農(nóng)業(yè)科學(xué)院錦江區(qū)網(wǎng)室和四川省農(nóng)業(yè)科學(xué)院郫都區(qū)試驗(yàn)基地。每個(gè)小區(qū)種植3行,根據(jù)生育期,將材料分成早、中、晚3組種植,每組內(nèi)小區(qū)隨機(jī)排列,2次重復(fù),行長(zhǎng)1.5 m,行距24 cm,每行15株,采用翻耕、條溝點(diǎn)播、細(xì)土覆蓋栽培方式;錦江區(qū)網(wǎng)室種植材料用于人工模擬降雨整穗發(fā)芽鑒定,郫都區(qū)基地種植材料用于籽粒發(fā)芽試驗(yàn)和產(chǎn)量相關(guān)性狀測(cè)定。
在小麥成熟期,每份材料隨機(jī)取中間3株調(diào)查相關(guān)農(nóng)藝性狀,包括株高(plant height,PH)、分蘗數(shù)(tiller number per plant,TN)、穗粒數(shù)(grain number,GN)、千粒重(thousand kernels weight,TKW),取其平均值作為每份材料農(nóng)藝性狀的表現(xiàn)值;小麥脫粒曬干后,通過(guò)人工觀察確定籽粒顏色。
1.4.1 整穗發(fā)芽鑒定 2017—2019年連續(xù)3年進(jìn)行整穗發(fā)芽鑒定。采用田間自動(dòng)噴灌系統(tǒng)進(jìn)行人工模擬降雨,于生理成熟期(穗部落黃1—2 d)開始噴水,在田間常溫環(huán)境下連續(xù)噴灑7 d,確保所有試驗(yàn)材料穗子一直保持濕潤(rùn),待穗發(fā)芽敏感親本川麥45穗子上90%以上籽粒萌動(dòng)后,隨機(jī)收獲中間1行的10個(gè)穗子,快速烘干,手工脫粒,統(tǒng)計(jì)總粒數(shù)和發(fā)芽粒數(shù),計(jì)算整穗發(fā)芽率(seed germination rate of in each spike,SGR)。SGR=發(fā)芽粒數(shù)/總粒數(shù)×100%。
1.4.2 籽粒發(fā)芽鑒定 于生理成熟期,隨機(jī)取中間1行的10個(gè)穗子,室內(nèi)陰干,7 d后-20 ℃保存,10個(gè)穗子手工脫粒,用0.5% NaClO消毒沖洗后,將100粒完整種子置于有濕潤(rùn)濾紙的培養(yǎng)皿中;每個(gè)材料2次重復(fù),以種子露白為發(fā)芽標(biāo)準(zhǔn),試驗(yàn)第2天開始統(tǒng)計(jì)發(fā)芽種子數(shù),并將已發(fā)芽種子移除,連續(xù)計(jì)數(shù)7 d。計(jì)算發(fā)芽指數(shù)(seed germination index,GI),GI=(7×n1+6×n2+5×n3+4×n4+3×n5+2×n6+1×n7)/(7×N)×100%,N表示籽??倲?shù);n1、n2、…、n7分別表示第1天至第7天的發(fā)芽籽粒數(shù)。
由于溫度影響種子休眠水平和籽粒萌發(fā)[33-36]。為了分析不同發(fā)芽溫度對(duì)2種類型導(dǎo)入系籽粒萌發(fā)的影響,2018年籽粒發(fā)芽溫度設(shè)置為25 ℃,2019年設(shè)置為32 ℃,對(duì)篩選出的人工合成小麥和地方品種導(dǎo)入系及其親本進(jìn)行籽粒發(fā)芽鑒定。不同溫度進(jìn)行發(fā)芽鑒定時(shí),環(huán)境濕度均為60%—65%,其他條件相對(duì)一致。
采用CTAB方法提取所有供試材料幼嫩葉片的基因組DNA。利用3D染色體上的2個(gè)SSR標(biāo)記和檢測(cè)人工合成小麥SYN792衍生群體的抗性位點(diǎn),用4A染色體上的2個(gè)SSR標(biāo)記和檢測(cè)地方品種涪陵須須麥衍生群體的抗性位點(diǎn)。PCR反應(yīng)體系、程序及電泳檢測(cè)參照李俊等[37]方法,引物由北京迪納興科生物科技有限公司合成。
使用Microsoft Excel 2010軟件進(jìn)行數(shù)據(jù)整理和統(tǒng)計(jì),利用SPSS v13.0軟件對(duì)穗發(fā)芽和農(nóng)藝性狀等表型性狀進(jìn)行分析;將人工合成小麥導(dǎo)入系按籽粒顏色分成白粒系和紅粒系2組,通過(guò)檢驗(yàn)比較2組穗發(fā)芽抗性差異。參考前人穗發(fā)芽鑒定篩選標(biāo)準(zhǔn)[1, 5-6, 8],結(jié)合本研究實(shí)際情況,按GI和SGR值將穗發(fā)芽反應(yīng)類型分為六級(jí),GI和SGR值小于15%為高抗,15%—25%為抗,25%—35%為中抗,35%—50%為中感,50%— 70%為感,大于70%為高感。
2017年對(duì)人工合成小麥和地方品種衍生群體及其親本進(jìn)行人工模擬降雨試驗(yàn),統(tǒng)計(jì)整穗發(fā)芽率??剐杂H本人工合成小麥SYN792和地方品種涪陵須須麥整穗發(fā)芽率均小于5%,敏感親本川麥45整穗發(fā)芽率為95.6%,1 796個(gè)株系平均整穗發(fā)芽率為66.14%,低于穗發(fā)芽敏感親本川麥45。1 796個(gè)株系中,整穗發(fā)芽率中抗以上(小于35%)的株系537個(gè),占比29.9%(表1)。其中,1 069個(gè)人工合成小麥衍生系中,穗發(fā)芽中抗以上的株系165個(gè),占比15.4%;727個(gè)地方品種衍生系中,穗發(fā)芽中抗以上的株系372個(gè),占比51.2%。結(jié)果表明,地方品種衍生群體中,穗發(fā)芽抗性株系頻率顯著高于人工合成小麥衍生群體。
