張曉戰(zhàn),董軒志,呂楠楠,劉懿雯,馬新甜,王林青,夏艷勛,蔣增海,郭運(yùn)澤,趙攀登,宋予震,楊德成,邊傳周
IRES核心區(qū)12-bp非連續(xù)插入突變對(duì)豬塞內(nèi)卡病毒復(fù)制和細(xì)胞嗜性的影響
1河南牧業(yè)經(jīng)濟(jì)學(xué)院動(dòng)物醫(yī)藥學(xué)院,鄭州 450046;2鄭州師范學(xué)院/分子生物學(xué)鄭州市重點(diǎn)實(shí)驗(yàn)室, 鄭州 450044;3中國(guó)農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所/動(dòng)物疫病防控全國(guó)重點(diǎn)實(shí)驗(yàn)室,哈爾濱 150069
【背景】塞內(nèi)卡病毒(senecavirus A, SVA)是新近暴發(fā)的一種引起豬特發(fā)性水皰病及仔豬死亡的小核糖核酸病毒。該病毒基因組5′非編碼區(qū)(untranslated region, UTR)中的內(nèi)部核糖體進(jìn)入位點(diǎn)(IRES)元件在病毒復(fù)制過(guò)程中發(fā)揮重要作用。2017年我國(guó)出現(xiàn)IRES核心區(qū)Domain II 12個(gè)堿基非連續(xù)插入的自然突變SVA毒株,在病毒復(fù)制和致病性方面存在明顯改變?!灸康摹刻接慖RES Domain II區(qū)域發(fā)生的突變對(duì)SVA的復(fù)制及細(xì)胞嗜性的影響,為進(jìn)一步了解SVA致病機(jī)制奠定基礎(chǔ)。 【方法】以實(shí)驗(yàn)室前期構(gòu)建的含HeN-1/2018株全基因組感染性克隆pHeN-1/2018為基礎(chǔ),通過(guò)定點(diǎn)突變的方式,逐步將其IRES Domain II核心區(qū)域308—317 nt的9個(gè)堿基(ACTCAAGCG)替換為GD04/2017株基因組308—328 nt的21個(gè)堿基(CACGCCTGCCGATAGACGATT),構(gòu)建重組載體pHeN-1/2018-i12并進(jìn)行了病毒拯救。隨后,利用病毒基因組克隆測(cè)序、間接免疫熒光試驗(yàn)和Western blot試驗(yàn)對(duì)所拯救病毒進(jìn)行鑒定,同時(shí)驗(yàn)證了IRES核心區(qū)12個(gè)堿基插入突變對(duì)SVA病毒體外復(fù)制能力和細(xì)胞嗜性的影響。【結(jié)果】將構(gòu)建完成的重組載體pHeN-1/2018-i12轉(zhuǎn)染細(xì)胞,盲傳至P2代,獲得致使感染細(xì)胞病變明顯、病變時(shí)間穩(wěn)定的IRES突變病毒rHeN-1/2018-i12。病毒連續(xù)傳代后測(cè)序結(jié)果表明rHeN-1/2018-i12遺傳穩(wěn)定,P5代病毒基因組序列未發(fā)生堿基突變,P10代病毒IRES區(qū)域沒(méi)有出現(xiàn)突變現(xiàn)象。用低代次的突變病毒rHeN-1/2018-i12體外感染本體動(dòng)物豬源細(xì)胞系PK-15和IBRS-2,及倉(cāng)鼠源細(xì)胞系BHK-21,進(jìn)行細(xì)胞感染試驗(yàn),結(jié)果表明rHeN-1/2018-i12與親本毒株rHeN-1/2018在PK-15、IBRS-2和BHK-21中均能導(dǎo)致明顯的細(xì)胞病變,表現(xiàn)出相似的生長(zhǎng)曲線趨勢(shì),表明IRES核心區(qū)Domain II 12個(gè)堿基突變不能夠改變對(duì)上述細(xì)胞的嗜性;但SVA突變病毒和親本株在不同細(xì)胞中的病變時(shí)間及病毒滴度上存在較大的差異,rHeN-1/2018-i12株在細(xì)胞中生長(zhǎng)能力較其親本株rHeN-1/2018差,誘使細(xì)胞病變的時(shí)間較晚,在感染24 hpi,兩者病毒滴度相差可達(dá)10倍?!窘Y(jié)論】本研究基于SVA反向遺傳操作系統(tǒng)構(gòu)建并拯救SVA IRES突變毒株,確定了IRES突變對(duì)SVA生物學(xué)特性的影響,有助于我們更好地了解SVA致病機(jī)制,拓寬我們對(duì)病毒IV型IRES功能的認(rèn)識(shí)。
塞內(nèi)卡病毒;內(nèi)部核糖體進(jìn)入位點(diǎn);反向遺傳操作系統(tǒng);病毒復(fù)制;細(xì)胞嗜性
【研究意義】豬塞內(nèi)卡病毒病是由塞內(nèi)卡病毒(senecavirus A, SVA)感染引起的一種新發(fā)、急性、水皰性傳染病,臨床癥狀主要表現(xiàn)為豬特發(fā)性水皰?。╯wine idiopathic vesicular disease , SIVD)和新生仔豬急性死亡[1-2]。該病首次在美國(guó)和加拿大等地暴發(fā),隨后蔓延至巴西、泰國(guó)、中國(guó)等多個(gè)國(guó)家,給世界養(yǎng)豬業(yè)造成了嚴(yán)重的經(jīng)濟(jì)損失[3-4]。SVA基因組為單股正鏈RNA,屬于小RNA病毒科()塞內(nèi)卡病毒屬()。該病毒基因組全長(zhǎng)約7.3 kb,包含一個(gè)開放閱讀框,編碼由2 181個(gè)氨基酸組成的多聚蛋白前體,該多聚蛋白前體在宿主和病毒蛋白酶的共同作用下裂解為12個(gè)成熟的病毒蛋白,包括4個(gè)結(jié)構(gòu)蛋白(VP4、VP2、VP3和VP1)和8個(gè)非結(jié)構(gòu)蛋白(L、2A、2B、2C、3A、3B、3C和3D)[5]。【前人研究進(jìn)展】SVA 基因組兩側(cè)分別為5′和3′非編碼區(qū)(untranslated region, UTR),5′UTR區(qū)域包含668個(gè)核苷酸,含有IV型核糖體進(jìn)入位點(diǎn)(internal ribosome entry site, IRES),在病毒mRNA翻譯過(guò)程中能夠彌補(bǔ)其無(wú)帽子結(jié)構(gòu)的不足,確保病毒感染過(guò)程中翻譯的啟動(dòng)[6];SVA 3′UTR區(qū)域包含98個(gè)核苷酸,其中末端為長(zhǎng)約30個(gè)核苷酸的poly(A)尾巴,該區(qū)域序列可折疊為兩個(gè)莖環(huán),形成類似“吻式”發(fā)夾結(jié)構(gòu),在病毒基因組RNA復(fù)制過(guò)程中發(fā)揮一定的作用[7-8]。