陳兵先,張琪,戴彰言,周旭,劉軍
水楊酸引發(fā)提高低溫下水稻種子萌發(fā)活力的生理與分子效應(yīng)
陳兵先,張琪,戴彰言,周旭,劉軍
廣東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)生物基因研究中心/廣東省農(nóng)作物種質(zhì)資源保護(hù)與利用重點(diǎn)實(shí)驗(yàn)室,廣州 510640
【目的】研究水楊酸(SA)引發(fā)對(duì)低溫下水稻種子萌發(fā)活力的影響及生理響應(yīng),揭示SA引發(fā)對(duì)脫落酸(ABA)和赤霉素(GA)代謝途徑相關(guān)基因以及細(xì)胞壁松弛基因的誘導(dǎo)模式,為水稻種子低溫萌發(fā)研究提供理論依據(jù)。【方法】以秈型三系雜交水稻泰豐優(yōu)208種子為材料,通過(guò)種子引發(fā)處理,分析SA對(duì)種子低溫萌發(fā)活力及生理的影響,并通過(guò)qRT-PCR技術(shù)分析ABA、GA和擴(kuò)展蛋白基因響應(yīng)SA引發(fā)的表達(dá)模式?!窘Y(jié)果】低溫(15 ℃)顯著推遲水稻種子萌發(fā)進(jìn)程。在低溫下萌發(fā)1 d種子中,其內(nèi)源SA濃度是常溫(28 ℃)下的1.7倍;但對(duì)于5 d的幼苗而言,低溫下的SA濃度僅為常溫下濃度的0.6%。SA引發(fā)可有效提高種子在低溫下的萌發(fā)活力,尤其以2 000 μmol·L-1SA效果最為顯著,該濃度顯著提高了低溫下種子的發(fā)芽指數(shù)、活力指數(shù)、芽長(zhǎng)、根長(zhǎng)、鮮重和干重,其中活力指數(shù)分別為未引發(fā)種子(CK1)和水引發(fā)種子(CK2)的3和2倍。在生理指標(biāo)方面,SA引發(fā)提高了低溫萌發(fā)過(guò)程中種子的可溶性糖、脯氨酸以及活性氧含量,增加了總淀粉酶、-淀粉酶、超氧化物歧化酶(SOD)和過(guò)氧化氫酶(CAT)活性,降低了丙二醛(MDA)含量。與CK1相比,2 000 μmol·L-1SA引發(fā)將種子ABA含量降低了79%,同時(shí)將IAA和GA1含量增加了32.2%和2.66倍。在基因表達(dá)方面,對(duì)于2 000 μmol·L-1SA引發(fā)的種子,ABA合成基因和的表達(dá)量分別比CK1降低了94.26%和90.24%;而ABA分解基因和的表達(dá)量分別為CK1的5.9和3.9倍。與CK1相比,SA引發(fā)顯著上調(diào)了GA合成基因、和的表達(dá)量,并顯著下調(diào)GA分解基因和的表達(dá)量。在幾個(gè)候選的細(xì)胞壁松弛因子擴(kuò)展蛋白基因中,除了外,其余幾個(gè)同源基因均在一定程度上被引發(fā)而上調(diào)表達(dá)。與CK1相比,2 000 μmol·L-1SA引發(fā)分別使、和的表達(dá)量上調(diào)12.2、5.9和6.1倍。【結(jié)論】SA引發(fā)可顯著緩解低溫對(duì)于水稻種子萌發(fā)和幼苗生長(zhǎng)的影響??赡苁怯捎赟A提高SOD、CAT等抗氧化酶活性,降低MDA的產(chǎn)生,增加可溶性糖和脯氨酸的含量,進(jìn)而增強(qiáng)種子和幼苗對(duì)于低溫的耐受能力。另一方面,SA引發(fā)通過(guò)降低種子內(nèi)源ABA含量,增加GA1含量,增強(qiáng)總淀粉酶和-淀粉酶活性,促進(jìn)細(xì)胞壁松弛相關(guān)基因的表達(dá),從而促進(jìn)低溫下的種子萌發(fā)和幼苗生長(zhǎng)。
水稻;低溫脅迫;種子引發(fā);水楊酸;生理指標(biāo);基因表達(dá)
【研究意義】水稻是我國(guó)最重要的糧食作物之一,其種子的萌發(fā)質(zhì)量在很大程度上決定著營(yíng)養(yǎng)體建成以及稻米的產(chǎn)量和品質(zhì)。種子引發(fā)通過(guò)將種子預(yù)吸脹處理,增強(qiáng)酶活性、提前動(dòng)員代謝物及營(yíng)養(yǎng)物質(zhì)轉(zhuǎn)運(yùn),是一種有效的增強(qiáng)作物抗逆能力,提高種子萌發(fā)、成苗,甚至產(chǎn)量的播前處理方法[1]。作為喜溫作物,水稻對(duì)溫度反應(yīng)敏感,在15—20 ℃時(shí)種子發(fā)芽緩慢,生長(zhǎng)發(fā)育受到不利影響。然而在我國(guó)多個(gè)亞熱帶水稻產(chǎn)區(qū),直播稻播種后極易遭受低溫脅迫,給水稻的高產(chǎn)、穩(wěn)產(chǎn)帶來(lái)嚴(yán)重威脅[2]。因此,通過(guò)引發(fā)處理提高種子在低溫下的成苗能力對(duì)確保水稻栽培質(zhì)量以及稻米產(chǎn)量與品質(zhì)具有重要意義?!厩叭搜芯窟M(jìn)展】直播稻以其省時(shí)省力、節(jié)約成本等優(yōu)勢(shì)近年來(lái)逐漸受到農(nóng)業(yè)生產(chǎn)的青睞。然而由于水稻播種期常常受到極端低溫的侵襲,導(dǎo)致種子因未能正常萌發(fā)而大面積缺苗,成為直播稻生產(chǎn)中亟需突破的技術(shù)瓶頸。引發(fā)技術(shù)通過(guò)在播種前給予種子適當(dāng)?shù)哪婢程幚?,進(jìn)而增強(qiáng)種子水合狀態(tài),使其保持在吸水平臺(tái)期;激活種子和幼苗中抗氧化酶活性,維持細(xì)胞膜完整性,最終達(dá)到增強(qiáng)種子萌發(fā)活力的效果,是當(dāng)前農(nóng)業(yè)生產(chǎn)上提高作物萌發(fā)率以及對(duì)抗非生物脅迫的重要方式[3-5]。在基因表達(dá)水平,種子引發(fā)促進(jìn)DNA甲基化、染色質(zhì)修飾、轉(zhuǎn)錄因子的積累發(fā)生變化,并使信號(hào)蛋白失活。引發(fā)處理使種子產(chǎn)生脅迫記憶,從而獲得更有效的防御機(jī)制[6]。水楊酸(SA)是廣泛存在于植物中的一種簡(jiǎn)單酚類化合物,不僅在植物的生長(zhǎng)發(fā)育、礦質(zhì)元素吸收與運(yùn)輸、光合作用等生理過(guò)程起著重要的調(diào)控作用,也是植物響應(yīng)逆境的重要信號(hào)分子。水楊酸在調(diào)控植物抗寒冷性上具有重要作用,當(dāng)植物抵御寒冷環(huán)境時(shí),它可激活植物超敏反應(yīng)和系統(tǒng)獲得性抗性,減輕脂質(zhì)過(guò)氧化損傷(表現(xiàn)為降低MDA含量),保持細(xì)胞膜結(jié)構(gòu)和功能的完整性,緩解因低溫造成的膜傷害,從而啟動(dòng)種子及幼苗的抗冷機(jī)制,提高其耐寒能力[7]。研究證實(shí),一定濃度的水楊酸可促進(jìn)棉花[8]、黃秋葵[9]、辣椒[10]、玉米[11-12]等種子發(fā)芽。外施水楊酸可顯著增加低溫脅迫下大豆幼苗葉片的葉綠素、可溶性蛋白、可溶性糖和脯氨酸含量,提高SOD、POD和根系活力,顯著降低電解質(zhì)外滲率和膜脂過(guò)氧化傷害程度,維持低溫下細(xì)胞膜的完整性,緩解低溫對(duì)大豆幼苗生長(zhǎng)的抑制[13-14]?!颈狙芯壳腥朦c(diǎn)】水楊酸處理可不同程度地提高多種作物的抗逆能力,其內(nèi)在生理與分子機(jī)制已有所報(bào)道。然而水楊酸對(duì)于低溫下水稻種子萌發(fā)活力的影響以及其生理與分子效應(yīng)的研究卻鮮有報(bào)道。【擬解決的關(guān)鍵問(wèn)題】利用水楊酸引發(fā)水稻種子提高低溫下的種子萌發(fā)率和成苗率,并進(jìn)一步研究其形態(tài)、生理、激素和基因表達(dá)變化,為解決直播稻低溫萌發(fā)問(wèn)題提供理論依據(jù)。
