袁苗,周娟,黨仕卓,湯學(xué)燊,張亞紅
‘紅地球’葡萄功能分析
袁苗,周娟,黨仕卓,湯學(xué)燊,張亞紅
寧夏大學(xué)葡萄酒與園藝學(xué)院,銀川 750021
【目的】生長(zhǎng)素響應(yīng)因子ARF是生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑中的重要調(diào)控因子,在植物生長(zhǎng)發(fā)育和各類生理過程中發(fā)揮著重要作用。分析‘紅地球’葡萄啟動(dòng)子、異源表達(dá)、內(nèi)源激素含量及其對(duì)激素響應(yīng)的表達(dá),以探究在‘紅地球’葡萄生長(zhǎng)素(IAA)信號(hào)轉(zhuǎn)導(dǎo)途徑及花芽分化進(jìn)程中的作用機(jī)理?!痉椒ā恳栽O(shè)施‘紅地球’葡萄花芽為試驗(yàn)材料,通過同源克隆獲得序列,利用在線數(shù)據(jù)庫(kù)PLACE分析啟動(dòng)子的順式作用元件。以pCAMBIAI2300植物表達(dá)載體為基礎(chǔ),通過雙酶切和同源重組法構(gòu)建植物超表達(dá)載體pC2300-。采用電擊法將重組載體pC2300-轉(zhuǎn)化至根癌農(nóng)桿菌GV3101菌株中,以本氏煙草葉片為外植體,通過農(nóng)桿菌介導(dǎo)的愈傷組織轉(zhuǎn)化法轉(zhuǎn)入煙草中,經(jīng)PCR檢測(cè)獲得陽(yáng)性轉(zhuǎn)基因幼苗。利用實(shí)時(shí)熒光定量PCR(qRT-PCR)對(duì)轉(zhuǎn)煙草株系表達(dá)水平進(jìn)行分析,篩選出高表達(dá)量的轉(zhuǎn)基因株系培養(yǎng)至T3代,并分別進(jìn)行IAA和GA3處理,以分析的表達(dá)情況。通過酶聯(lián)免疫法測(cè)定轉(zhuǎn)基因煙草花芽和葉片中的IAA、GA、ABA、CTK含量?!窘Y(jié)果】‘紅地球’葡萄位于第13條染色體,含有3個(gè)外顯子和2個(gè)內(nèi)含子。啟動(dòng)子區(qū)域存在多種光響應(yīng)、植物激素響應(yīng)和逆境響應(yīng)的順式作用元件。表型分析發(fā)現(xiàn),轉(zhuǎn)基因煙草的花芽分化進(jìn)程快于野生型煙草。qRT-PCR結(jié)果顯示,在轉(zhuǎn)基因煙草花芽發(fā)育的4個(gè)時(shí)期中呈先上升后下降的表達(dá)趨勢(shì),且S3時(shí)期表達(dá)量達(dá)到最高。轉(zhuǎn)基因煙草植株花芽和葉片中IAA、CTK、GA和ABA測(cè)定結(jié)果表明,轉(zhuǎn)基因煙草花芽和葉片中4種植物激素的含量均高于野生型植株,其中GA/IAA在轉(zhuǎn)基因煙草花芽發(fā)育的4個(gè)時(shí)期中變化趨勢(shì)與表達(dá)趨勢(shì)相一致。轉(zhuǎn)基因煙草植株經(jīng)IAA和GA3處理后,的表達(dá)量隨IAA處理濃度的增高而降低,也隨GA3處理時(shí)間的延長(zhǎng)而降低?!窘Y(jié)論】葡萄負(fù)調(diào)控生長(zhǎng)素參與植物花芽分化進(jìn)程,可能與赤霉素信號(hào)轉(zhuǎn)導(dǎo)途徑中的關(guān)鍵因子相互作用協(xié)同調(diào)控植物花芽中的激素水平,對(duì)植物花芽分化具有促進(jìn)作用。
‘紅地球’葡萄;;轉(zhuǎn)基因植株;花芽分化;植物激素