小核糖核酸病毒基因組RNA缺乏帽子結(jié)構(gòu),通過(guò)IRES依賴性翻譯過(guò)程啟動(dòng)病毒蛋白的翻譯過(guò)程,IRES功能的發(fā)揮是確保小核糖核酸病毒感染的重要因素[9-10]。SVA的IRES結(jié)構(gòu)和功能與丙型肝炎病毒和豬瘟病毒的IRES類似,含有4個(gè)結(jié)構(gòu)域(domain),其中Domain II/III含有復(fù)雜的莖環(huán)結(jié)構(gòu)和假結(jié)結(jié)構(gòu),能夠與核不均一核糖蛋白Q(hnRNP Q)、核不均一核糖蛋白L(hnRNP L)、多聚嘧啶區(qū)結(jié)合蛋白1(PTBP1)多種IRES反式作用因子(IRES- transactivating factors, ITAFs)作用,招募40S核糖體亞基和真核翻譯起始因子,啟動(dòng)翻譯過(guò)程[8, 11]。IRES結(jié)構(gòu)域中RNA序列的改變,能夠影響病毒的復(fù)制、組織嗜性、感染譜或致病性[9]?!颈狙芯壳腥朦c(diǎn)】2017年,我國(guó)廣東地區(qū)豬群中出現(xiàn)了IRES Domain II區(qū)域308—317 nt的9個(gè)堿基()被21個(gè)堿基()置換的自然突變SVA毒株,臨床觀察突變株對(duì)豬的致病性顯著降低[12],然而該區(qū)域堿基的突變與病毒復(fù)制及細(xì)胞嗜性間的關(guān)系尚不清楚?!緮M解決的關(guān)鍵問(wèn)題】為鑒定該IRES Domain II區(qū)域的自然突變是否影響病毒的體外復(fù)制能力和細(xì)胞嗜性,本研究通過(guò)定點(diǎn)突變的方式,將SVA毒株HeN-1/2018基因組IRES核心區(qū)域Domain II 308—317 nt的9個(gè)堿基()替換為GD04/2017株基因組308—328 nt的21個(gè)堿基(),成功構(gòu)建pHeN- 1/2018-i12載體。隨后轉(zhuǎn)染細(xì)胞拯救病毒,獲得IRES Domain II區(qū)域突變株rHeN-1/2018-i12,并進(jìn)一步通過(guò)病毒感染試驗(yàn)評(píng)估突變病毒與親本毒在不同細(xì)胞中生長(zhǎng)特性。
本研究中涉及的質(zhì)粒構(gòu)建、病毒拯救及鑒定和病毒感染試驗(yàn)于 2020—2023 年在河南牧業(yè)經(jīng)濟(jì)學(xué)院河南省豬病防控工程技術(shù)研究中心完成。部分細(xì)胞感染試驗(yàn)在中國(guó)農(nóng)業(yè)科學(xué)院哈爾濱獸醫(yī)研究所完成。
豬腎細(xì)胞系PK-15、IBRS-2和倉(cāng)鼠腎成纖維細(xì)胞系BHK-21由河南省豬病工程中心實(shí)驗(yàn)室保存。SVA流行毒株HeN-1/2018分離自2018年河南地區(qū)發(fā)病豬群[13],基于該毒株基因組構(gòu)建的重組毒株rHeN-1/ 2018由河南省豬病工程中心實(shí)驗(yàn)室拯救[14]。各細(xì)胞生長(zhǎng)液為含10%胎牛血清、100 U/mL青霉素、100 μg·mL-1鏈霉素的高糖DMEM培養(yǎng)基,置于37℃含5% CO2培養(yǎng)箱中培養(yǎng)。病毒生長(zhǎng)所需細(xì)胞維持液為含2%胎牛血清、100 U/mL青霉素、100 μg ·mL-1鏈霉素的高糖DMEM培養(yǎng)基。
含HeN-1/2018株全基因組感染性克隆pHeN-1/ 2018由河南省豬病工程中心實(shí)驗(yàn)室構(gòu)建及保存[14],兔抗SVA VP2蛋白多克隆抗體由該實(shí)驗(yàn)室保存。高糖DMEM培養(yǎng)基、opti-MEM培養(yǎng)基及0.25%-EDTA胰酶購(gòu)自Gibco公司;RNA抽提試劑TRIzol Reagent購(gòu)自Invitrogen公司;膠回收試劑盒和質(zhì)粒提取試劑盒購(gòu)自天根生化生物公司;高保真DNA聚合酶和反轉(zhuǎn)錄試劑盒購(gòu)自TOYOBO東洋紡生物公司;T7體外轉(zhuǎn)錄試劑盒Transcript Aid T7 High Yield Transcription Kit購(gòu)自Thermo公司;DpnI內(nèi)切酶、Lipo6000?轉(zhuǎn)染試劑、BCA蛋白濃度測(cè)定試劑盒(增強(qiáng)型)、FITC標(biāo)記的羊抗兔IgG (H+L)抗體和HRP標(biāo)記羊抗兔IgG(H+L)抗體購(gòu)自碧云天生物公司;HRP標(biāo)記GAPDH單克隆抗體購(gòu)自武漢三鷹生物公司;胎牛血清購(gòu)自四季青天杭生物公司;細(xì)胞培養(yǎng)板及細(xì)胞培養(yǎng)瓶購(gòu)自NEST公司。
通過(guò)小RNA病毒專業(yè)數(shù)據(jù)庫(kù)(https://www. picornaviridae.com/)和NCBI數(shù)據(jù)庫(kù)檢索下載SVA代表毒株序列,將所分析毒株的基因組序列提交Clustal Omega進(jìn)行在線比對(duì)[15],分析比對(duì)不同SVA毒株5′UTR區(qū)域IRES序列之間的相似性。隨后,利用RNAfold軟件分析HeN-1/2018和IRES突變株GD04/ 2017株的IRES核心區(qū)域病毒RNA二級(jí)結(jié)構(gòu),評(píng)估在最低自由能情況下IRES Domain II區(qū)域突變前后RNA的二級(jí)結(jié)構(gòu)變化情況。