試驗(yàn)于2022年在廣東省農(nóng)業(yè)科學(xué)院白云試驗(yàn)基地完成。
供試水稻種子材料為感溫型三系雜交稻品種泰豐優(yōu)208,購(gòu)于廣東省金稻種業(yè)有限公司。水楊酸為分析純,純度>99%,購(gòu)于Sigma-Aldrich公司。
1.2.1 種子引發(fā)處理 水稻品種為秈型三系雜交水稻泰豐優(yōu)208,選擇籽粒無(wú)病蟲害、飽滿一致的水稻種子。水楊酸引發(fā)液設(shè)置為50、500、2 000和5 000 μmol·L-14個(gè)濃度。未引發(fā)種子為負(fù)對(duì)照(CK1),水溶液引發(fā)為正對(duì)照(CK2)。具體引發(fā)步驟如下:將種子浸泡于不同濃度的引發(fā)液中,于20 ℃培養(yǎng)箱中黑暗培養(yǎng)24 h。將浸泡種子撈出后用蒸餾水沖洗3次,之后于37 ℃烘干至接近引發(fā)前質(zhì)量。經(jīng)引發(fā)處理的干燥種子于4 ℃保存?zhèn)溆?,?個(gè)月內(nèi)用完。
1.2.2 種子萌發(fā)及表型數(shù)據(jù)測(cè)定 為比較常溫和低溫下種子萌發(fā)率和內(nèi)源水楊酸的變化,選擇飽滿、整齊的凈種子在發(fā)芽盒中,加入15 ml蒸餾水,分別置于28和15 ℃培養(yǎng)箱萌發(fā),每天統(tǒng)計(jì)萌發(fā)率,并分別于第1、5天取材測(cè)定水楊酸濃度。為比較引發(fā)處理對(duì)于種子低溫萌發(fā)的影響,選擇CK1、CK2和不同濃度水楊酸引發(fā)的種子,分別將種子放入發(fā)芽盒中(供拍照種子于培養(yǎng)皿中萌發(fā)),加入15 ml蒸餾水,置于培養(yǎng)箱(15 ℃,每天光照16 h、黑暗8 h)中培養(yǎng),100粒/盒,4個(gè)重復(fù),視情況適量補(bǔ)充發(fā)芽盒中的水量。每天統(tǒng)計(jì)種子萌發(fā)率,于第14天采用Videometer多光譜種子表型儀進(jìn)行拍照,獲取種子光譜值和種子面積等信息。同時(shí)測(cè)定種子及幼苗的芽長(zhǎng)、根長(zhǎng)、鮮重、干重、發(fā)芽指數(shù)、活力指數(shù)等數(shù)據(jù)。此外,將CK2和2 000 μmol·L-1SA引發(fā)種子分別播種于種植盆的泥土中,28 ℃下培養(yǎng)1周后轉(zhuǎn)入15 ℃培養(yǎng)箱中,1個(gè)月后觀察其長(zhǎng)勢(shì)并拍照。
1.3.1 植物激素測(cè)定 種子萌發(fā)過(guò)程中的內(nèi)源水楊酸測(cè)定取材:水稻種子分別在正常溫度(28 ℃)和低溫(15 ℃)下吸脹萌發(fā),于吸脹第1、5天取種胚。水楊酸引發(fā)種子內(nèi)源激素測(cè)定取材:不同濃度水楊酸引發(fā)的種子于15 ℃下水中吸脹,1 d后取整粒種子測(cè)定激素濃度。植物激素測(cè)定委托武漢邁特維爾生物科技有限公司,運(yùn)用超高效液相色譜-電噴霧串聯(lián)四極桿質(zhì)譜儀(UPLC-ESI-MS/MS)內(nèi)標(biāo)法對(duì)ABA等多種植物激素進(jìn)行定量分析。
1.3.2 酶活性及可溶性物質(zhì)測(cè)定 采用3,5-二硝基水楊酸(DNS)法測(cè)定淀粉酶活性;采用蒽酮比色法和考馬斯亮藍(lán)比色法分別測(cè)定可溶性糖和可溶性蛋白含量;采用抑制NBT光還原比色法、愈創(chuàng)木酚法和過(guò)氧化氫紫外線法分別測(cè)定SOD、POD和CAT活性;采用硫代巴比妥酸法(TBA)、茚三酮比色法和碘化鉀還原法分別測(cè)定MDA、游離脯氨酸、過(guò)氧化氫(H2O2)含量;采用羥胺比色法測(cè)定超氧陰離子自由基()產(chǎn)生速率。
1.4.1 RNA提取及反轉(zhuǎn)錄cDNA第一鏈合成 運(yùn)用百泰克通用植物RNA提取試劑盒提取水稻種胚RNA,用NanoDrop紫外分光光度計(jì)檢測(cè)RNA的濃度。采用ReverTra Ace QPCR RT Master Mix with gDNA Remover試劑盒合成cDNA第一鏈。
1.4.2 基因表達(dá)定量分析 采用2×RealStar Green Fast Mixture(GenStar,A301-10)試劑盒進(jìn)行qRT-PCR分析。反應(yīng)體系為20.0 μL:2×RealStar Green FastMixture 10.0 μL,10 μmol·L-1正、反向引物0.8 μL,5 ng·μL-1cDNA模板2.0 μL,ddH2O補(bǔ)充至20.0 μL。擴(kuò)增程序:95 ℃,2 min;95 ℃,15 s;58 ℃,30 s;72 ℃,30 s,進(jìn)行40個(gè)循環(huán)。每組試驗(yàn)設(shè)3次生物學(xué)重復(fù),相對(duì)定量用2-ΔΔCt計(jì)算。內(nèi)參基因?yàn)?。試?yàn)引物序列見表1。
采用Microsoft Excel 2010錄入、整理和計(jì)算數(shù)據(jù)。運(yùn)用SPSS 21數(shù)據(jù)處理系統(tǒng)進(jìn)行分析,結(jié)果均為3次重復(fù)的平均值,利用最小顯著差法(LSD)在<0.05水平上進(jìn)行多重比較。運(yùn)用Sigma Plot 12.0軟件作圖。
水稻種子在正常溫度下(28 ℃)萌發(fā)時(shí),其萌發(fā)速率較快,第1天開始萌發(fā),至第4天萌發(fā)率超過(guò)85%;相比之下,低溫(15 ℃)推遲了萌發(fā)進(jìn)程,吸脹第4天種子開始萌發(fā),至第10天萌發(fā)率接近85%(圖1-A)。種子在正常條件下萌發(fā)時(shí),內(nèi)源水楊酸濃度逐漸升高,5 d幼苗中的水楊酸濃度是1 d種子中的80倍。然而在低溫下,內(nèi)源水楊酸濃度卻呈下降的趨勢(shì),在5 d幼苗中的濃度僅為1 d種子中的27%。值得注意的是,在低溫下萌發(fā)1 d種子中,其水楊酸濃度是常溫下的1.7倍;但對(duì)于5 d的幼苗而言,低溫下的水楊酸濃度僅為常溫下濃度的0.6%(圖1-B)。因此,水楊酸可能在水稻種子低溫萌發(fā)過(guò)程中發(fā)揮重要作用。