【研究意義】葡萄()是世界上廣泛栽培的經(jīng)濟(jì)果樹之一?;ㄑ糠只情_花的先決條件,葡萄花芽分化的好壞直接影響葡萄的生長(zhǎng)發(fā)育、成熟期以及產(chǎn)量和品質(zhì)[1]。在設(shè)施葡萄栽培中,由于棚膜老化透光率低,光照不均勻形成的弱光環(huán)境以及葉幕遮光等因素造成葡萄受光不足,從而導(dǎo)致葡萄花芽發(fā)育不良,成花能力差,嚴(yán)重影響了設(shè)施葡萄經(jīng)濟(jì)產(chǎn)量和產(chǎn)業(yè)發(fā)展[2-4]。因此,挖掘葡萄中與花芽分化相關(guān)的基因并研究其功能和作用機(jī)理,對(duì)解決花芽分化不良阻礙設(shè)施葡萄產(chǎn)業(yè)健康發(fā)展問題具有重要的理論意義和實(shí)際應(yīng)用價(jià)值。【前人研究進(jìn)展】花芽分化是葡萄生長(zhǎng)發(fā)育過程中十分重要的階段,葡萄花芽分化可分為生理分化和形態(tài)分化兩個(gè)階段[5]。生理分化即成花誘導(dǎo),葡萄芽生長(zhǎng)點(diǎn)內(nèi)部發(fā)生一系列生理變化,是決定芽未來(lái)發(fā)育性質(zhì)的關(guān)鍵時(shí)期[1];形態(tài)分化跨越兩個(gè)生長(zhǎng)季,花序分化時(shí)間相對(duì)較長(zhǎng),在新梢生長(zhǎng)的當(dāng)年完成,是決定葡萄第2年有無(wú)花的關(guān)鍵階段;花器官分化,于翌春萌芽前后至開花前完成,分化集中且短,主要決定花的質(zhì)量[6]。環(huán)境因素(光照、溫度、水分)、樹體營(yíng)養(yǎng)(碳水化合物和礦質(zhì)元素)、栽培技術(shù)和內(nèi)源激素水平是影響葡萄花芽分化的主要因素[1,6]。生長(zhǎng)素(auxin,IAA)是最先發(fā)現(xiàn)的植物內(nèi)源生長(zhǎng)調(diào)節(jié)物質(zhì),在胚胎形成,維管束分化、莖的伸長(zhǎng)、根的生長(zhǎng)、花芽分化以及形態(tài)建成等植物發(fā)育過程中發(fā)揮著重要調(diào)節(jié)作用[7-9]。生長(zhǎng)素響應(yīng)因子(auxin response factor,ARF)作為生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑中的重要作用元件,能夠特異地與生長(zhǎng)素響應(yīng)基因啟動(dòng)子區(qū)域的生長(zhǎng)素響應(yīng)元件(auxin response element,AuxRE)“TGTCTC”結(jié)合,激活或抑制基因的表達(dá),進(jìn)而參與調(diào)控胚胎發(fā)生、葉片器官衰老、維管束形成、花和子葉發(fā)育等植物生長(zhǎng)發(fā)育過程[10-12]。近年來(lái),隨著基因組測(cè)序技術(shù)的快速發(fā)展,越來(lái)越多植物中的ARF家族成員被鑒定,在擬南芥()[13]、煙草()[14]、水稻()[15]、大豆()[16]、番茄()[17]、黃瓜()[18]、葡萄[19]、梨()[20]等植物中分別鑒定出23、50、25、51、21、15、19和31個(gè)ARF家族成員。隨著對(duì)的深入研究,發(fā)現(xiàn)在植物花器官發(fā)育和花芽分化過程中扮演著重要角色。擬南芥參與花器官的發(fā)育[21-22];和調(diào)控花器官成熟[23];促進(jìn)花藥及花粉管壁的形成[24]。番茄在花芽中的表達(dá)量最高,對(duì)花的發(fā)育具有促進(jìn)作用[25]。ARF家族基因整體上在葡萄剛萌動(dòng)的葉芽、休眠芽和果實(shí)中的表達(dá)量較高,在腋芽中表達(dá)量相對(duì)較低[26];葡萄、和在果實(shí)發(fā)育過程中呈高水平表達(dá),而在花中表達(dá)水平較高,表明可能參與調(diào)控葡萄花和果實(shí)的發(fā)育[19];vvi-miR160c/d/e可能介導(dǎo)其靶基因在葡萄種子發(fā)育的特定階段調(diào)控種子的發(fā)育形成[27]。