利用與和連鎖的SSR標(biāo)記,對(duì)2017年篩選出抗性較好的537個(gè)株系進(jìn)行基因型選擇,共檢測(cè)到含有穗發(fā)芽抗性位點(diǎn)的導(dǎo)入系332個(gè)(圖1)。其中,導(dǎo)入穗發(fā)芽抗性位點(diǎn)的人工合成小麥衍生系(導(dǎo)入系)73個(gè),占比44.2%;導(dǎo)入穗發(fā)芽抗性位點(diǎn)的地方品種衍生系(導(dǎo)入系)259個(gè),占比69.6%。通過(guò)穗發(fā)芽抗性位點(diǎn)分子標(biāo)記檢測(cè)表明,在地方品種衍生系中的導(dǎo)入頻率遠(yuǎn)遠(yuǎn)高于在人工合成小麥衍生系中的導(dǎo)入頻率。
表1 人工合成小麥和地方品種衍生群體穗發(fā)芽抗性選擇頻率
HR:高抗;R:抗;MR:中抗;MS:中感;S:感;HS:高感
HR: high resistant reaction; R: resistant reaction; MR: middle resistant reaction; MS: middle susceptible reaction; S: susceptible reaction; HS: high susceptible reaction
P1:人工合成小麥SYN792;P2:川麥45;P3:地方品種涪陵須須麥
以篩選出的332個(gè)導(dǎo)入系為試驗(yàn)材料,2018和2019年連續(xù)2年進(jìn)行整穗發(fā)芽和籽粒發(fā)芽鑒定。結(jié)果顯示,不同年份不同穗發(fā)芽指標(biāo)間均呈極顯著正相關(guān),發(fā)芽指數(shù)SGR和GI表現(xiàn)出相對(duì)穩(wěn)定的趨勢(shì)(表2);人工合成小麥導(dǎo)入系和地方品種導(dǎo)入系穗發(fā)芽指標(biāo)的變異幅度均較大;除19GI外,2種類型導(dǎo)入系的其余3個(gè)穗發(fā)芽指標(biāo)均值差異不顯著,GI和SGR值均低于23%(表3)。就GI值而言,不同年度間所有導(dǎo)入系的GI值差異較大,19GI值遠(yuǎn)高于18GI值;地方品種導(dǎo)入系19GI值顯著高于人工合成小麥導(dǎo)入系,僅10%導(dǎo)入系表現(xiàn)中抗以上,約50%導(dǎo)入系表現(xiàn)中抗以上。由此表明,不同發(fā)芽溫度導(dǎo)入系的GI值差異較大,隨著溫度升高,人工合成小麥導(dǎo)入系的籽粒發(fā)芽指數(shù)明顯低于地方品種導(dǎo)入系。
表2 2018—2019年導(dǎo)入系穗發(fā)芽指數(shù)的相關(guān)系數(shù)
SGR:整穗發(fā)芽率;GI:發(fā)芽指數(shù)。**表示在0.01水平差異顯著。下同
SGR: seed germination rate of in each spike; GI: seed germination index. ** Indicated the correlation was significant at 0.01 level. The same as below
表3 導(dǎo)入系穗發(fā)芽指數(shù)的統(tǒng)計(jì)分析
通過(guò)籽粒顏色統(tǒng)計(jì),含有穗發(fā)芽抗性位點(diǎn)的73個(gè)人工合成小麥導(dǎo)入系包括41個(gè)紅粒系和32個(gè)白粒系,紅粒系(56.2%)所占比例高于白粒系(43.8%)。將白粒系和紅粒系分成2組,比較穗發(fā)芽抗性差異(表4),紅粒系GI值和SGR值均低于白粒系。其中,18SGR、19SGR和19GI紅粒系顯著或極顯著低于白粒系。41個(gè)紅粒導(dǎo)入系中,穗發(fā)芽抗性中抗以上有29個(gè)株系,占比70.73%。其中,有14個(gè)株系在25 ℃和32 ℃發(fā)芽時(shí)GI值均低于35%。在32個(gè)白粒導(dǎo)入系中,穗發(fā)芽抗性中抗以上有11個(gè)株系,占比34.38%(表5),是白??顾氚l(fā)芽育種改良的重要資源。
表4 人工合成小麥紅粒和白粒導(dǎo)入系的穗發(fā)芽抗性差異
*表示在0.05水平差異顯著;W:白粒;R:紅粒 * Indicated the difference was significant at 0.05 level; W: White grain; R: Red grain
表5 人工合成小麥紅粒和白粒導(dǎo)入系在不同穗發(fā)芽抗性水平的頻率
2018—2019年連續(xù)2年對(duì)和導(dǎo)入系的4個(gè)產(chǎn)量相關(guān)性狀進(jìn)行測(cè)定,相關(guān)性分析表明(表6),不同年度各產(chǎn)量性狀間呈顯著正相關(guān),2年間千粒重與穗粒數(shù)均呈顯著或極顯著負(fù)相關(guān);除穗粒數(shù)和株高外,穗發(fā)芽性狀與其他農(nóng)藝性狀無(wú)顯著相關(guān)性。通過(guò)對(duì)和導(dǎo)入系產(chǎn)量相關(guān)性狀進(jìn)行比較(表7),2種類型導(dǎo)入系的株高和分蘗均無(wú)顯著差異,而穗粒數(shù)和千粒重均呈極顯著差異;導(dǎo)入系的千粒重顯著高于導(dǎo)入系,穗粒數(shù)顯著低于導(dǎo)入系。