如前所述,在水稻種子低溫萌發(fā)過(guò)程中,內(nèi)源水楊酸濃度發(fā)生較顯著變化,進(jìn)一步用不同濃度的水楊酸引發(fā)種子,觀察其在低溫下的萌發(fā)狀況。由圖2-A可知,與CK1相比,所有的引發(fā)處理均能提高低溫下的萌發(fā)率。與CK2相比,50 μmol·L-1水楊酸引發(fā)無(wú)促進(jìn)作用,而其余3個(gè)濃度的水楊酸均能促進(jìn)萌發(fā)進(jìn)程,尤其以2 000 μmol·L-1水楊酸效果最為顯著。圖2-B顯示,對(duì)于低溫下萌發(fā)14 d的種子,水楊酸引發(fā)可顯著地促進(jìn)種子和幼苗的生長(zhǎng)。對(duì)于直播于土壤中的種子,2 000 μmol·L-1水楊酸引發(fā)種子的萌發(fā)率也顯著高于水引發(fā)組,同在15 ℃下生長(zhǎng)1個(gè)月后,水楊酸引發(fā)組的幼苗長(zhǎng)勢(shì)也明顯優(yōu)于CK2(圖2-C)。
A:水稻種子萌發(fā)率Rice seed germination rate;B:水稻種子內(nèi)源水楊酸濃度Concentration of endogenous salicylic acid in rice seeds。圖中數(shù)據(jù)為平均值±標(biāo)準(zhǔn)誤The data in the figure are mean±SE;*:顯著差異Significant difference;**:差異極顯著Extremely significant difference
由表2可知,與CK1相比,所有引發(fā)處理均能提高種子在低溫下的發(fā)芽勢(shì),然而水引發(fā)和50 μmol·L-1水楊酸引發(fā)并不能顯著促進(jìn)種子萌發(fā),而當(dāng)水楊酸濃度大于500 μmol·L-1時(shí)可顯著提高發(fā)芽率。2 000 μmol·L-1水楊酸對(duì)種子萌發(fā)的各項(xiàng)指標(biāo)影響最為明顯,顯著提高了低溫萌發(fā)種子的發(fā)芽指數(shù)、活力指數(shù)、芽長(zhǎng)、根長(zhǎng)、鮮重和干重,其中活力指數(shù)分別是CK1和CK2的3和2倍。
進(jìn)一步利用Videometer多光譜種子表型儀(圖3-A)對(duì)種子在低溫萌發(fā)14 d的多光譜特征進(jìn)行分析。種子光譜分析表明,CK1與CK2在不同波長(zhǎng)下的光譜特征幾乎一致,后者只在個(gè)別波段下的光譜值略有下降。500 μmol·L-1水楊酸引發(fā)處理提高了整個(gè)波長(zhǎng)范圍內(nèi)的光譜值。2 000和5 000 μmol·L-1水楊酸引發(fā)處理下,種子在365—450 nm波長(zhǎng)下的光譜值與對(duì)照組相比略有上升,之后在470—490 nm波長(zhǎng)下與對(duì)照組相近;當(dāng)波長(zhǎng)大于515 nm時(shí),光譜值開始下降,尤其是2 000 μmol·L-1水楊酸引發(fā)的種子,其光譜值下降更為顯著(圖3-B)。種子在低溫下萌發(fā)5 d時(shí),2 000 μmol·L-1水楊酸引發(fā)的種子,其種子面積顯著高于對(duì)照和其他處理組(圖3-C)。種子萌發(fā)14 d時(shí),CK2略高于CK1,但不顯著;水楊酸引發(fā)組均顯著高于CK2,且隨著濃度的升高種子面積也逐漸增大(圖3-D),表明水楊酸引發(fā)對(duì)水稻種子在低溫下的萌發(fā)活力和幼苗生長(zhǎng)具有顯著的促進(jìn)作用。
表2 不同濃度水楊酸引發(fā)對(duì)水稻種子萌發(fā)的影響
同列數(shù)據(jù)后不同小寫字母表示差異顯著(<0.05,LSD法)
Different lowercase letters in the same column after the data indicate significant difference (<0.05, LSD method)
A:種子在15 ℃下的萌發(fā)率Germination rate of seeds at 15 ℃;B:15 ℃下種子萌發(fā)14 d時(shí)的狀態(tài)Status of germinated seeds at 15 ℃ for 14 d;C:引發(fā)種子直播土壤后,于15 ℃生長(zhǎng)1個(gè)月時(shí)的幼苗狀態(tài)Seedling status of the primed seeds sown and grown at 15 ℃ for one month
A:Videometer多光譜種子表型儀及其工作原理Videometer multispectral seed phenotype instrument and its working principle;B:多波長(zhǎng)光譜下的種子光譜值Spectral values of seeds at multiple wavelengths;C、D:種子在15 ℃下萌發(fā)5和14 d時(shí)的面積變化area changes of germinated seeds at 15 ℃ of 5 and 14 d
如圖4所示,水楊酸引發(fā)提高了低溫萌發(fā)過(guò)程中種子的可溶性糖和脯氨酸含量,兩者正是反映植物耐受逆境脅迫能力的關(guān)鍵指標(biāo)[15]。相比之下,可溶性蛋白在對(duì)照組和各處理組之間無(wú)顯著差異。淀粉酶是水解水稻胚乳淀粉,促進(jìn)種子萌發(fā)、提高幼苗活力的關(guān)鍵酶[16]。在各處理組之間,-淀粉酶活性未發(fā)生顯著變化。與CK1相比,CK2和低濃度水楊酸引發(fā)未能提高反而降低了總淀粉酶和-淀粉酶活性,而當(dāng)水楊酸濃度大于500 μmol·L-1時(shí),兩種酶的活性又顯著升高。與CK1相比,水楊酸引發(fā)增強(qiáng)了SOD和CAT活性,卻降低了POD活性。水楊酸引發(fā)降低了種子中MDA含量,表明水楊酸可以緩解低溫對(duì)于細(xì)胞膜的損傷。H2O2和不僅是介導(dǎo)種子萌發(fā)的信號(hào)物質(zhì),也是反映植物適應(yīng)逆境的重要指標(biāo)[17]。本研究發(fā)現(xiàn),水楊酸引發(fā)能夠顯著提高種子中H2O2含量以及產(chǎn)生速率,這類活性氧物質(zhì)可能通過(guò)松弛細(xì)胞壁,促進(jìn)胚根鞘弱化參與種子萌發(fā)[18-19]。