在番木瓜()花芽分化進(jìn)程中呈不斷上升的表達(dá)趨勢(shì),推測(cè)可能參與番木瓜花芽的形成[28]。ARF不僅能與生長(zhǎng)素響應(yīng)基因特異結(jié)合引發(fā)生長(zhǎng)素介導(dǎo)的多種生理效應(yīng),還能與其他植物激素相互作用影響植物生長(zhǎng)發(fā)育[29]。在番茄坐果和發(fā)育過程中同時(shí)受生長(zhǎng)素和赤霉素反應(yīng)的調(diào)節(jié)作用[30]?!颈狙芯壳腥朦c(diǎn)】筆者課題組前期對(duì)‘紅地球’葡萄花芽分化過程中4個(gè)發(fā)育階段的冬芽進(jìn)行轉(zhuǎn)錄測(cè)序分析,通過KEGG富集分析發(fā)現(xiàn)差異表達(dá)基因在植物激素信號(hào)轉(zhuǎn)導(dǎo)通路中顯著富集,其中在葡萄冬芽發(fā)育的后3個(gè)階段高度表達(dá),推測(cè)在葡萄花芽分化過程中可能起到重要的調(diào)控作用。目前,關(guān)于ARF家族基因的研究多集中在一些模式植物上,且對(duì)與植物激素在葡萄芽發(fā)育過程中的生物功能及調(diào)控機(jī)制的研究較少,在葡萄花芽分化過程中的分子機(jī)理尚不明確,是否參與了葡萄花芽分化及其調(diào)控方式有待研究。【擬解決的關(guān)鍵問題】本研究構(gòu)建植物超表達(dá)載體,并獲得轉(zhuǎn)基因煙草材料,探究對(duì)煙草花芽發(fā)育的影響,為進(jìn)一步開展參與葡萄花芽分化調(diào)控機(jī)理的研究提供參考。
試驗(yàn)于2021—2022年在寧夏大學(xué)葡萄酒與園藝學(xué)院葡萄抗逆分子育種實(shí)驗(yàn)室進(jìn)行。
供試葡萄材料為10年生‘紅地球’葡萄(cv. Red Globe),栽培于銀川市賀蘭縣園藝產(chǎn)業(yè)園(106°16′ E,38°20′ N)15號(hào)陰陽(yáng)結(jié)合型日光溫室。供試煙草材料在光照培養(yǎng)箱中培養(yǎng),培養(yǎng)至4—6葉期備用。
試驗(yàn)中所用的高保真酶、DNA Marker、限制性內(nèi)切酶、無(wú)縫克隆試劑盒均購(gòu)自南京諾唯贊生物科技有限公司;膠回收試劑盒、質(zhì)粒提取試劑盒、大腸桿菌()DH5均購(gòu)于北京天根生化科技有限公司;根癌農(nóng)桿菌()菌株GV3103和pCAMBIA2300植物表達(dá)載體均由寧夏大學(xué)葡萄抗逆分子育種實(shí)驗(yàn)室保存;引物合成和測(cè)序均由上海生工生物工程有限公司完成;其余試劑均為國(guó)產(chǎn)或進(jìn)口分析純。
筆者課題組前期通過同源克隆獲得葡萄序列[31]。運(yùn)用在線網(wǎng)站Grape Genome Browser(https:// www.genoscope.cns.fr/externe/GenomeBrowser/Vitis/)分析的染色體定位、內(nèi)含子及外顯子區(qū)域。使用在線工具ExPASy ProtParam(https://web.expasy. org/protparam/)分析VvARF18蛋白的基本理化性質(zhì);利用在線數(shù)據(jù)庫(kù)PLACE(https://www.dna.affrc.go.jp/ PLACE/?action=newplace)預(yù)測(cè)ATG上游1 500 bp區(qū)域的啟動(dòng)子順式作用元件。