1.4.1 pHeN-1/2018-i12感染性克隆載體的構(gòu)建 以前期構(gòu)建的含HeN-1/2018株全基因組感染性克隆pHeN-1/2018為基礎(chǔ),通過(guò)多點(diǎn)突變的方式,逐步將其IRES核心區(qū)域Domain II 308—317 nt的9個(gè)堿基()替換為GD04/2017株基因組308— 328 nt的21個(gè)堿基(),獲得重組質(zhì)粒pHeN-1/2018-i12。具體步驟如下,利用IRESmut-1 F/IRESmut-1 R引物對(duì)(表1),以載體pHeN-1/2018為模板進(jìn)行PCR,PCR產(chǎn)物進(jìn)行DpnI限制性內(nèi)切酶37℃消化4 h后轉(zhuǎn)化DH10B感受態(tài)細(xì)胞,挑取單菌落進(jìn)行搖菌,通過(guò)菌液PCR鑒定陽(yáng)性克隆,測(cè)序正確的菌液提取質(zhì)粒,獲得重組載體pIRESmut-1。隨后按照上述步驟,依次通過(guò)IRESmut-2 F/IRESmut-2 R、IRESmut-3 F/IRESmut-3 R和IRESmut-4 F/IRESmut-4 R引物對(duì)(表1),將剩余的堿基進(jìn)行突變置換,獲得重組載體pHeN-1/2018- i12。
表1 引物信息
1.4.2 IRES突變病毒的體外拯救 參照文獻(xiàn)[16]的方法拯救SVA重組病毒。提前一天鋪BHK-21細(xì)胞于24孔細(xì)胞培養(yǎng)板,待其匯合度至85%左右,更換細(xì)胞培養(yǎng)液為不加抗生素的opti-MEM培養(yǎng)基。在opti-MEM溶液背景下,將1 μL轉(zhuǎn)染試劑Lipo6000TM與500 ng重組質(zhì)粒pHeN-1/2018-i12混合均勻,室溫孵育10 min,隨后轉(zhuǎn)染入狀態(tài)良好的BHK-21細(xì)胞。轉(zhuǎn)染后5 h更換細(xì)胞培養(yǎng)液,間隔12 h觀察細(xì)胞病變情況。繼續(xù)培養(yǎng)3 d后凍融細(xì)胞,離心收取上清,即為重組毒rHeN-1/2018-i12 P0代。隨后接種PK-15細(xì)胞,盲傳至出現(xiàn)明顯細(xì)胞病變,觀察記錄細(xì)胞病變情況和病毒傳代次數(shù),獲得重組毒rHeN-1/2018-i12。
1.4.3 病毒間接免疫熒光鑒定 鋪PK-15細(xì)胞于48孔細(xì)胞培養(yǎng)板,待其匯合度達(dá)到80%時(shí),按照病毒感染復(fù)數(shù)MOI為0.1的接種劑量,分別接種SVA親本株rHeN-1/2018和IRES突變株的病毒rHeN-1/ 2018-i12,同時(shí)設(shè)置未接毒細(xì)胞組。37℃孵育1 h后PBS洗滌2次,添加細(xì)胞維持液繼續(xù)培養(yǎng)。在24 hpi吸棄細(xì)胞上清,用4%多聚甲醛固定細(xì)胞30 min,隨后用0.5% Triton X-100室溫處理30 min透化細(xì)胞膜。細(xì)胞洗滌3次后用1﹕200稀釋的兔抗SVA-VP2多克隆抗體處理1 h,隨后用1﹕500稀釋的FITC標(biāo)記的羊抗兔IgG處理1 h。最后細(xì)胞用PBS洗滌4次后用1 μmol·L-1DAPI處理10 min染核,用EVOS FL 細(xì)胞成像系統(tǒng)觀察熒光情況。
1.4.4 病毒蛋白Western blot鑒定 將SVA親本株rHeN-1/2018和IRES Domain II區(qū)域突變株的病毒rHeN-1/2018-i12感染PK-15細(xì)胞,24 hpi吸棄細(xì)胞上清,收集細(xì)胞樣品,使用BCA蛋白濃度測(cè)定試劑盒測(cè)定各組樣品蛋白濃度。各組樣品處理后取等量進(jìn)行SDS-PAGE凝膠電泳,轉(zhuǎn)膜后用含5%脫脂奶粉的TBST緩沖液室溫封閉2 h。分別用1﹕1000稀釋的兔抗SVA-VP2多克隆抗體作為一抗4℃孵育過(guò)夜,洗滌3次后用1﹕5000稀釋的HRP標(biāo)記的羊抗兔IgG室溫孵育1 h。TBST緩沖液洗滌3次后用ECL顯色試劑盒處理顯色分析。各組樣品同時(shí)利用HRP標(biāo)記GAPDH單克隆抗體孵育及顯色,分析各組樣品中內(nèi)參蛋白GAPDH的表達(dá)情況。
1.5.1 病毒滴度的測(cè)定 鋪PK-15細(xì)胞于96孔細(xì)胞培養(yǎng)板,每孔150 μL,培養(yǎng)過(guò)夜;取SVA親本株rHeN-1/2018或IRES突變株的病毒rHeN-1/2018-i12細(xì)胞培養(yǎng)物用細(xì)胞維持液進(jìn)行10倍倍比稀釋,稀釋度從10-1到10-10;將96孔細(xì)胞培養(yǎng)板中細(xì)胞培養(yǎng)基吸棄,用無(wú)菌PBS洗滌PK-15細(xì)胞2次,加入細(xì)胞維持液,100 μL/孔;然后加入各個(gè)稀釋度的病毒稀釋液,100 μL/孔,每個(gè)稀釋度做8個(gè)重復(fù),同時(shí)設(shè)置未接種病毒陰性對(duì)照組;處理后細(xì)胞放置于37℃、5%CO2培養(yǎng)箱培養(yǎng),逐日觀察并記錄各孔細(xì)胞病變情況。按照Reed-Muench氏法來(lái)計(jì)算各SVA病毒株病毒滴度TCID50。
1.5.2 IRES突變病毒的遺傳穩(wěn)定性評(píng)價(jià) 將拯救病毒rHeN-1/2018-i12與親本株病毒rHeN-1/2018分別按照0.1 MOI接種PK-15細(xì)胞,連續(xù)傳代10次。取SVA親本株rHeN-1/2018和IRES Domain II區(qū)域突變株的病毒rHeN-1/2018-i12 P5代和P10代病毒培養(yǎng)物,利用Trizol法提取SVA毒株病毒培養(yǎng)物的病毒RNA,反轉(zhuǎn)錄為cDNA,利用高保真酶PrimeSTAR HS進(jìn)行擴(kuò)增SVA病毒全基因組序列,測(cè)序分析,鑒定親本毒株和重組毒株的遺傳穩(wěn)定性。