根據(jù)產(chǎn)量性狀和穗發(fā)芽抗性,篩選出23個(gè)抗穗發(fā)芽、綜合性狀好的優(yōu)異導(dǎo)入系,包括7個(gè)導(dǎo)入系、16個(gè)導(dǎo)入系(表8)。16個(gè)優(yōu)異導(dǎo)入系平均株高92.5 cm,平均穗粒數(shù)44.8,平均千粒重47.4 g,平均GI值29.71%,平均SGR值11.58%。7個(gè)優(yōu)異導(dǎo)入系平均株高101.5 cm,平均穗粒數(shù)41.6,平均千粒重52.9 g,平均GI值22.4%,平均SGR值10.69%。其中編號(hào)為5497和5505的2個(gè)株系籽粒顏色為紅粒,在25 ℃和32 ℃發(fā)芽時(shí),GI值均低于25%;編號(hào)為5201和5203的2個(gè)株系籽粒顏色為白色,穗發(fā)芽抗性分別表現(xiàn)為抗和中抗。
表6 產(chǎn)量相關(guān)性狀與穗發(fā)芽指標(biāo)相關(guān)性
GN:穗粒數(shù);TKW:千粒重;PH:株高;TN:分蘗數(shù)。下同
GN: Number of grains per spike; TKW: Thousand-kernel weight; PH: Plant height; TN: effective tiller number per plant. The same as below
表7 產(chǎn)量相關(guān)性狀統(tǒng)計(jì)
表8 優(yōu)異導(dǎo)入系穗發(fā)芽抗性和產(chǎn)量相關(guān)性狀統(tǒng)計(jì)
小麥穗發(fā)芽是受多因素影響的復(fù)雜性狀,田間直接選擇往往受環(huán)境等多因素影響,從而導(dǎo)致穗發(fā)芽抗性選育工作比較困難。利用分子標(biāo)記輔助選擇可不受環(huán)境影響,且已被大量應(yīng)用于穗發(fā)芽抗性育種。近年來(lái),利用分子標(biāo)記輔助選擇方法,將3A、3B、3D、4A和5B等染色體上的抗穗發(fā)芽QTL/基因?qū)朐耘嗥贩N,成功改良了小麥栽培品種的穗發(fā)芽抗性[6, 19, 30-31];人工合成小麥和地方品種也被用于改良栽培品種穗發(fā)芽抗性,Imtiaz等[7]和Buck等[38]利用回交與分子標(biāo)記輔助選擇結(jié)合的方法,將人工合成小麥在1D、2D、3D和5D上的穗發(fā)芽抗性區(qū)段導(dǎo)入穗發(fā)芽敏感的栽培小麥品種中,選育出抗穗發(fā)芽高代系;Liu等[39]將地方品種CSCR6的穗發(fā)芽抗性QTL導(dǎo)入四倍體硬粒小麥中,篩選出5個(gè)高抗穗發(fā)芽四倍體小麥高代系。本研究利用人工合成小麥抗穗發(fā)芽位點(diǎn)和地方品種位點(diǎn)也成功改良了穗發(fā)芽敏感的白粒小麥品種川麥45的穗發(fā)芽抗性,并篩選出穗發(fā)芽抗性較好的人工合成小麥和地方品種導(dǎo)入系,這些導(dǎo)入系可作為親本改善栽培品種穗發(fā)芽抗性。通過(guò)SGR初篩和分子標(biāo)記選擇,發(fā)現(xiàn)地方品種群體中穗發(fā)芽抗性株系入選率和導(dǎo)入系的頻率顯著高于人工合成小麥,可能是由于在川麥45遺傳背景下,的效應(yīng)較強(qiáng)。但是,穗發(fā)芽性狀復(fù)雜、且2個(gè)群體大小不同,連鎖標(biāo)記的連鎖距離也不同,具體原因仍需通過(guò)遺傳分析進(jìn)行驗(yàn)證。在篩選出的537份穗發(fā)芽中抗以上的材料中,僅73份導(dǎo)入了位點(diǎn)、259份導(dǎo)入了位點(diǎn),其余205個(gè)株系未導(dǎo)入這兩個(gè)抗性位點(diǎn),但其穗發(fā)芽抗性水平仍在中抗以上,推測(cè)這205個(gè)系可能攜帶其他穗發(fā)芽抗性位點(diǎn)。
溫度是影響種子休眠和萌發(fā)的最主要的外部決定因素,谷物籽粒發(fā)芽對(duì)溫度具有明顯的依賴性[33-36]。Roberts[33]研究發(fā)現(xiàn)無(wú)休眠特性的水稻在27 ℃—42 ℃均能快速發(fā)芽,而休眠性強(qiáng)的水稻種子發(fā)芽率與溫度負(fù)相關(guān)。Fennimore等[34]利用強(qiáng)休眠性和弱休眠性的野生燕麥雜交、回交,分析不同發(fā)芽溫度對(duì)野生燕麥后代的影響,發(fā)現(xiàn)強(qiáng)休眠性的野生燕麥種子發(fā)芽率與溫度負(fù)相關(guān),在4 ℃—8 ℃低溫條件下快速發(fā)芽,在20 ℃—24 ℃溫度條件下不發(fā)芽;而無(wú)休眠性的野生燕麥在4 ℃—24 ℃均能快速發(fā)芽。Foley等[35]研究發(fā)現(xiàn),高溫在抑制強(qiáng)休眠的野生燕麥發(fā)芽的同時(shí),也會(huì)提高其后熟率,從而增加種子發(fā)芽的可能性。