根據(jù)的編碼序列(coding sequence,CDS)設(shè)計(jì)植物表達(dá)載體的特異性引物(表1)。以‘紅地球’葡萄花芽反轉(zhuǎn)錄的cDNA為模板,通過PCR擴(kuò)增獲得目的片段。I和I雙酶切過表達(dá)載體pCAMBIAI2300后,將膠回收的目的片段與酶切后線性化載體通過同源重組的方法連接到一起,連接產(chǎn)物轉(zhuǎn)化至DH5感受態(tài)細(xì)胞,篩選陽(yáng)性克隆,經(jīng)測(cè)序驗(yàn)證后得到pC2300-植物過表達(dá)載體。
pC2300-植物過表達(dá)載體通過電擊法轉(zhuǎn)化根癌農(nóng)桿菌GV3101感受態(tài),然后利用根癌農(nóng)桿菌GV3101轉(zhuǎn)化煙草葉盤[32],用50 mg·L-1的卡那霉素和潮霉素篩選出20個(gè)轉(zhuǎn)基因煙草株系,實(shí)時(shí)熒光定量PCR(quantitative real-time PCR,qRT-PCR)鑒定出10個(gè)轉(zhuǎn)基因煙草株系并分析基因在轉(zhuǎn)基因陽(yáng)性植株的相對(duì)表達(dá)量,確定過表達(dá)煙草株系。隨后對(duì)T1代種子進(jìn)行分離,并在培養(yǎng)箱中繁殖出相應(yīng)的T3代轉(zhuǎn)基因植株。
參考劉鑫等[33]的方法提取本氏煙草幼葉(莖2—3節(jié))、嫩葉(莖6—7節(jié))、老葉(莖10—12節(jié))和花芽發(fā)育S1(0.5 cm)、S2(1 cm)、S3(1.5 cm)、S4(2 cm)4個(gè)時(shí)期中的植物激素,植物激素的測(cè)定使用酶聯(lián)免疫試劑盒(上海酶聯(lián)生物科技有限公司),使用酶標(biāo)儀(Labsystems Multiskan MS-352)測(cè)定生長(zhǎng)素、赤霉素(gibberellin,GA)、細(xì)胞分裂素(cytokinin,CTK)、脫落酸(abscisic acid,ABA)含量[34],試驗(yàn)設(shè)置3次生物學(xué)重復(fù)。
為進(jìn)一步探究對(duì)生長(zhǎng)素的響應(yīng),選取4—6周生長(zhǎng)一致的轉(zhuǎn)基因本氏煙草,外源噴施IAA和GA3,處理方法參考LAKEHAL等[35],配制1 mmol·L-1的IAA母液和GA3母液,在此基礎(chǔ)上分別稀釋至20、50和100 μmol·L-1濃度對(duì)轉(zhuǎn)基因煙草進(jìn)行噴施處理,篩選出最佳濃度,分別處理1、3、5和8 h,每個(gè)處理3個(gè)重復(fù),以外源噴施無(wú)菌水為對(duì)照(CK),將處理后的煙草采集統(tǒng)一位置葉片用錫紙包裹住,迅速用液氮冷凍,保存至超低溫冰箱。提取不同處理的煙草葉片總RNA,反轉(zhuǎn)錄合成cDNA后,參考袁苗等[31]反應(yīng)體系和反應(yīng)程序進(jìn)行qRT-PCR,分析噴施不同濃度和不同處理時(shí)間下生長(zhǎng)素和赤霉素對(duì)葡萄表達(dá)的影響。
使用Excel 2019整理數(shù)據(jù),并采用IBM SPSS 25.0對(duì)試驗(yàn)數(shù)據(jù)進(jìn)行統(tǒng)計(jì)分析,利用單因素ANOVA檢驗(yàn)和Student’s-test進(jìn)行顯著性分析(<0.05),然后使用Origin Pro 2021作圖。試驗(yàn)數(shù)據(jù)以平均值±標(biāo)準(zhǔn)差(SD)表示,試驗(yàn)設(shè)置3次生物學(xué)重復(fù)。
表1 引物列表
下劃線部分為限制性內(nèi)切酶位點(diǎn) The underlined sequences are the site of restriction endonuclease