1.5.3 IRES突變病毒在不同細(xì)胞上的生長(zhǎng)曲線 分別將豬腎細(xì)胞系PK-15、IBRS-2和倉(cāng)鼠腎成纖維細(xì)胞系BHK-21鋪于24孔細(xì)胞培養(yǎng)板,待其匯合度至85%時(shí),按照病毒感染復(fù)數(shù)MOI為0.1的接種劑量,分別接種SVA親本株rHeN-1/2018和IRES Domain II區(qū)域突變株的病毒rHeN-1/2018-i12。37℃孵育1h后更換細(xì)胞維持液培養(yǎng)。在病毒接種后的12、24、36和48 h收取細(xì)胞樣品。各毒株每個(gè)時(shí)間點(diǎn)設(shè)置3個(gè)重復(fù)。隨后測(cè)定病毒滴度TCID50,繪制病毒的生長(zhǎng)曲線。
通過(guò)對(duì)比GD04/2017株和其他分支SVA毒株基因組5′UTR區(qū)域序列,發(fā)現(xiàn)GD04/2017株IRES元件存在獨(dú)特突變:即經(jīng)典SVA毒株IRES 308—317位的9個(gè)堿基()被置換成了21個(gè)堿基()(圖1-A)。RNA結(jié)構(gòu)預(yù)測(cè)分析顯示,GD04/2017株所具有的非連續(xù)插入基因片段使IRES Domain IIa區(qū)莖環(huán)結(jié)構(gòu)明顯改變(圖1-B)。
圖1 不同SVA毒株IRES核心區(qū)序列比對(duì)(A)及RNA二級(jí)結(jié)構(gòu)分析(B)
將重組載體pHeN-1/2018-i12轉(zhuǎn)染BHK-21細(xì)胞,轉(zhuǎn)染后48 h時(shí)無(wú)明顯的細(xì)胞病變現(xiàn)象。盲傳至P2代時(shí),感染PK-15細(xì)胞48 h,部分細(xì)胞開始出現(xiàn)病變,72 hpi 80%細(xì)胞病變明顯,出現(xiàn)細(xì)胞變圓、皺縮、脫落現(xiàn)象,收獲病毒液,獲得重組毒株rHeN-1/ 2018-i12。自P2代以后,IRES突變株rHeN-1/2018- i12感染PK-15細(xì)胞病變時(shí)間趨于穩(wěn)定,在感染后48 h可以導(dǎo)致感染細(xì)胞出現(xiàn)明顯細(xì)胞病變。隨后用P3代的rHeN-1/2018-i12接種PK-15細(xì)胞,測(cè)定其病毒滴度為105.31TCID50/0.1mL。
將MOI為0.1的親本株病毒rHeN-1/2018和突變株病毒rHeN-1/2018-i12分別感染PK-15細(xì)胞,觀察細(xì)胞病變情況。結(jié)果表明親本株rHeN-1/ 2018在24 hpi細(xì)胞開始出現(xiàn)細(xì)胞病變,40 hpi 90%細(xì)胞出現(xiàn)病變;而IRES Domain II區(qū)域突變株rHeN-1/2018-i12 感染組細(xì)胞病變出現(xiàn)較晚,在感染30 hpi細(xì)胞開始出現(xiàn)細(xì)胞病變,40 hpi 60%— 70%細(xì)胞出現(xiàn)病變,48 hpi 90%細(xì)胞出現(xiàn)病變(圖2)。
圖2 不同SVA毒株感染PK-15細(xì)胞試驗(yàn)
通過(guò)間接免疫熒光試驗(yàn)和Western blot試驗(yàn)證實(shí)所拯救病毒為SVA毒株,分別將親本株病毒rHeN-1/ 2018和突變株病毒rHeN-1/2018-i12感染PK15細(xì)胞,24 hpi后固定細(xì)胞后通過(guò)抗SVA-VP2多克隆抗體進(jìn)行間接免疫熒光試驗(yàn),分析感染細(xì)胞內(nèi)VP2蛋白的存在情況。結(jié)果顯示rHeN-1/2018和rHeN-1/2018-i12感染組細(xì)胞內(nèi)均發(fā)現(xiàn)特異性亮綠色熒光,而未感染細(xì)胞組沒(méi)有觀察到熒光細(xì)胞(圖3),說(shuō)明rHeN-1/2018和rHeN-1/2018-i12病毒培養(yǎng)物中存在SVA病毒。此外,對(duì)比不同感染組含綠色熒光細(xì)胞數(shù)發(fā)現(xiàn),rHeN-1/2018感染組含綠色熒光細(xì)胞數(shù)明顯多于rHeN-1/2018-i12感染組,表明在24 hpi時(shí)rHeN-1/2018感染組內(nèi)的病毒含量高于rHeN-1/2018-i12感染組。此外,Western blot試驗(yàn)進(jìn)一步證實(shí)了親本株病毒rHeN-1/2018和突變株病毒rHeN-1/2018-i12的VP2結(jié)構(gòu)蛋白能夠在感染細(xì)胞內(nèi)表達(dá),且rHeN-1/2018感染組的VP2蛋白表達(dá)量要明顯高于rHeN-1/2018-i12感染組(圖4)。
圖3 不同SVA毒株的間接免疫熒光試驗(yàn)
為確定IRES突變株病毒是否具有良好的遺傳穩(wěn)定性,將親本株病毒rHeN-1/2018和突變株病毒rHeN- 1/2018-i12連續(xù)在PK-15細(xì)胞傳代10次,分析其病毒基因組穩(wěn)定性。針對(duì)病毒基因組和5’UTR區(qū)域分別設(shè)計(jì)引物進(jìn)行克隆測(cè)序,RT-PCR試驗(yàn)證實(shí)各代次rHeN-1/2018和rHeN-1/2018-i12均能夠擴(kuò)增出條帶單一,大小正確的目的條帶(圖5-A)。此外,對(duì)P5代和P10代親本株病毒rHeN-1/2018和突變株病毒rHeN-1/2018-i12進(jìn)行全基因組測(cè)序分析,P5代的rHeN-1/2018和rHeN-1/2018-i12沒(méi)有出現(xiàn)基因組變異的情況(圖5-B),P10代次的rHeN-1/2018-i12毒株在2C基因區(qū)域C4260T突變,為同義突變。
圖4 不同SVA毒株感染過(guò)程中VP2蛋白的Western blot鑒定