如圖5所示,與CK1相比,CK2和低濃度(50和500 μmol·L-1)水楊酸引發(fā)并不能提高種子中水楊酸含量,而2 000和5 000 μmol·L-1水楊酸引發(fā)則能顯著提高該激素在種子中的積累。與CK1相比,所有引發(fā)處理均能顯著降低種子中ABA含量,其中以2 000和5 000 μmol·L-1水楊酸引發(fā)組的效果最為明顯,分別比CK1降低79%和77%。當(dāng)水楊酸引發(fā)濃度大于500 μmol·L-1時(shí),種子內(nèi)源生長(zhǎng)素(IAA)和GA1的含量也顯著升高;2 000 μmol·L-1水楊酸下,IAA和GA1分別比CK1增加32.2%和2.66倍。相比之下,盡管部分濃度水楊酸引發(fā)能夠顯著提高茉莉酸、玉米素、GA3和GA44種激素在種子的積累,但其含量總體上處于較低水平。
圖4 水稻種子低溫萌發(fā)下的生理指標(biāo)變化
圖5 不同濃度水楊酸引發(fā)對(duì)水稻種子中植物激素的影響
基于水楊酸引發(fā)種子中植物激素的變化,推測(cè)水楊酸引發(fā)促進(jìn)水稻種子低溫萌發(fā)可能是通過(guò)降低種子ABA和提高GA1含量而發(fā)揮作用。因此,進(jìn)一步探索了水楊酸引發(fā)對(duì)種子ABA和GA合成和分解相關(guān)基因表達(dá)的影響。如圖6所示,在ABA合成相關(guān)的5個(gè)基因中,CK1中和的相對(duì)表達(dá)量最高,其次為,表達(dá)量最低的為和。與CK1相比,大部分引發(fā)處理顯著降低了5個(gè)的表達(dá),以水楊酸引發(fā)組最為顯著,比如2 000 μmol·L-1水楊酸引發(fā)的種子,和的表達(dá)量分別比CK1降低94.26%和90.24%。在水稻3個(gè)ABA分解基因中,以的表達(dá)量最高。除水引發(fā)和50 μmol·L-1水楊酸引發(fā)未能提高的表達(dá)量外,其余引發(fā)處理均能顯著提高3個(gè)ABA分解基因的表達(dá)量。對(duì)于2 000 μmol·L-1水楊酸引發(fā)的種子而言,和的表達(dá)量分別為CK1的5.9和3.9倍。
圖6 ABA合成和分解相關(guān)基因表達(dá)分析
參考文獻(xiàn)[20-21],分別選取在水稻中呈高表達(dá)的4個(gè)GA合成基因(、、、)和4個(gè)分解基因(、),探究水楊酸引發(fā)對(duì)其表達(dá)的影響。結(jié)果表明,與CK1相比,水楊酸引發(fā)組中、和表達(dá)量顯著升高,以2 000 μmol·L-1水楊酸引發(fā)最為顯著;水引發(fā)可顯著提高的表達(dá)量,而水楊酸引發(fā)未能上調(diào)該基因的表達(dá)量。在4個(gè)GA分解基因中,與CK1相比,和的表達(dá)被水楊酸引發(fā)顯著下調(diào),而和的表達(dá)受水楊酸引發(fā)上調(diào),尤其是當(dāng)水楊酸引發(fā)濃度在500 μmol·L-1以上時(shí)最為明顯(圖7)。
禾谷類作物胚根鞘弱化和胚根、胚芽的伸長(zhǎng)是種子完成萌發(fā)過(guò)程的前提,擴(kuò)展蛋白在促進(jìn)胚芽鞘和胚芽細(xì)胞壁松弛過(guò)程中發(fā)揮重要作用[19,22-23]。為此,檢測(cè)了已報(bào)道[23]可能參與水稻種子萌發(fā)的擴(kuò)展蛋白基因的表達(dá)情況。如圖8所示,除了外,其余幾個(gè)擴(kuò)展蛋白基因均在一定程度上被引發(fā)處理而上調(diào)表達(dá)。值得關(guān)注的是,、和的表達(dá)量較其余幾個(gè)基因高;與CK1相比,2 000 μmol·L-1水楊酸引發(fā)處理分別將以上3個(gè)基因的轉(zhuǎn)錄表達(dá)量提高12.2、5.9和6.1倍。
在眾多非生物脅迫中,低溫脅迫是限制作物生長(zhǎng)、降低產(chǎn)量的重要影響因素之一[24]。種子引發(fā)是解決許多作物應(yīng)對(duì)冷脅迫傷害的有效方式,通過(guò)播種前給予適當(dāng)?shù)哪婢程幚?,增?qiáng)種子水合狀態(tài),使其停留在吸水平臺(tái)期,動(dòng)員酶活性,降低細(xì)胞膜損傷程度,進(jìn)而使得種子和幼苗更好地應(yīng)對(duì)低溫傷害[25]。然而并非所有的引發(fā)劑都能使作物產(chǎn)生低溫脅迫抗性。筆者曾以殼聚糖、PEG、KNO3等作為引發(fā)劑處理水稻種子,發(fā)現(xiàn)它們?cè)诰徑飧珊档确巧锬婢趁{迫中發(fā)揮作用,但卻未能提高水稻的冷脅迫抗性(未發(fā)表數(shù)據(jù))。在本研究中,水楊酸引發(fā)可有效促進(jìn)水稻種子在低溫下的萌發(fā)速率并促進(jìn)幼苗生長(zhǎng),這與前人利用水楊酸引發(fā)玉米[11]和油菜[26]種子增強(qiáng)其幼苗抗冷性的結(jié)果是一致的。然而,水楊酸的濃度絕非越高越好,2 000 μmol·L-1可能是提高水稻種子低溫萌發(fā)能力的最佳濃度,高于這個(gè)濃度(比如5 000 μmol·L-1)時(shí)種子的低溫萌發(fā)能力和幼苗長(zhǎng)勢(shì)在一定程度上受到抑制。可能的原因是高濃度水楊酸使種子產(chǎn)生了脅迫,這種脅迫給種子帶來(lái)?yè)p傷,從而降低了活力??梢娺m當(dāng)?shù)囊l(fā)濃度和引發(fā)時(shí)間可使種子在吸脹和水合階段產(chǎn)生適度的脅迫記憶又不至于產(chǎn)生逆境損傷。當(dāng)經(jīng)過(guò)引發(fā)處理的種子在萌發(fā)和幼苗生長(zhǎng)階段遇到冷脅迫信號(hào)時(shí),這種脅迫記憶會(huì)被喚起,進(jìn)而啟動(dòng)防御機(jī)制應(yīng)對(duì)逆境傷害[27-29]。
多光譜成像技術(shù)通過(guò)獲取不同波段下物質(zhì)的光譜特征,經(jīng)過(guò)整合分析,建立該物質(zhì)的多光譜圖像。該技術(shù)已廣泛應(yīng)用于遙感、環(huán)境監(jiān)測(cè)、醫(yī)學(xué)、地質(zhì)勘探和食品安全等領(lǐng)域,近年來(lái)也逐漸在種子質(zhì)量檢測(cè)、活力辨別方面得以應(yīng)用[30-31]。本研究發(fā)現(xiàn),干種子和水引發(fā)的種子,其光譜特征未有明顯差別,而水楊酸引發(fā)種子的光譜特征與之具有顯著差異。比如2 000和5 000 μmol·L-1水楊酸引發(fā)處理的種子,與對(duì)照組相比,其光譜值呈先上升后下降的趨勢(shì)。萌發(fā)過(guò)程中,種子形態(tài)的細(xì)微變化較難通過(guò)肉眼發(fā)現(xiàn),運(yùn)用成像技術(shù)捕獲萌發(fā)過(guò)程中的種子面積,從而可辨別不同處理對(duì)于種子活力的影響[18]。本研究中,水楊酸引發(fā)組的種子面積顯著高于對(duì)照組,表明水楊酸引發(fā)可顯著提高低溫下的種子和幼苗的活力。略有不足的是,本研究?jī)H獲取了引發(fā)后種子低溫下萌發(fā)14 d時(shí)的光譜值,后期將進(jìn)一步獲取引發(fā)處理后干燥未萌發(fā)狀態(tài)種子的光譜特征,再根據(jù)其萌發(fā)活力與光譜特征進(jìn)行關(guān)聯(lián)分析,進(jìn)而評(píng)價(jià)引發(fā)效果,預(yù)期將在種子活力檢測(cè)等方面發(fā)揮更大的作用。