定位于第13條染色體,含有3個(gè)外顯子,2個(gè)內(nèi)含子;VvARF18中丙氨酸占比最高,為6.9%,分子量約為74.82 kDa,理論等電點(diǎn)pI為6.43,不穩(wěn)定指數(shù)為49.07,GRAVY(grand average of hydropathicity)值為-0.404,屬于酸性不穩(wěn)定親水蛋白(圖1)。
選取上游1 500 bp區(qū)域的啟動(dòng)子序列并利用PlantCARE在線軟件進(jìn)行分析,該基因啟動(dòng)子區(qū)域除TATA-box、CAAT-box等一些基本順式作用元件外,還存在光響應(yīng)元件G-Box、G-box、AE-box、Box 4、TCCC-motif和GT1-motif;激素響應(yīng)元件TGACG-motif、AuxRR-core、ABRE和P-box;同時(shí)還包含低溫響應(yīng)的順式作用元件LTR和參與干旱脅迫的順式元件MBS(表2)。
通過同源重組獲得pC2300-重組質(zhì)粒(圖2-A)。對(duì)構(gòu)建的pC2300-重組質(zhì)粒進(jìn)行PCR檢測(cè),經(jīng)檢測(cè)已正向插入pC2300表達(dá)載體中,過表達(dá)載體pC2300-構(gòu)建成功(圖2-B)。進(jìn)一步使用葉盤轉(zhuǎn)化法將pC2300-重組質(zhì)粒轉(zhuǎn)化至煙草葉片中,通過抗性篩選后仍正常生長(zhǎng)的煙草幼苗為陽(yáng)性植株,說明已成功轉(zhuǎn)入煙草的基因組中(圖2-C)。
為進(jìn)一步探究在轉(zhuǎn)基因煙草植株中的表達(dá)情況,采用qRT-PCR對(duì)轉(zhuǎn)基因煙草的表達(dá)量進(jìn)行測(cè)定。10個(gè)轉(zhuǎn)基因煙草株系中的表達(dá)量存在差異,其中轉(zhuǎn)基因煙草株系OE#1、OE#2、OE#5、OE#7、OE#8、OE#10的表達(dá)量顯著高于野生型(CK)。此外,OE#1、OE#7和OE#8的表達(dá)量顯著高于其他轉(zhuǎn)基因株系(圖3),因此,挑選出OE#1、OE#7和OE#8轉(zhuǎn)基因煙草植株培養(yǎng)至T3代進(jìn)行異源表達(dá)的功能分析。
通過對(duì)T3代轉(zhuǎn)基因煙草植株與野生型煙草植株的表型觀察發(fā)現(xiàn),轉(zhuǎn)入葡萄的煙草能夠正常的生長(zhǎng)發(fā)育及開花結(jié)果,進(jìn)一步觀察本氏煙草花芽分化進(jìn)程時(shí)發(fā)現(xiàn),轉(zhuǎn)基因煙草的花芽分化進(jìn)程要快于野生型煙草植株,說明轉(zhuǎn)基因煙草生殖生長(zhǎng)階段快于野生型煙草,葡萄對(duì)花芽分化進(jìn)程具有促進(jìn)作用(圖4-A)。
為進(jìn)一步研究在花芽分化進(jìn)程中的功能,首先采集轉(zhuǎn)基因煙草植株不同發(fā)育時(shí)期的花芽(圖4-B),利用qRT-PCR對(duì)在轉(zhuǎn)基因煙草花芽發(fā)育4個(gè)時(shí)期的表達(dá)模式進(jìn)行分析。結(jié)果顯示(圖4-C),在轉(zhuǎn)基因煙草花芽發(fā)育的4個(gè)時(shí)期中呈現(xiàn)出先上升后下降的表達(dá)趨勢(shì),且在花芽發(fā)育的S3時(shí)期表達(dá)量最高,分別約為S1、S2、S4時(shí)期的2.8、2.4和6.1倍,表明可能參與植物花芽發(fā)育過程,對(duì)植物花芽分化具有促進(jìn)作用。