Mares[36]在不同溫度下對(duì)無(wú)休眠、部分休眠和強(qiáng)休眠的小麥品種進(jìn)行了發(fā)芽試驗(yàn),發(fā)現(xiàn)休眠程度不同,籽粒最適發(fā)芽溫度不同,隨著休眠性的增強(qiáng),最適發(fā)芽溫度逐漸降低,發(fā)芽滯后期延長(zhǎng);同時(shí),在12 ℃室內(nèi)儲(chǔ)藏6個(gè)月的小麥種子在5 ℃—30 ℃發(fā)芽,隨著溫度增加,滯后期減少、種子快速發(fā)芽。Xu等[40]從強(qiáng)休眠水稻品種Kasalath中克隆到一個(gè)控制水稻種子休眠的關(guān)鍵基因,并證實(shí)負(fù)調(diào)控水稻種子休眠性,轉(zhuǎn)錄因子ICE2正調(diào)控種子休眠性,SD6-ICE2分子模式通過(guò)感知周邊環(huán)境溫度調(diào)控種子休眠與萌發(fā);研究證明通過(guò)基因編輯技術(shù)敲除后,可明顯提高穗發(fā)芽敏感水稻品種的抗性;同時(shí),通過(guò)基因編輯技術(shù)對(duì)弱休眠小麥品種科農(nóng)199的進(jìn)行改良,大幅度提高了科農(nóng)199的穗發(fā)芽抗性。本研究分別在25 ℃和32 ℃的溫度條件下進(jìn)行籽粒發(fā)芽鑒定,發(fā)現(xiàn)人工合成小麥和地方品種導(dǎo)入系的籽粒發(fā)芽受溫度影響;發(fā)芽溫度32 ℃時(shí),地方品種導(dǎo)入系發(fā)芽更快、GI均值顯著高于人工合成小麥導(dǎo)入系。推測(cè)可能與人工合成小麥SYN792具有種子休眠的特性有關(guān),部分導(dǎo)入系遺傳了親本SYN792的休眠性,但其休眠性是否與休眠基因有關(guān)需通過(guò)遺傳分析進(jìn)一步驗(yàn)證。
人工合成小麥和地方品種具有抗病、優(yōu)質(zhì)、抗逆、高產(chǎn)等優(yōu)異特性[7, 17, 24-25, 41],但由于人工合成小麥野生性強(qiáng)、穎殼堅(jiān)硬難脫粒[32],以及地方品種稈子高、產(chǎn)量低等問(wèn)題限制了它們的育種應(yīng)用。本研究通過(guò)對(duì)人工合成小麥SYN792和地方品種涪陵須須麥衍生群體的穗發(fā)芽鑒定,通過(guò)穗發(fā)芽抗性人工選擇后,人工合成小麥導(dǎo)入系的千粒重顯著高于地方品種導(dǎo)入系,而穗粒數(shù)顯著小于地方品種導(dǎo)入系。因此,人工合成小麥SYN792導(dǎo)入系可作為改良穗發(fā)芽抗性和千粒重的基因資源,地方品種涪陵須須麥導(dǎo)入系可作為改良穗發(fā)芽抗性和穗粒數(shù)的基因資源。前人通過(guò)對(duì)普通小麥和人工合成小麥的產(chǎn)量相關(guān)性狀QTL分析,在3D染色體長(zhǎng)臂上的、、等SSR標(biāo)記區(qū)段定位到一個(gè)來(lái)源于人工合成小麥的千粒重QTL[42-44],本研究人工合成小麥SYN792的穗發(fā)芽抗性位點(diǎn)與前人定位的千粒重QTL區(qū)段鄰近,但SYN792是否在該區(qū)段同時(shí)攜帶穗發(fā)芽抗性位點(diǎn)和千粒重QTL需進(jìn)一步通過(guò)遺傳分析來(lái)確定。
本研究通過(guò)穗發(fā)芽抗性和產(chǎn)量相關(guān)性狀鑒定,篩選出23個(gè)穗發(fā)芽抗性和產(chǎn)量相關(guān)性狀較好的優(yōu)異導(dǎo)入系,這23個(gè)優(yōu)異導(dǎo)入系可直接用于小麥穗發(fā)芽抗性育種,特別是編號(hào)為5497和5505的2個(gè)人工合成小麥紅粒導(dǎo)入系,在2個(gè)發(fā)芽溫度下,GI值均低于25%,是非常有價(jià)值的抗穗發(fā)芽育種材料。由于白皮小麥出粉率高且面粉白度高,較紅皮小麥更受農(nóng)戶和企業(yè)青睞,但也更易發(fā)生穗發(fā)芽。本研究篩選出的7個(gè)人工合成小麥導(dǎo)入系中有2個(gè)白粒導(dǎo)入系,且編號(hào)為5201的人工合成小麥白粒導(dǎo)入系綜合性狀好、抗穗發(fā)芽、高抗條銹病和中抗白粉病,可作為小麥白??顾氚l(fā)芽及抗病育種改良的優(yōu)異親本。
利用人工合成小麥和地方品種改良栽培小麥穗發(fā)芽抗性是行之有效的,地方品種抗穗發(fā)芽育種改良效率優(yōu)于人工合成小麥,但人工合成小麥導(dǎo)入系穗發(fā)芽抗性的穩(wěn)定性優(yōu)于地方品種導(dǎo)入系。在穗發(fā)芽選擇壓下,人工合成小麥導(dǎo)入系的千粒重具有優(yōu)勢(shì),而地方品種導(dǎo)入系的穗粒數(shù)具有優(yōu)勢(shì),是小麥穗發(fā)芽抗性和產(chǎn)量相關(guān)性狀改良的重要基因資源。編號(hào)為5497和5505的2個(gè)人工合成小麥紅粒導(dǎo)入系、編號(hào)為5201的人工合成小麥白粒導(dǎo)入系可分別作為有重要利用價(jià)值的穗發(fā)芽抗性改良親本。