種子引發(fā)通過(guò)增強(qiáng)與貯藏物質(zhì)動(dòng)員相關(guān)酶、蛋白和脂質(zhì)的活性,將大分子分解為小分子,用于種子胚的吸收、生長(zhǎng)和發(fā)育[32]。本研究表明水楊酸引發(fā)提高了淀粉酶活性以及可溶性糖和脯氨酸含量,這與Anju等[33]在粟米鹽脅迫中的研究結(jié)果一致。這是由于經(jīng)過(guò)引發(fā)處理,水稻淀粉酶活性升高,胚乳多糖被水解為單糖,從而為萌發(fā)提供能量基礎(chǔ);同時(shí)水楊酸促進(jìn)了脯氨酸的積累,該物質(zhì)正是抵御冷脅迫的重要物質(zhì)[5,32]。植物在逆境下細(xì)胞膜完整性受到損傷,從而釋放丙二醛,降低植物生命力。然而植物體也有著一整套應(yīng)對(duì)逆境脅迫的防御機(jī)制,比如在生理機(jī)制方面通過(guò)增強(qiáng)抗氧化酶的活性,降低逆境對(duì)于植物細(xì)胞的傷害[33]。在本研究中,水楊酸引發(fā)處理顯著降低了丙二醛的含量,增加了SOD和CAT活性,這與前人的研究結(jié)果一致[34-35]。然而不同的是,水楊酸引發(fā)并未抑制反而促進(jìn)了和H2O2的產(chǎn)生,原因可能是低濃度的活性氧在種子萌發(fā)過(guò)程中有助于松弛細(xì)胞壁,促進(jìn)胚根鞘弱化和胚根伸長(zhǎng),介導(dǎo)植物激素信號(hào)轉(zhuǎn)導(dǎo),適應(yīng)脅迫環(huán)境,促進(jìn)萌發(fā),不僅對(duì)植物無(wú)傷害,反而是必不可少的[18,22,36]。
圖7 GA合成和分解相關(guān)基因表達(dá)分析
圖8 擴(kuò)展蛋白相關(guān)基因表達(dá)分析
種子萌發(fā)是遺傳因子和外界環(huán)境綜合作用的結(jié)果,植物激素在這一過(guò)程中發(fā)揮決定性作用[37-38]。在正常條件下,ABA負(fù)調(diào)控、GA正調(diào)控種子萌發(fā),但在逆境脅迫下,植物通過(guò)調(diào)整兩種激素的比例,并與其他植物激素如水楊酸、茉莉酸、油菜素內(nèi)酯等協(xié)同調(diào)控逆境下的萌發(fā)過(guò)程[39]。筆者發(fā)現(xiàn),對(duì)于常溫下萌發(fā)的種子,內(nèi)源水楊酸低于其在低溫脅迫下的濃度,但該激素在常溫下的幼苗中的濃度卻顯著高于低溫處理組。可見,低溫抑制了幼苗生長(zhǎng)和水楊酸濃度,水楊酸濃度的升高可能對(duì)于種子向幼苗的過(guò)渡是必須的。經(jīng)水楊酸引發(fā)后,種子內(nèi)的SA、IAA和GA1含量顯著性上升,而ABA含量呈顯著性下降。因此,筆者認(rèn)為水楊酸含量的升高為水稻抗冷提供了物質(zhì)基礎(chǔ),而ABA含量的下降和GA1的增加確保了種子萌發(fā)率和幼苗建成。研究表明,低濃度的IAA可促進(jìn)種子萌發(fā),而高濃度的IAA可導(dǎo)致種子休眠[40]。在逆境下,IAA與ABA協(xié)同作用,應(yīng)答脅迫信號(hào),調(diào)控作物的生長(zhǎng)發(fā)育[41-42]。水楊酸引發(fā)的種子中,IAA含量顯著升高,其在水稻種子低溫萌發(fā)中的生理功能有待進(jìn)一步探討。
水楊酸引發(fā)處理可顯著降低ABA合成基因的表達(dá)以及增加降解基因的表達(dá)量,這也解釋了水楊酸引發(fā)種子中ABA含量降低的原因。該結(jié)果與Zhu等的研究結(jié)果一致[43-44]。在檢測(cè)的4個(gè)GA合成基因中,和的表達(dá)被水楊酸引發(fā)顯著性上調(diào),而在GA分解基因中,僅和的表達(dá)被水楊酸引發(fā)而下調(diào)。因此筆者推測(cè),水楊酸引發(fā)的種子中GA1含量的升高可能與和的表達(dá)上調(diào)以及和表達(dá)量降低相關(guān)。
胚乳弱化和胚根伸長(zhǎng)是種子完成萌發(fā)的先決條件,這兩個(gè)生物學(xué)事件均需要細(xì)胞壁的松弛和降解[45]。已有文獻(xiàn)表明,細(xì)胞壁水解酶、活性氧和擴(kuò)展蛋白是松弛細(xì)胞壁的主要因子[46]。萵苣種子萌發(fā)時(shí),細(xì)胞壁松弛基因、、、和特異性地在珠孔端胚乳和胚根處表達(dá)[47-49]。二穗短柄草種子萌發(fā)時(shí),甘露聚糖酶基因、和在胚根鞘、胚根和胚乳等多處表達(dá),參與胚根鞘限制的種子萌發(fā)[50]。擴(kuò)展蛋白不具備水解酶的活性,但其同樣具備松弛植物細(xì)胞壁的功能[51]。在番茄種子萌發(fā)過(guò)程中,擴(kuò)展蛋白基因特異性地在種子的胚乳帽處表達(dá),參與胚乳細(xì)胞壁松弛[52]。本研究發(fā)現(xiàn)水稻擴(kuò)展蛋白基因、和的表達(dá)受水楊酸引發(fā)顯著上調(diào),暗示它們?cè)趨⑴c水稻低溫萌發(fā)過(guò)程的胚根鞘弱化、胚根伸長(zhǎng)中可能發(fā)揮作用。這些基因在水稻種子萌發(fā)中的確切功能有待通過(guò)開展基因功能驗(yàn)證等研究進(jìn)一步證實(shí)。
水楊酸可顯著緩解低溫脅迫對(duì)于水稻種子萌發(fā)和幼苗生長(zhǎng)的影響,原因可能是水楊酸引發(fā)通過(guò)提高SOD、CAT等抗氧化酶活性,降低MDA的產(chǎn)生,增加可溶性糖和脯氨酸的含量,進(jìn)而增強(qiáng)種子和幼苗對(duì)于低溫的耐受能力。另外,水楊酸引發(fā)通過(guò)降低種子內(nèi)源ABA含量,增加GA1含量,增強(qiáng)總淀粉酶和-淀粉酶活性,促進(jìn)細(xì)胞壁松弛相關(guān)基因的表達(dá),從而保證低溫下的種子萌發(fā)和幼苗生長(zhǎng)。
[1] MARTHANDAN V, GEETHA R, KUMUTHA K, RENGANATHAN V G, KARTHIKEYAN A, RAMALINGAM J. Seed priming: a feasible strategy to enhance drought tolerance in crop plants. International Journal of Molecular Sciences, 2020, 21(21): 8258.