為驗(yàn)證IRES突變病毒與親本株之間在細(xì)胞嗜性及生長(zhǎng)特性的差異,分別將P3代次的親本株病毒rHeN-1/2018和IRES Domain II區(qū)域突變株病毒rHeN-1/2018-i12感染PK-15、IBRS-2和BHK-21等細(xì)胞,收取不同時(shí)間點(diǎn)病毒培養(yǎng)物,測(cè)定病毒生長(zhǎng)曲線。試驗(yàn)結(jié)果表明,rHeN-1/2018和rHeN-1/2018-i12病毒在PK-15、IBRS-2和BHK-21中表現(xiàn)相似的生長(zhǎng)曲線,其中在PK-15和IBRS-2細(xì)胞中病毒滴度明顯高于BHK-21細(xì)胞,說(shuō)明兩株病毒的細(xì)胞嗜性較類似,無(wú)明顯差異(圖6)。此外,通過(guò)分析病毒在不同細(xì)胞上的生長(zhǎng)曲線,發(fā)現(xiàn)rHeN-1/2018-i12株在PK15細(xì)胞和IBRS-2細(xì)胞中生長(zhǎng)能力明顯弱于rHeN-1/2018。在感染PK15細(xì)胞24 h,兩者病毒滴度相差可達(dá)10倍。在PK-15細(xì)胞中,rHeN-1/2018和rHeN-1/2018-i12均在感染后12、24和36 hpi病毒滴度逐步明顯上升,但rHeN-1/2018毒株在36 hpi病毒滴度達(dá)到最高值,而rHeN-1/2018-i12在48 hpi病毒滴度達(dá)到最高。然而,其病毒滴度顯著低于親本毒株rHeN-1/2018。
圖6 SVA重組病毒和親本毒株在不同細(xì)胞中的生長(zhǎng)曲線
蛋白的翻譯過(guò)程包含起始、延伸和終止三個(gè)階段,其中,起始階段是蛋白翻譯的限速階段,也是調(diào)控宿主和病原蛋白表達(dá)的重要靶點(diǎn)。蛋白質(zhì)翻譯的啟動(dòng)存在5’m7GpppN帽子依賴性和非依賴性兩種方式。帽子非依賴性過(guò)程又稱為IRES依賴性翻譯過(guò)程,多見(jiàn)于mRNA缺乏帽子結(jié)構(gòu)的小核糖核酸病毒和黃病毒,在宿主(應(yīng)激、細(xì)胞周期與凋亡相關(guān)基因)、DNA病毒(皰疹病毒等)和逆轉(zhuǎn)錄病毒部分基因等也能夠利用IRES進(jìn)行翻譯[9, 17-18]。病毒感染過(guò)程中能夠與多種eIFs相互作用(eIF4E、eIF4G、eIF4A等),影響宿主的帽子依賴性翻譯過(guò)程,而IRES依賴性翻譯過(guò)程不受影響,為病毒或宿主部分基因的表達(dá)創(chuàng)造有利的環(huán)境[19-20]。
IRES序列改變或構(gòu)象發(fā)生變化時(shí),能夠改變其結(jié)合40S核糖體亞基和相關(guān)ITAFs的能力,進(jìn)而影響病毒在不同物種、不同組織及細(xì)胞中復(fù)制翻譯的能力,對(duì)病毒的組織嗜性、感染譜及致病性產(chǎn)生一定的影響[9, 17, 21]。脊髓灰質(zhì)炎病毒(poliovirus, PV)Sabin減毒疫苗株I、II、III型的IRES Domain V中的480位、481位和472位堿基突變,其與ITAFs和40S核糖體亞基結(jié)合能力發(fā)生改變,導(dǎo)致翻譯效率降低,影響病毒的毒力及細(xì)胞嗜性[22]。將PV的IRES替換為其他類型的IRES時(shí),重組PV的細(xì)胞嗜性和毒力發(fā)生明顯改變[23]。FMDV IRES翻譯過(guò)程依賴于核糖體蛋白R(shí)PL13和ATP依賴的RNA解旋酶3(DDX3)協(xié)同作用,其Domain III/IV替換為牛鼻病毒的IRES Domain III/IV,重組FMDV的細(xì)胞嗜性發(fā)生明顯改變,在豬源細(xì)胞上的復(fù)制能力明顯下降[24]。HCV感染過(guò)程中,不同組織分離毒株的IRES區(qū)域存在堿基變異,且這些變異毒株的組織嗜性存在明顯差異[25]。SVA是一種新發(fā)的小核糖核酸病毒,IRES依賴性翻譯過(guò)程在SVA復(fù)制過(guò)程中發(fā)揮關(guān)鍵性作用。2017年我國(guó)境內(nèi)出現(xiàn)了自然弱毒株GD04/2017,其IRES存在非連續(xù)12個(gè)堿基的插入[12]。本研究以HeN-1/2018為背景,基于反向遺傳操作技術(shù)將其IRES Domain II區(qū)域插入12個(gè)堿基,拯救重組病毒rHeN-1/2018-i12,并進(jìn)一步證實(shí)IRES Domain II區(qū)域突變能夠明顯降低SVA復(fù)制能力。
近年來(lái),國(guó)內(nèi)豬群先后出現(xiàn)了豬塞內(nèi)卡病毒病和非洲豬瘟等新發(fā)豬病,該兩種病原對(duì)環(huán)境污染能力強(qiáng),傳染性高,給我國(guó)養(yǎng)豬業(yè)帶來(lái)了嚴(yán)重的經(jīng)濟(jì)損失[26-27]。其中,SVA疫情持續(xù)在美洲和亞洲養(yǎng)豬業(yè)發(fā)達(dá)國(guó)家發(fā)生,SVA病原在不斷進(jìn)化,基因組發(fā)生了突變、插入、重組的現(xiàn)象[4, 12-13],出現(xiàn)了不同毒力的SVA流行毒株[28],且在部分地區(qū)健康豬群中存在隱性感染帶毒的情況[29],給SVA疫病的防控帶來(lái)了巨大的挑戰(zhàn)。作為一種新發(fā)的動(dòng)物疫病,國(guó)內(nèi)外關(guān)于SVA的研究多集中于流行病學(xué)調(diào)查、毒力基因鑒定、抗病毒免疫等方面[30],目前世界范圍內(nèi)尚無(wú)針對(duì)SVA疫病防控的生物制品上市。本研究基于病毒反向遺傳操作技術(shù)平臺(tái)構(gòu)建并成功拯救SVA IRES Domain II區(qū)域突變毒株,分析了IRES Domain II區(qū)域的突變對(duì)SVA生物學(xué)特性的影響,有助于我們更好了解SVA致病機(jī)制,拓寬我們對(duì)IV型IRES結(jié)構(gòu)和功能的認(rèn)識(shí)。針對(duì)影響病毒復(fù)制和毒力關(guān)鍵IRES區(qū)域進(jìn)行改造,使當(dāng)前流行的強(qiáng)毒株失去致病性,將有助于構(gòu)建更加安全有效的弱毒疫苗和分子標(biāo)記疫苗。