[1] GROOS C, GAY G, PERRETANT M R, GERVAIS L, BERNARD M, DEDRYVER F, CHARMET G. Study of the relationship between preharvest sprouting and grain color by quantitative trait loci analysis in a white × red grain bread-wheat cross.Theoretical and Applied Genetics, 2002, 104(1): 39-47.
[2] VETCH J M, STOUGAARD R N, MARTIN J M, GIROUX M J. Review: Revealing the genetic mechanisms of pre-harvest sprouting in hexaploid wheat (L.). Plant Science, 2019, 281:180-185.
[3] SIMSEK S, OHM J B, LU H Y, RUGG M, BERZONSKY W, ALAMRI M S, MERGOUM M. Effect of pre-harvest sprouting on physicochemical changes of proteins in wheat. Journal of the Science of Food and Agriculture, 2014, 94(2): 205-212.
[4] ALI A, CAO J J, JIANG H, CHANG C, ZHANG H P, SHEIKH S W, SHAH L, MA C X. Unraveling molecular and genetic studies of wheat (L.) resistance against factors causing pre-harvest sprouting. Agronomy, 2019, 9(3): 117.
[5] XIAO S, ZHANG X Y, YAN C, LIN H. Germplasm improvement for preharvest sprouting resistance in Chinese white-grained wheat: An overview of the current strategy. Euphytica, 2002, 126: 35-38.
[6] HUANG Y W, DAI X R, LIU H W, YU S, MAI C Y, YU L Q, YU G J, YANG L, ZHOU Y, LI H J, ZHANG H J. Identification of effective alleles and haplotypes conferring pre-harvest sprouting resistance in winter wheat cultivars. BMC Plant Biology, 2022, 22(1): 326.
[7] IMTIAZ M, OGBONNAYA F C, OMAN J, VAN GINKEL M V. Characterization of quantitative trait loci controlling genetic variation for preharvest sprouting in synthetic backcross-derived wheat lines. Genetics, 2008, 178(3): 1725-1736.
[8] 劉莉, 王慶海, 陳國(guó)志. 小麥穗發(fā)芽研究進(jìn)展. 作物雜志, 2013(4): 6-11.
LIU L, WANG Q H, CHEN G Z. Advances on resistance to pre-harvest sprouting in wheat. Crops, 2013(4): 6-11. (in Chinese)
[9] ROY J K, PRASAD M, VARSHNEY R K, BALYAN H S, BLAKE T K, DHALIWAL H S, EDWARDS K J, GUPTA P K. Identification of a microsatellite on chromosomes 6B and a STS on 7D of bread wheat showing an association with preharvest sprouting tolerance. Theoretical and Applied Genetics, 1999, 99(1/2): 336-340.
[10] REHMAN ARIF M A, NEUMANN K, NAGEL M, KOBILJSKI B, LOHWASSER U, B?RNER A. An association mapping analysis of dormancy and pre-harvest sprouting in wheat. Euphytica, 2012, 188(3): 409-417.
[11] FLINTHAM J, ADLAM R E, BASSOI M, HOLDSWORTH M, GALE M. Mapping genes for resistance to sprouting damage in wheat. Euphytica, 2002, 126: 39-45.