[2] 王慰親. 種子引發(fā)促進(jìn)直播早稻低溫脅迫下萌發(fā)出苗的機(jī)理研究[D]. 武漢: 華中農(nóng)業(yè)大學(xué), 2019.
WANG W Q. Mechanisms underlying the effects of seed priming on the establishment of direct-seeded early season rice under chilling stress[D]. Wuhan: Huazhong Agricultural University, 2019. (in Chinese)
[3] 胡亞麗, 聶靖芝, 吳霞, 潘姣, 曹珊, 岳嬌, 羅登杰, 王財(cái)金, 李增強(qiáng), 張輝, 吳啟境, 陳鵬. 水楊酸引發(fā)對(duì)紅麻幼苗耐鹽性的影響. 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55(14): 2696-2708. doi: 10.3864/j.issn.0578- 1752.2022.14.002.
HU Y L, NIE J Z, WU X, PAN J, CAO S, YUE J, LUO D J, WANG C J, LI Z Q, ZHANG H, WU Q J, CHEN P. Effect of salicylic acid priming on salt tolerance of kenaf seedlings. Scientia Agricultura Sinica, 2022, 55(14): 2696-2708. doi: 10.3864/j.issn.0578-1752.2022. 14.002. (in Chinese)
[4] YANG Z, ZHI P, CHANG C. Priming seeds for the future: Plant immune memory and application in crop protection. Frontiers in Plant Science, 2022, 13: 961840.
[5] NIE L, SONG S, YIN Q, ZHAO T, LIU H, HE A, WANG W. Enhancement in seed priming-induced starch degradation of rice seed under chilling stress via GA-mediated-amylase expression. Rice, 2022, 15(1): 19.
[6] TANOU G, FOTOPOULOS V, MOLASSIOTIS A. Priming against environmental challenges and proteomics in plants: update and agricultural perspectives. Frontiers in Plant Science, 2012, 3: 216.
[7] MIURA K, TADA Y. Regulation of water, salinity, and cold stress responses by salicylic acid. Frontiers in plant science, 2014, 5: 4.
[8] 王立紅, 李星星, 孫影影, 阿曼古麗·買買提阿力, 張巨松. 外源水楊酸對(duì)NaCl脅迫下棉花幼苗生長(zhǎng)生理特性的影響. 西北植物學(xué)報(bào), 2017, 37(1): 154-162.
WANG L H, LI X X, SUN Y Y, MAIMAITIALI A M G L, ZHANG J S. Effects of exogenous salicylic acid on the physiological characteristics and growth of cotton seedlings under NaCl stress. Acta Botanica Boreali-Occidentalia Sinica, 2017, 37(1): 154-162. (in chinese)
[9] ALAM M, HAYAT K, ULLAH I, SAJID M, AHMAD M, BASIT A, AHMAD I, MUHAMMAD A, AKBAR S, HUSSAIN Z. Improving okra (L.) growth and yield by mitigating drought through exogenous application of salicylic acid. Fresenius Environmental Bulletin, 2020, 29(1): 529-535.
[10] AMJAD M, ZIAF K, IQBAL Q, AHMAD I, RIAZ M A, SAQIB Z A. Effect of seed priming on seed vigour and salt tolerance in hot pepper. Pakistan Journal of Agricultural Sciences, 2007, 44(3): 408-416.
[11] LI Z, XU J, GAO Y, WANG C, GUO G, LUO Y, HUANG Y, HU W, SHETEIWY M S, GUAN Y, HU J. The synergistic priming effect of exogenous salicylic acid and H2O2on chilling tolerance enhancement during maize (L.) seed germination. Frontiers in plant science, 2017, 8: 1153.
[12] 侯林欣, 呂強(qiáng), 黃明, 焦念元, 尹飛, 劉領(lǐng), 呂夢(mèng), 付國(guó)占. 不同溫度水楊酸引發(fā)對(duì)干旱脅迫下玉米種子發(fā)芽及幼苗生理特性的影響. 中國(guó)農(nóng)學(xué)通報(bào), 2021, 37(19): 13-21.
HOU L X, Lü Q, HUANG M, JIAO N Y, YIN F, LIU L, Lü M, FU G Z. SA priming of maize seeds at different temperatures under drought stress: effects on seed germination and seedling physiological characteristics. Chinese Agricultural Science Bulletin, 2021, 37(19): 13-21. (in chinese)
[13] 常云霞, 徐克東, 陳璨, 陳龍. 水楊酸對(duì)低溫脅迫下大豆幼苗生長(zhǎng)抑制的緩解效應(yīng). 大豆科學(xué), 2012, 31(6): 927-931.
CHANG Y X, XU K D, CHEN C, CHEN L. Salicylic acid mitigating the inhibition of low temperature stress to soybean seedlings. Soybean Science, 2012, 31(6): 927-931. (in chinese)
[14] Nazari R, Parsa S, Tavakkol Afshari R, Mahmoodi S, Seyyedi S M. Salicylic acid priming before and after accelerated aging process increases seedling vigor in aged soybean seed. Journal of Crop Improvement, 2020, 34(2): 218-237.
[15] HOSSEINIFARD M, STEFANIAK S, GHORBANI JAVID M, SOLTANI E, WOJTYLA ?, GARNCZARSKA M. Contribution of exogenous proline to abiotic stresses tolerance in plants: a review. International Journal of Molecular Sciences, 2022, 23(9): 5186.
[16] 倪萬(wàn)潮, 束紅梅, 郭書巧, 蔣璐, 何曉蘭, 崔曉霞, 鞏元勇. 不同水稻品種種子萌發(fā)生理特性差異研究. 中國(guó)農(nóng)學(xué)通報(bào), 2020, 36(2): 1-5.