基于美系SVA毒株HeN-1/2018為背景,利用反向遺傳技術(shù)將其IRES 308—317 nt的9個(gè)堿基()和21個(gè)堿基()進(jìn)行置換,經(jīng)間接免疫熒光試驗(yàn)和測(cè)序鑒定,成功拯救IRES突變毒株rHeN-1/2018-i12,并證實(shí)IRES Domain II區(qū)域中12個(gè)堿基非連續(xù)插入突變不能夠影響SVA對(duì)PK-15、IBRS-2和BHK-21細(xì)胞的嗜性,但可以明顯降低病毒在感染細(xì)胞中的早期復(fù)制能力。這一發(fā)現(xiàn),為進(jìn)一步了解SVA致病機(jī)制奠定了基礎(chǔ)。
[1] GUO B Q, PI?EYRO P E, RADEMACHER C J, ZHENG Y, LI G W, YUAN J, HOANG H, GAUGER P C, MADSON D M, SCHWARTZ K J, CANNING P E, ARRUDA B L, COOPER V L, BAUM D H, LINHARES D C, MAIN R G, YOON K J. Novel Senecavirus A in swine with vesicular disease, United States, July 2015. Emerging Infectious Diseases, 2016, 22(7): 1325-1327.
[2] CANNING P, CANON A, BATES J L, GERARDY K, LINHARES D C L, PI?EYRO P E, SCHWARTZ K J, YOON K J, RADEMACHER C J, HOLTKAMP D, KARRIKER L. Neonatal mortality, vesicular lesions and lameness associated with senecavirus A in a U.S. sow farm. Transboundary and Emerging Diseases, 2016, 63(4): 373-378.
[3] ZHANG X L, ZHU Z X, YANG F, CAO W J, TIAN H, ZHANG K S, ZHENG H X, LIU X T. Review of Seneca valley virus: A call for increased surveillance and research. Frontiers in Microbiology, 2018, 9: 940.
[4] WU H G, LI C, JI Y C, MOU C X, CHEN Z H, ZHAO J W. The evolution and global spatiotemporal dynamics of senecavirus A. Microbiology Spectrum, 2022, 10(6): e0209022.
[5] 陶倩, 曹飛, 彭珂楠, 朱玲, 徐志文. 豬塞內(nèi)卡病毒病原學(xué)研究進(jìn)展. 病毒學(xué)報(bào), 2022, 38(2): 505-512.
TAO Q, CAO F, PENG K N, ZHU L, XU Z W. Research progress on etiology of porcine Seneca virus. Chinese Journal of Virology, 2022, 38(2): 505-512. (in Chinese)
[6] WILLCOCKS M M, LOCKER N, GOMWALK Z, ROYALL E, BAKHSHESH M, BELSHAM G J, IDAMAKANTI N, BURROUGHS K D, REDDY P S, HALLENBECK P L, ROBERTS L O. Structural features of the Seneca Valley virus internal ribosome entry site (IRES) element: A picornavirus with a pestivirus-like IRES. Journal of Virology, 2011, 85(9): 4452-4461.
[7] HALES L M, KNOWLES N J, REDDY P S, XU L, HAY C, HALLENBECK P L. Complete genome sequence analysis of Seneca Valley virus-001, a novel oncolytic picornavirus. The Journal of General Virology, 2008, 89(Pt 5): 1265-1275.
[8] LIU F X, WANG Q, WANG N, SHAN H. Impacts of single nucleotide deletions from the 3' end of Senecavirus A 5' untranslated region on activity of viral IRES and on rescue of recombinant virus. Virology, 2021, 563: 126-133.
[9] LEE K M, CHEN C J, SHIH S R. Regulation mechanisms of viral IRES-driven translation. Trends in Microbiology, 2017, 25(7): 546-561.
[10] MARTINEZ-SALAS E, FRANCISCO-VELILLA R, FERNANDEZ- CHAMORRO J, EMBAREK A M. Insights into structural and mechanistic features of viral IRES elements. Frontiers in Microbiology, 2018, 8: 2629.