[12] JAISWAL V, MIR R R, MOHAN A, BALYAN H S, GUPTA P K. Association mapping for pre-harvest sprouting tolerance in common wheat (L.). Euphytica, 2012, 188(1): 89-102.
[13] KULWAL P L, SINGH R, BALYAN H S, GUPTA P K. Genetic basis of pre-harvest sprouting tolerance using single-locus and two-locus QTL analyses in bread wheat. Functional & Integrative Genomics, 2004, 4(2): 94-101.
[14] MARES D, RATHJEN J, MRVA K, CHEONG J. Genetic and environmental control of dormancy in white-grained wheat (L.). Euphytica, 2009, 168(3): 311-318.
[15] SINGH A K, KNOX R E, CLARKE J M, CLARKE F R, SINGH A, DEPAUW R M, CUTHBERT R D. Genetics of pre-harvest sprouting resistance in a cross of Canadian adapted durum wheat genotypes. Molecular Breeding, 2014, 33(4): 919-929.
[16] ZHANG X Q, LI C D, TAY A, LANCE R, MARES D, CHEONG J, CAKIR M, MA J H, APPELS R. A new PCR-based marker on chromosome 4AL for resistance to pre-harvest sprouting in wheat (L.). Molecular Breeding, 2008, 22(2): 227-236.
[17] CHEN C X, CAI S B, BAI G H. A major QTL controlling seed dormancy and pre-harvest sprouting resistance on chromosome 4A in a Chinese wheat landrace. Molecular Breeding, 2008, 21(3): 351-358.
[18] WANG X Y, LIU H, MIA M S, SIDDIQUE K H M, YAN G J. Development of near-isogenic lines targeting a major QTL on 3AL for pre-harvest sprouting resistance in bread wheat. Crop and Pasture Science, 2018, 69(9): 864-872.
[19] MOULLET O, DíAZ BERMúDEZ G, FOSSATI D, BRABANT C, MASCHER F, SCHORI A. Pyramiding wheat pre-harvest sprouting resistance genes in triticale breeding. Molecular Breeding, 2022, 42(10): 1-19.
[20] FOFANA B, HUMPHREYS D G, RASUL G, CLOUTIER S, BR?Lé-BABEL A, WOODS S, LUKOW O M, SOMERS D J. Mapping quantitative trait loci controlling pre-harvest sprouting resistance in a red × white seeded spring wheat cross. Euphytica, 2009, 165(3): 509-521.
[21] MARES D J, MRVA K. Mapping quantitative trait loci associated with variation in grain dormancy in Australian wheat. Australian Journal of Agricultural Research, 2001, 52(12): 1257-1266.
[22] TORADA A, IKEGUCHI S, KOIKE M. Mapping and validation of PCR-based markers associated with a major QTL for seed dormancy in wheat. Euphytica, 2005, 143(3): 251-255.
[23] ZHANG D L, HE, J, HUANG L Y, ZHANG C C, ZHOU Y, SU Y R, LI S P. An advanced backcross population through synthetic octaploid wheat as a “bridge”: Development and QTL detection for seed dormancy. Frontiers in Plant Science, 2017, 8: 2123.
[24] ZHOU Y, TANG H, CHENG M P, DANKWA K O, CHEN Z X, LI Z Y, GAO S, LIU Y X, JIANG Q T, LAN X J, PU Z E, WEI Y M, ZHENG Y L, HICKEY L T, WANG J R. Genome-wide association study for pre-harvest sprouting resistance in a large germplasm collection of Chinese wheat landraces. Frontiers in Plant Science, 2017, 8: 401.
[25] YANG J, LIU Y X, PU Z E, ZHANG L Q, YUAN Z W, CHEN G Y, WEI Y M, ZHENG Y L, LIU D C, WANG J R. Molecular characterization of high pI α-amylase and its expression QTL analysis in synthetic wheat RILs. Molecular Breeding, 2014, 34(3): 1075-1085.
[26] YANG J, TAN C, LANG J, TANG H, HAO M, TAN Z, YU H, ZHOU Y, LIU Z H, LI M L, ZHOU Y, CHENG M P, ZHANG L Q, LIU D C, WANG J R. Identification ofandfrom synthetic wheat for pre-harvest sprouting resistance wheat improvement. Molecular Breeding, 2019, 39(9): 1-12.
[27] MARES D, MRVA K, CHEONG J, WILLIAMS K, WATSON B, STORLIE E, SUTHERLAND M, ZOU Y. A QTL located on chromosome 4A associated with dormancy in white- and red-grained wheats of diverse origin. Theoretical and Applied Genetics, 2005, 111(7): 1357-1364.
[28] HE J, ZHANG D L, CHEN X, LI Y G, HU M J, SUN S G, SU Q, SU Y R, LI S P. Identification of QTLs and a candidate gene for reducing pre-harvest sprouting inchromosome segment substitution lines. international journal of molecular sciences, 2021, 22(7): 3729.