NI W C, SHU H M, GUO S Q, JIANG L, HE X L, CUI X X, GONG Y Y. Seed germination of rice cultivars: differences in physiological characteristics. Chinese Agricultural Science Bulletin, 2020, 36(2): 1-5. (in chinese)
[17] CUI D, YIN Y, WANG J, WANG Z, DING H, MA R, JIAO Z. Research on the physio-biochemical mechanism of non-thermal plasma-regulated seed germination and early seedling development in. Frontiers in Plant Science, 2019, 10: 1322.
[18] ZHANG Y, CHEN B, XU Z, SHI Z, CHEN S, HUANG X, CHEN J, WANG X. Involvement of reactive oxygen species in endosperm cap weakening and embryo elongation growth during lettuce seed germination. Journal of experimental botany, 2014, 65(12): 3189-3200.
[19] HOLLOWAY T, STEINBRECHER T, PéREZ M, SEVILLE A, STOCK D, NAKABAYASHI K, LEUBNER-METZGER G. Coleorhiza- enforced seed dormancy: a novel mechanism to control germination in grasses. New Phytologist, 2021, 229(4): 2179-2191.
[20] YE N, ZHU G, LIU Y, ZHANG A, LI Y, LIU R, SHI L, JIA L, ZHANG J. Ascorbic acid and reactive oxygen species are involved in the inhibition of seed germination by abscisic acid in rice seeds. Journal of Experimental Botany, 2012, 63(5): 1809-1822.
[21] LIU L, XIA W, LI H, ZENG H, WEI B, HAN S, YIN C. Salinity inhibits rice seed germination by reducing-amylase activity via decreased bioactive gibberellin content. Frontiers in Plant Science, 2018, 9: 275.
[22] CHEN B X, LI W Y, GAO Y T, CHEN Z J, ZHANG W N, LIU Q J, CHEN Z, LIU J. Involvement of polyamine oxidase-produced hydrogen peroxide during coleorhiza-limited germination of rice seeds. Frontiers in Plant Science, 2016, 7: 1219.
[23] XIONG Q, MA B, LU X, HUANG Y H, HE S J, YANG C, YIN C C, ZHAO H, ZHOU Y, ZHANG W K, WANG W S, LI Z K, CHEN S Y, ZHANG J S. Ethylene-inhibited jasmonic acid biosynthesis promotes mesocotyl/coleoptile elongation of etiolated rice seedlings. The Plant Cell, 2017, 29(5): 1053-1072.
[24] HUSSAIN S, KHALIQ A, ALI B, HUSSAIN H A, QADIR T, HUSSAIN S. Temperature extremes: Impact on rice growth and development//Plant Abiotic Stress Tolerance: Agronomic, Molecular and Biotechnological Approaches. Springer, 2019: 153-171.
[25] BHANUPRAKASH K, YOGEESHA H S. Seed priming for abiotic stress tolerance: an overview//Abiotic stress physiology of horticultural crops. Springer, 2016: 103-117.
[26] KIM S H, JANG D C, LEE J J, HEO J Y. Salicylic acid seed priming boosts germination insspunder cold stress. Journal of Applied Horticulture, 2021, 23(3): 286-289.
[27] YACOUBI R, JOB C, BELGHAZI M, CHAIBI W, JOB D. Toward characterizing seed vigor in alfalfa through proteomic analysis of germination and priming. Journal of Proteome Research, 2011, 10(9): 3891-3903.
[28] LIU H, ABLE A J, ABLE J A. Priming crops for the future: Rewiring stress memory. Trends in Plant Science, 2022, 27(7): 699-716.
[29] CHEN K, ARORA R. Priming memory invokes seed stress-tolerance. Environmental and Experimental Botany, 2013, 94: 33-45.
[30] DIAN R, LI S, SUN B, GUO A. Recent advances and new guidelines on hyperspectral and multispectral image fusion. Information Fusion, 2021, 69: 40-51.
[31] ElMASRY G, MANDOUR N, Al-REJAIE S, BELIN E, ROUSSEAU D. Recent applications of multispectral imaging in seed phenotyping and quality monitoring-An overview. Sensors, 2019, 19(5): 1090.
[32] JISHA K C, VIJAYAKUMARI K, PUTHUR J T. Seed priming for abiotic stress tolerance: an overview. Acta Physiologiae Plantarum, 2013, 35: 1381-1396.
[33] ANJU U L, DODDAGOUDAR S R, PATTANASHETTI S K, BASAVE G, VIJAYKUMAR K. Influence of seed priming on seed germination, seedling growth, peroxidase activity, proline and total soluble sugar content of pearl millet (L.) under salinity stress. International Journal of Chemistry Studies, 2019, 7(5): 508-514.
[34] 周麗霞, 曹紅星, 肖勇. 外源水楊酸對(duì)低溫脅迫椰子幼苗生理特性的影響. 南方農(nóng)業(yè)學(xué)報(bào), 2017, 48(11): 2039-2045.
ZHOU L X, CAO H X, XIAO Y. Effects of exogenous salicylic acid on physiological characteristics ofL. young seedlings under cold stress. Journal of Southern Agriculture, 2017, 48(11): 2039-2045. (in chinese)
[35] 李媛, 李武, 莫釗文, 聞祥成, 王抄抄, 徐剛紅, 李妹娟, 聶俊, 唐湘如. 水楊酸和鹽浸種對(duì)香稻和非香稻幼苗生理特性的影響. 華北農(nóng)學(xué)報(bào), 2014, 29(5): 168-174.
LI Y, LI W, MO Z W, WEN X C, WANG C C, XU G H, LI M J, NIE J, TANG X R. Effects of pre-soaking with salicylic acid and salt on some physiological characteristics of the aromatic and non-aromatic rice seedlings. Acta Agriculturae Boreali-sinica, 2014, 29(5): 168-174. (in chinese)
[36] MITTLER R, ZANDALINAS S I, FICHMAN Y, VAN BREUSEGEM F. Reactive oxygen species signalling in plant stress responses. Nature Reviews Molecular Cell Biology, 2022, 23(10): 663-679.
[37] MIRANSARI M, SMITH D L. Plant hormones and seed germination. Environmental and Experimental Botany, 2014, 99: 110-121.
[38] 楊楠, 曹亞從, 魏兵強(qiáng), 王立浩. 單雙子葉植物種子萌發(fā)和休眠的研究進(jìn)展. 植物遺傳資源學(xué)報(bào), 2022, 23(5): 1249-1257.
YANG N, CAO Y C, WEI B Q, WANG L H. Research progress on seed germination and dormancy of monocot and dicot plants. Journal of Plant Genetic Resources, 2022, 23(5): 1249-1257. (in chinese)
[39] EL-SHERIF N A. Salicylic acid and its crosstalk with other plant hormones under stressful environments//Managing Plant Stress Using Salicylic Acid: Physiological and Molecular Aspects. Wiley, 2022: 304-317.
[40] 帥海威, 孟永杰, 羅曉峰, 陳鋒, 戚穎, 楊文鈺, 舒凱. 生長(zhǎng)素調(diào)控種子的休眠與萌發(fā). 遺傳, 2016, 38(4): 314-322.