[11] FRASER C S, DOUDNA J A. Structural and mechanistic insights into hepatitis C viral translation initiation. Nature Reviews Microbiology, 2007, 5: 29-38.
[12] WANG M M, CHEN L L, PAN S N, MOU C X, SHI K C, CHEN Z H. Molecular evolution and characterization of novel Seneca Valley virus (SVV) strains in South China. Infection, Genetics and Evolution: Journal of Molecular Epidemiology and Evolutionary Genetics in Infectious Diseases, 2019, 69: 1-7.
[13] WANG Z, ZHANG X Z, YAN R Q, YANG P P, WU Y Y, YANG D D, BIAN C Z, ZHAO J. Emergence of a novel recombinant Seneca Valley virus in Central China, 2018. Emerging Microbes & Infections, 2018, 7(1): 180.
[14] ZHANG X Z, LU J Z, DENG T W, ZHAO P D, PENG Z F, CHEN L L, QIAN M W, GUO Y W, QIAO H X, SONG Y Z, XIA Y X, BIAN C Z, WANG Z. Development of an improved dual-promoter-based reverse genetics system for emerging Senecavirus A. Journal of Virological Methods, 2020, 286: 113973.
[15] SIEVERS F, HIGGINS D G. Clustal Omega for making accurate alignments of many protein sequences. Protein Science: a Publication of the Protein Society, 2018, 27(1): 135-145.
[16] 張曉戰(zhàn), 楊磊, 鄧同煒, 趙攀登, 彭志鋒, 陳露露, 郭懿文, 夏艷勛, 喬宏興, 邊傳周, 王增. 表達(dá)綠色熒光蛋白重組豬塞內(nèi)卡病毒的構(gòu)建及初步應(yīng)用. 畜牧獸醫(yī)學(xué)報(bào), 2021, 52(10): 2978-2985.
ZHANG X Z, YANG L, DENG T W, ZHAO P D, PENG Z F, CHEN L L, GUO Y W, XIA Y X, QIAO H X, BIAN C Z, WANG Z. Development and application of recombinant senecavirus A expressing the green fluorescent protein. Acta Veterinaria et Zootechnica Sinica, 2021, 52(10): 2978-2985. (in Chinese)
[17] ROBERTS L, WIEDEN H J. Viruses, IRESs, and a universal translation initiation mechanism. Biotechnology & Genetic Engineering Reviews, 2018, 34(1): 60-75.
[18] 朱元源, 韓燾, 鄒興啟, 范學(xué)政, 徐璐, 王琴, 趙啟祖. 豬瘟病毒石門重組標(biāo)記毒株的構(gòu)建與拯救. 中國(guó)農(nóng)業(yè)科學(xué), 2013, 46(1): 187-194. doi: 10.3864/j.issn.0578-1752.2013.01.022.
ZHU Y Y, HAN T, ZOU X Q, FAN X Z, XU L, WANG Q, ZHAO Q Z. Construction and rescue of recombinant classical swine fever virus with Shimen structure protein and flag marker. Scientia Agricultura Sinica, 2013, 46(1): 187-194. doi: 10.3864/j.issn.0578-1752.2013.01. 022. (in Chinese)
[19] ARHAB Y, BULAKHOV A G, PESTOVA T V, HELLEN C U T. Dissemination of internal ribosomal entry sites (IRES) between viruses by horizontal gene transfer. Viruses, 2020, 12(6): 612.
[20] 樊帥, 鐘函, 楊中元, 何文瑞, 萬(wàn)博, 魏戰(zhàn)勇, 韓世充, 張改平. 非洲豬瘟病毒MGF110-5L-6L蛋白誘導(dǎo)宿主細(xì)胞翻譯阻滯和應(yīng)激顆粒形成的作用機(jī)制. 中國(guó)農(nóng)業(yè)科學(xué), 2023, 56(7): 1401-1416. doi: 10.3864/j.issn.0578-1752.2023.07.016.
FAN S, ZHONG H, YANG Z Y, HE W R, WAN B, WEI Z Y, HAN S C, ZHANG G P. African swine fever virus MGF110-5L-6L induces host cell translation arrest and stress granule formation by activating the PERK/PKR-eIF2α pathway. Scientia Agricultura Sinica, 2023, 56(7): 1401-1416. doi: 10.3864/j.issn.0578-1752.2023.07.016. (in Chinese)
[21] 傅美賢, 龍健兒. 病毒IRES的結(jié)構(gòu)及IRES介導(dǎo)的蛋白質(zhì)翻譯研究進(jìn)展. 生命科學(xué), 2021, 33(4): 407-418.
FU M X, LONG J E. Research progress on the structure of viral IRES and IRES-mediated protein translation. Chinese Bulletin of Life Sciences, 2021, 33(4): 407-418. (in Chinese)
[22] AVANZINO B C, JUE H, MILLER C M, CHEUNG E, FUCHS G, FRASER C S. Molecular mechanism of poliovirus Sabin vaccine strain attenuation. The Journal of Biological Chemistry, 2018, 293(40): 15471-15482.
[23] GUEST S, PILIPENKO E, SHARMA K, CHUMAKOV K, ROOS R P. Molecular mechanisms of attenuation of the Sabin strain of poliovirus type 3. Journal of Virology, 2004, 78(20): 11097-11107.
[24] SUN C, YANG D C, GAO R Y, LIANG T, WANG H W, ZHOU G H, YU L. Modification of the internal ribosome entry site element impairs the growth of foot-and-mouth disease virus in porcine-derived cells. The Journal of General Virology, 2016, 97(4): 901-911.
[25] DI LIBERTO G, ROQUE-AFONSO A M, KARA R, DUCOULOMBIER D, FALLOT G, SAMUEL D, FERAY C. Clinical and therapeutic implications of hepatitis C virus compartmentalization. Gastroenterology, 2006, 131(1): 76-84.
[26] 羅玉子, 孫元, 王濤, 仇華吉. 非洲豬瘟: 我國(guó)養(yǎng)豬業(yè)的重大威脅. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(21): 4177-4187. doi: 10.3864/j.issn.0578- 1752.2018.21.016.