[29] LANG J, FU Y X, ZHOU Y, CHENG M P, DENG M, LI M L, ZHU T T, YANG J, GUO X J, GUI L X, LI L C, CHEN Z X, YI Y J, ZHANG L Q, HAO M,HUANG L, TAN C, CHEN G Y, JIANG Q T, QI P F, PU Z E, MA J, LIU Z H, LIU Y J, LUO M C, WEI Y M, ZHENG Y L, WU Y R, LIU D C, WANG J R.confersresistance to pre-harvest sprouting by regulatingin ABA biosynthesis pathway of wheat. New Phytologist, 2021, 230(5): 1940-1952.
[30] KUMAR J, MIR R R, KUMAR N, KUMAR A, MOHAN A, PRABHU K V, BALYAN H S, GUPTA P K. Marker-assisted selection for pre-harvest sprouting tolerance and leaf rust resistance in bread wheat. Plant Breeding, 2010, 129(6): 617-621.
[31] TYAGI S, MIR R R, KAUR H, Chhuneja P, Ramesh B, Balyan H S, Gupta P K. Marker-assisted pyramiding of eight QTLs/genes for seven different traits in common wheat (L.). Molecular Breeding, 2014, 34(1): 167-175.
[32] 郝明, 張連全, 黃林, 甯順腙, 袁中偉, 姜博, 顏澤洪, 伍碧華, 鄭有良, 劉登才. 合成六倍體小麥的遺傳育種. 植物遺傳資源學(xué)報(bào), 2022, 23(1): 40-48.
HAO M, ZHANG L Q, HUANG L, NING S Z, YUAN Z W, JIANG B, YAN Z H, WU B H, ZHENG Y L, LIU D C. Genetic improvement of synthesized hexaploid wheat in breeding. Journal of Plant Genetic Resources, 2022, 23(1): 40-48. (in Chinese)
[33] ROBERTS E H. Dormancy in rice seed: III. The in?uence of temperature, moisture, and gaseous environment. Journal of Experimental Botany, 1962, 13(1): 75-94.
[34] FENNIMORE S A, NYQUIST W E, SHANER G E, MYERS S P, FOLEY M E. Temperature response in wild oat (L.) generations segregating for seed dormancy. Heredity, 1998, 81(6): 674-682.
[35] FOLEY M E. Temperature and water status of seed affect afterripening in wild oat (). Weed Science, 1994, 42(2): 200-204.
[36] MARES D J. Temperature dependence of germinability of wheat (L.) grain in relation to pre-harvest sprouting. Australian Journal of Agricultural Research, 1984, 35(2): 115-128.
[37] 李俊, 魏會(huì)廷, 胡曉蓉, 李朝蘇, 湯永祿, 劉登才, 楊武云. 川麥42中源于人工合成小麥的一個(gè)高產(chǎn)位點(diǎn)鑒定. 作物學(xué)報(bào), 2011, 37(2): 255-262.
LI J, WEI H T, HU X R, LI C S, TANG Y L, LIU D C, YANG W Y. Identification of a high-yield introgression locus from synthetic hexaploid wheat in Chuanmai 42. Acta Agronomica Sinica, 2011, 37(2): 255-262. (in Chinese)
[38] Buck H T, Nisi J E, Salomon N. Wheat Production in Stressed Environments. Dordrecht: Springer Netherlands Press, 2007.
[39] LIU Y J, LIU Y X, ZHOU Y, WIGHT C, PU Z E,QI P F, JIANG Q T, DENG M, WANG Z X, WEI Y M, CAO W G, LIU D C, ZHENG Y L, LIU C J, FRéGEAU-REID J, WANG J R. Conferring resistance to pre-harvest sprouting in durum wheat by a QTL identified inEuphytica, 2016, 213(1): 1-10.
[40] XU F, TANG J Y, WANG S X, CHENG X, WANG H R, OU S J, GAO S P, LI B S, QIAN Y W, GAO C X, CHU C C. Antagonistic control of seed dormancy in rice by two bHLH transcription factors.Nature Genetics, 2022, 54(12): 1972-1982.
[41] GUPTA P K, BALYAN H S, SHARMA S, KUMAR R. Genetics of yield, abiotic stress tolerance and biofortification in wheat (L.). Theoretical and Applied Genetics, 2020, 133(5): 1569-1602.
[42] HUANG X Q, KEMPF H, GANAL M W, R?DER M S. Advanced backcross QTL analysis in progenies derived from a cross between a German elite winter wheat variety and a synthetic wheat (L.). Theoretical and Applied Genetics, 2004, 109(5): 933-943.
[43] MCCARTNEY C A, SOMERS D J, HUMPHREYS D G, LUKOW O, AMES N, NOLL J, CLOUTIER S, MCCALLUM B D. Mapping quantitative trait loci controlling agronomic traits in the spring wheat cross RL4452 בAC Domain’. Genome, 2005, 48(5): 870-883.
[44] QUARRIE S A, STEED A, CALESTANI C, SEMIKHODSKII A, LEBRETON C, CHINOY C, STEELE N, PLJEVLJAKUSI? D, WATERMAN E, WEYEN J, SCHONDELMAIER J, HABASH D Z, FARMER P, SAKER L, CLARKSON D T, ABUGALIEVA A, YESSIMBEKOVA M, TURUSPEKOV Y, ABUGALIEVA S, TUBEROSA R, SANGUINETI M C, HOLLINGTON P A, ARAGUéS R, ROYO A, DODIG D. A high-density genetic map of hexaploid wheat (L.) from the cross Chinese Spring × SQ1 and its use to compare QTLs for grain yield across a range of environments. Theoretical and Applied Genetics, 2005, 110(5): 865-880.