SHUAI H W, MENG Y J, LUO X F, CHEN F, QI Y, YANG W Y, SHU K. The roles of auxin in seed dormancy and germination. Hereditas, 2016, 38(4): 314-322. (in chinese)
[41] TENG Z, YU H, WANG G, MENG S, LIU B, YI Y, CHEN Y, ZHENG Q, LIU L, YANG J, DUAN M, ZHANG J, YE N. Synergistic interaction between ABA and IAA due to moderate soil drying promotes grain filling of inferior spikelets in rice. The Plant Journal, 2022, 109(6): 1457-1472.
[42] PARWEZ R, AFTAB T, GILL S S, NAEEM M. Abscisic acid signaling and crosstalk with phytohormones in regulation of environmental stress responses. Environmental and Experimental Botany, 2022, 199: 104885.
[43] ZHU G, YE N, ZHANG J. Glucose-induced delay of seed germination in rice is mediated by the suppression of ABA catabolism rather than an enhancement of ABA biosynthesis. Plant and Cell Physiology, 2009, 50: 644-651.
[44] CHEN B X, PENG Y X, GAO J D, ZHANG Q, LIU Q J, FU H, LIU J. Coumarin-induced delay of rice seed germination is mediated by suppression of abscisic acid catabolism and reactive oxygen species production. Frontiers in Plant Science, 2019, 10: 828.
[45] 徐振江, 陳兵先, 趙晟楠, 袁紅霞, 郜珊珊, 張瑜, 陳靖, 王曉峰. 種子萌發(fā)過(guò)程中胚乳的突破性研究. 植物生理學(xué)報(bào), 2012, 48(9): 853-863.
XU Z J, CHEN B X, ZHAO S N, YUAN H X, GAO S S, ZHANG Y, CHEN J, WANG X F. Breaking through the endosperm during seed germination. Plant Physiology Journal, 2012, 48(9): 853-863. (in chinese)
[46] STEINBRECHER T, LEUBNER-METZGER G. The biomechanics of seed germination. Journal of Experimental Botany, 2017, 68(4): 765-783.
[47] CHEN B, MA J, XU Z, WANG X. Abscisic acid and ethephon regulation of cellulase in the endosperm cap and radicle during lettuce seed germination. Journal of Integrative Plant Biology, 2016, 58(10): 859-869.
[48] XU Z, YANG M, LI Z, XIAO J, YANG X, WANG H, WANG X. Tissue-specific pectin methylesterification and pectin methylesterase activities play a role in lettuce seed germination. Scientia Horticulturae, 2022, 301: 111134.
[49] LIU C, LI L, CHEN B, WANG X. Suppression of-l- arabinofuranosidase in the endosperm and atypical germination of lettuce seeds induced by sodium dichloroisocyanurate. Acta Physiologiae Plantarum, 2015, 37: 10.
[50] GONZáLEZ-CALLE V, BARRERO-SICILIA C, CARBONERO P, IGLESIAS-FERNáNDEZ R. Mannans and endo--mannanases (MAN) in: expression profiling and possible role of thegenes during coleorhiza-limited seedgermination. Journal of Experimental Botany, 2015, 66(13): 3753-3764.
[51] COSGROVE D J. Loosening of plant cell walls by expansins. Nature, 2000, 407: 321-326.
[52] CHEN F, BRADFORD K J. Expression of an expansin is associated with endosperm weakening during tomato seed germination. Plant Physiology, 2000, 124(3): 1265-1274.
Physiological and molecular effects of salicylic acid on rice seed germination at low temperature
CHEN BingXian, ZHANG Qi, DAI ZhangYan, ZHOU Xu, LIU Jun
Agro-biological Gene Research Center, Guangdong Academy of Agricultural Sciences/Guangdong Provincial Key Laboratory for Crop Germplasm Resources Preservation and Utilization, Guangzhou 510640
【Objective】The study investigated the impact of salicylic acid (SA) priming on the germination vigor and physiological response of rice seeds under low temperatures. It aimed to reveal the expression patterns of genes related to abscisic acid (ABA) and gibberellin (GA) metabolic pathways as well as cell wall relaxation genes by SA priming. This research provided a theoretical basis for the study of rice seed germination at low temperatures.【Method】Usingthree-line hybrid rice Taifengyou 208 seeds as materials, the effects of SA on seed germination vigor and physiology responses under low temperature were analyzed through seed priming treatment, and the expression patterns of genes related to ABA, GA and expansin in response to SA were analyzed by qRT-PCR.【Result】Low temperature (15 ℃) significantly delayed the germination process of rice seeds. In seeds germinated at low temperatures for one day, the endogenous SA concentration was 1.7 times higher than that at normal temperatures (28 ℃). However, for five-day-old seedlings, the SA concentration under low temperature was only 0.6% of that at normal temperatures. SA could effectively enhanced germination vigor of seeds at low temperature, with the most significant effects observed at 2 000 μmol·L-1SA. This concentration significantly increased the germination index, vigor index, shoot length, root length, fresh weight, and dry weight of seeds under low temperature conditions. Notably, the vigor index was three times that of non-primed seeds (CK1) and two times that of water-primed seeds (CK2). In terms of physiological indexes, SA priming increased the contents of soluble sugar, proline and active oxygen, enhanced the activities of total amylase,-amylase, superoxide dismutase (SOD) and catalase (CAT), and decreased the content of malondialdehyde (MDA). Compared with CK1, 2 000 μmol·L-1SA decreased the ABA content by 79%, and increased the IAA and GA1contents by 32.2% and 2.66 times, respectively. In terms of gene expression, the expression levels of ABA synthesizing genesandwere decreased by 94.26% and 90.24% compared with CK1 in seeds primed by 2 000 μmol·L-1SA, respectively, whereas the expression levels of ABA decomposing genesandwere 5.9 and 3.9 times higher than that of CK1, respectively. Compared with CK1, SA priming significantly upregulated the expression of GA synthesizing genes,and, while it significantly downregulated the expression of GA decomposing genesand. In several candidate genes encoding cell wall relaxation protein, e.t. expansin, all butwere significantly upregulated to some extent by priming. Compared with CK1, 2 000 μmol·L-1SA increased the expression levels of,andto 12.2, 5.9 and 6.1 times, respectively.【Conclusion】SA priming can significantly alleviate the impact of low temperatures on rice seed germination and seedling growth, which is likely due to SA enhancing the activity of antioxidant enzymes such as SOD and CAT, reducing the production of MDA, and increasing the content of soluble sugars and proline, thereby strengthening the tolerance of seeds and seedlings to low temperatures. On the other hand, SA priming decreases endogenous ABA content, increases GA1content, enhances the activities of total amylase and-amylase, and promotes the expression of genes related to cell wall relaxation, thus facilitating seed germination and seedling growth at low temperature.
rice; low temperature stress; seed priming; salicylic acid (SA); physiological index; gene expression
10.3864/j.issn.0578-1752.2024.07.002
2023-04-18;
2023-05-21
廣東省重點(diǎn)領(lǐng)域研發(fā)計(jì)劃(2020B0202090003,2022B0202110003)、廣東省自然科學(xué)基金(2022A1515012302)、廣東省農(nóng)業(yè)科學(xué)院農(nóng)業(yè)優(yōu)勢(shì)產(chǎn)業(yè)學(xué)科團(tuán)隊(duì)建設(shè)項(xiàng)目(202132TD)
陳兵先,E-mail:chenbingxian@gdaas.cn。通信作者劉軍,E-mail:liujun@gdaas.cn
(責(zé)任編輯 岳梅)