LUO Y Z, SUN Y, WANG T, QIU H J. African swine fever: a major threat to the Chinese swine industry. Scientia Agricultura Sinica, 2018, 51(21): 4177-4187. doi: 10.3864/j.issn.0578-1752.2018.21.016. (in Chinese)
[27] LIU F X, WANG Q Q, HUANG Y L, WANG N, SHAN H. A 5-year review of senecavirus A in China since its emergence in 2015. Frontiers in Veterinary Science, 2020, 7: 567792.
[28] ZHANG H W, CHEN P, HAO G X, LIU W Q, CHEN H C, QIAN P, LI X M. Comparison of the pathogenicity of two different branches of senecavirus a strain in China. Pathogens, 2020, 9(1): 39.
[29] GAO H, CHEN Y J, XU X Q, XU Z Y, XU S J, XING J B, LIU J, ZHA Y F, SUN Y K, ZHANG G H. Comprehensive phylogeographic and phylodynamic analyses of global Senecavirus A. Frontiers in Microbiology, 2022, 13: 980862.
[30] ZHAO K, ZHANG S X, LIU X N, GUO X R, GUO Z M, ZHANG X Z, YUAN W Z. The game between host antiviral innate immunity and immune evasion strategies of senecavirus A-A cell biological perspective. Frontiers in Immunology, 2022, 13: 1107173.
Effect of 12 Nucleotides Natural Insertion within the Internal Ribosome Entry Site Core Region on the Replication and Cellular Tropism of Porcine Senecavirus A
ZHANG XiaoZhan1, DONG XuanZhi1, Lü NanNan1,LIU YiWen1, MA XinTian1, WANG LinQing2, XIA YanXun1, JIANG ZengHai1, GUO YunZe1, ZHAO PanDeng1, SONG YuZhen1, YANG DeCheng3, BIAN Chuanzhou1
1College of Veterinary Medicine, Henan University of Animal Husbandry and Economy, Zhengzhou 450046,2Zhengzhou Key Laboratory of Molecular Biology, Zhengzhou Normal University, Zhengzhou 450044,3Harbin Veterinary Research Institute, Chinese Academy of Agricultural Sciences/State Key Laboratory for Animal Disease Control and Prevention, Harbin 150069
【Background】Senecavirus A (SVA) is a newly emerged picornavirus causing swine idiopathic vesicular disease and epidemic transient neonatal losses. The internal ribosome entry site (IRES) located in 5’ untranslated region (UTR) of SVA genome plays a critical role in virus replication. In 2017, a natural mutant SVA strain, with 12 nucleotides discontinuously inserted into the IRES core region Domain II, was identified in China, and its replication capacity and pathogenicity changed significantly. 【Objective】The aim of this study was to investigate the effects of IRES Domain II mutations on SVA replication and cell tropism, and to lay a foundation for further understanding the pathogenesis of SVA. 【Method】An IRES mutant plasmid of pHeN-1/2018-i12 based on the background of pHeN-1/2018 were constructed, and the DNA-launched infectious clone of HeN-1/2018, with 9 nucleotides in IRES region of HeN-1/2018 genome (308-317 nt, ACTCAAGCG), were gradually replaced by the 21 nucleotides in GD04/2017 genome (308-328 nt, CACGCCTGCCGATAGACGATT) through multiple site-directed mutagenesis. The recombinant virus rHeN-1/2018-i12 was rescued and then identified by viral nucleotide genome examination, indirect immunofluorescence assay and Western blot assay, which was further examined the effect of 12 nucleotides natural insertion within the IRES core region Domain II on the replication and cellular tropism of SVA. 【Result】The pHeN-1/2018-i12 was then directly transfected into PK-15 cells and the recombinant virus rHeN-1/2018-i12 caused stable cytopathic effect was harvested after twice blind passages. Furthermore, the cellular tropism and growth kinetic of rHeN-1/2018-i12 was further investigated via virus infection assays. The viral genome of the IRES mutant virus rHeN-1/2018-i12 in the fifth and tenth passage were sequenced, and results showed that the IRES mutations passed on to the progeny viruses stably, with no nucleotide mutation in viral genome at fifth passage, and no nucleotide mutation in viral 5’-UTR region at tenth passage. Moreover, the growth characteristics of low passage recombinant virus rHeN-1/2018-i12 were further investigated in porcine cell lines PK-15 and IBRS-2, and hamster cell line BHK-21. The results showed that the recombinant virus rHeN-1/2018-i12 shared similar cellular tropism and growth dynamics with parental virus rHeN-1/2018, and all the two viruses could cause obvious CPE in PK-15 cells, IBRS-2 cells and BHK-21 cells, which indicated the mutation of 12 nucleotides insertion in the IRES core region Domain II had no significant difference in cellular tropism. Importantly, the virus-induced CPE time of rHeN-1/2018-i12 was later than that of rHeN-1/2018, and the viral titer of rHeN-1/2018-i12 was also lower than that of rHeN-1/2018 at the same time point post infection, especially at the 24 hpi, the difference of virus titer between the two viruses can be up to 10 times. 【Conclusion】The IRES mutant virus rHeN-1/2018-i12 was constructed and rescued, and further confirmed the influence of IRES mutation on SVA viral biological characteristics in this study, which provided an insight of the pathogenesis of SVA, and broadened our understanding of the function of viral type IV IRES.
sencavirus A; internal ribosome entry site; reverse genetics system; virus replication; cellular tropism
10.3864/j.issn.0578-1752.2024.07.015
2023-09-12;
2023-12-31
國(guó)家自然科學(xué)基金(32002264)、河南省高校科技創(chuàng)新人才支持計(jì)劃(24HASTIT061)、河南省科技攻關(guān)項(xiàng)目(232102110109)、河南省自然科學(xué)基金(222300420586)、河南牧業(yè)經(jīng)濟(jì)學(xué)院獸醫(yī)重點(diǎn)學(xué)科基金(XJXK202202)
張曉戰(zhàn),Tel:0371-86176275;E-mail:zhangxz@hnuahe.edu.cn。通信作者邊傳周,Tel:0371-86176197;E-mail:chuanzhou-bian@126.com。通信作者楊德成,Tel:0451-51051774;E-mail:yangdecheng@caas.cn
(責(zé)任編輯 林鑒非)