Utilization efficiency of improving the resistance for pre-harvest sprouting by synthetic hexaploid wheat and Chinese Wheat landrace
LIU ZeHou1, WANG Qin1, YE MeiJin2, WAN HongShen1, Yang Ning1, Yang ManYu1, Yang WuYun1, LI Jun1
1Crop Research Institute, Sichuan Academy of Agricultural Sciences/Key Laboratory of Wheat Biology and Genetic Improvement in Southwestern China, Ministry of Agriculture and Rural Affairs/Environmentally Friendly Crop Germplasm Innovation and Genetic Improvement Key Laboratory of Sichuan Province, Chengdu 610066;2College of Chemistry and Life Sciences, Chengdu Normal University, Wenjiang 611130, Sichuan
【Objective】Pre-harvest sprouting (PHS) is a serious limiting factor for wheat (L.) grain yield and end-use quality. Synthetic hexaploid wheats (SHW) and wheat landraces (WL) are important germplasm resources for improving PHS resistance in wheat. The objective of this study is to utilize PHS-resistant loci from SHW and WL for breeding PHS-resistant elite materials, which will provide a theoretical basis for improving PHS resistance of wheat cultivars.【Method】In this study, SYN792 (a synthetic hexaploid wheat from CIMMYT) and Fulingxuxumai (a Chinese wheat landrace) were used as female parents to cross and backcross with Chuanmai 45 (a sensitive variety to PHS), respectively. Two BC1F7populations including 1 796 lines were established. Seed germination index (GI) and seed germination rate of each spike (SGR) in different environments were used to evaluate PHS resistance. Two germination temperature of 25 ℃ (18GI) and 32 ℃ (19GI) were set to examine seed germinability in 2018 and 2019. 1 796 BC1F7lines were evaluated preliminarily by SGR phenotype and molecular markers detection in 2017, and the introgression lines withandresistant loci and SGR less than 35% were screened. Introgression lines withandresistant loci were used to analyze utilization efficiency of SHW and WL in PHS-resistance breeding by identifying PHS-resistance and yield related traits in 2018 and 2019.【Result】PHS resistance of 1 796 lines was evaluated preliminarily, and 537 lines with SGR value less than 35% were screened for further molecular marker detection. A total of 332 lines withandwere selected by SSR marker, and the frequency of WL introgression lines was significantly higher than that of SHW introgression lines. 332 introgression lines were used to analyze PHS-resistance and yield related traits in 2018 and 2019. There was a significant positive correlation between different PHS indexes in different years, but there was no significant difference in the values of 18GI, 18SGR and 19SGR between SHW and WL introgression lines. The average values of 18SGR, 19SGR and 18GI in SHW and WL introgression lines were lower than 23%. As far as GI value was concerned, there was obvious difference between different germination temperatures. At the germination temperature of 32 ℃, the mean 19GI value of SHWintrogression lines was significantly lower than that of WLintrogression lines.Grain color was associated with PHS resistance in SHW introgression lines, and the red-grained SHW introgression lines had lower the mean GI and SGR values than the white-grained lines. Among 73 SHW introgression lines, 11 white-grained lines showed medium or higher resistance to PHS,and the GI values of 14 red-grained lines at different germination temperatures were lower than 35%. According to the data of agronomic traits in 2018 and 2019, thousand grain weight of SHW introgression lines was significantly higher than that of WL introgression lines, but the number of grains per spike was significantly lower than that of WL introgression lines. 23 elite introgression lines including seven SHW introgression lines and 16 WL introgression lines were selected. Two SHW white-grained introgression lines had better resistance to PHS, and the GI values of two red-grained introgression lines at different germination temperatures were lower than 25%.【Conclusion】It is feasible to transferandresistance loci to PHS from SHW and WL for improving PHS-resistance of modern wheat cultivars. In this study, the breeding efficiency of WL for PHS-resistance was better than that of SHW. However, the stability of PHS-resistance of SHW introgression lines was better than that of WL introgression lines. 23 SHW and WL elite introgression lines could be used as parents to improve the PHS-resistance and yield traits in wheat. In particular, the white-grained SHW introgression line No.5201 and the red-grained SHW introgression lines No.5497 and No.5505 were very valuable parents for wheat breeding of PHS resistance.
wheat; synthetic hexaploid wheat (SHW); wheat landraces; pre-harvest sprouting (PHS); yield related yield
10.3864/j.issn.0578-1752.2024.07.004
2022-11-09;
2022-12-23
國(guó)家重點(diǎn)研發(fā)計(jì)劃(2021YFD1200603)、國(guó)家自然科學(xué)基金(U22A20472)、四川省科技計(jì)劃(2022ZDZX0014,2022NSFSC0161)、四川省財(cái)政專項(xiàng)種源1+3關(guān)鍵核心技術(shù)攻關(guān)項(xiàng)目
劉澤厚,E-mail:zehouliu@163.com。通信作者楊武云,E-mail:yangwuyun@126.com。通信作者李俊,E-mail:lijunchd@126.com
(責(zé)任編輯 李莉)