轉(zhuǎn)基因煙草花芽中IAA、CTK、GA和ABA 4種植物激素的含量均高于野生型煙草(圖5),說明轉(zhuǎn)基因煙草植株中各植物激素代謝相對(duì)較旺盛,對(duì)植株的花芽分化具有良好的促進(jìn)作用。GA和ABA在轉(zhuǎn)基因煙草4個(gè)發(fā)育時(shí)期的花芽中呈先上升后下降的變化趨勢(shì),這與在轉(zhuǎn)基因煙草花芽發(fā)育4個(gè)時(shí)期中的表達(dá)趨勢(shì)類似,說明可能與GA和ABA協(xié)同參與植物花芽分化進(jìn)程。IAA和CTK在轉(zhuǎn)基因煙草花芽發(fā)育的4個(gè)時(shí)期中變化趨勢(shì)與的表達(dá)趨勢(shì)均相反,呈現(xiàn)出先下降后上升的趨勢(shì),表明可能負(fù)調(diào)控IAA參與植物花芽分化進(jìn)程。
A:植物超表達(dá)載體pC2300-VvARF18構(gòu)建過程示意圖。B:重組載體pC2300-VvARF18的菌液PCR檢測(cè),M:DL4500 bp DNA marker;泳道1—3:pC2300-VvARF18菌液PCR檢測(cè)。C:農(nóng)桿菌介導(dǎo)的煙草葉片組織培養(yǎng),a:煙草葉片共培養(yǎng);b:誘導(dǎo)轉(zhuǎn)基因煙草的愈傷組織;c:篩選的陽(yáng)性植株;d:分化過程;e:生根培養(yǎng)的轉(zhuǎn)基因植株
OE#1—10表示轉(zhuǎn)基因植株的不同株系 OE#1-10 indicate different strains of transgenic plant。*: P<0.05;**: P<0.01
表2 VvARF18啟動(dòng)子順式作用元件分析
WT:野生型煙草;OE:轉(zhuǎn)基因煙草。不同小寫字母表示差異顯著(P<0.05)。下同
圖5 轉(zhuǎn)基因煙草不同發(fā)育時(shí)期花芽中激素含量
進(jìn)一步分析發(fā)現(xiàn)在轉(zhuǎn)基因煙草4個(gè)發(fā)育時(shí)期的花芽中各植物激素比值的變化趨勢(shì)相差較大(圖6)。在野生型煙草花芽發(fā)育的4個(gè)時(shí)期中,CTK/IAA、ABA/GA和ABA/IAA均呈現(xiàn)出先下降后上升的變化趨勢(shì);CTK/ IAA和ABA/IAA在轉(zhuǎn)基因煙草中呈先上升后下降的趨勢(shì),ABA/GA呈上升趨勢(shì),而GA/IAA的變化趨勢(shì)與在轉(zhuǎn)基因煙草花芽發(fā)育4個(gè)時(shí)期中表達(dá)趨勢(shì)相一致,表明作為生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑中起負(fù)調(diào)控作用的轉(zhuǎn)錄因子可能與赤霉素、細(xì)胞分裂素及脫落酸信號(hào)轉(zhuǎn)導(dǎo)途徑中的關(guān)鍵因子相互作用協(xié)同調(diào)控植物花芽中的激素水平,從而促進(jìn)植物花芽分化的進(jìn)程。
轉(zhuǎn)基因煙草植株的3種葉片組織中,IAA、CTK和ABA的含量均顯著高于野生型煙草,GA在野生型煙草幼葉中的含量顯著高于轉(zhuǎn)基因煙草,而在轉(zhuǎn)基因煙草嫩葉和老葉中的含量顯著高于野生型煙草(圖7),表明轉(zhuǎn)基因煙草植株中各內(nèi)源激素在葉片組織中的代謝與積累水平相對(duì)較好,能夠促進(jìn)植株功能葉片的良好發(fā)育。
ARF作為植物生長(zhǎng)素響應(yīng)的關(guān)鍵調(diào)節(jié)因子,在植物生長(zhǎng)發(fā)育過程中可與下游目的基因特異性結(jié)合并調(diào)控其表達(dá),從而引發(fā)IAA介導(dǎo)的諸多生理效應(yīng)。圖8顯示,IAA處理后,轉(zhuǎn)基因煙草中的表達(dá)量總體呈現(xiàn)下降的趨勢(shì),隨著噴施IAA濃度的增高,轉(zhuǎn)基因煙草中的表達(dá)量逐步降低(圖8-A)。20 μmol·L-1IAA處理后,轉(zhuǎn)基因煙草中呈先升高后下降的趨勢(shì),的表達(dá)量在3 h達(dá)到最高,之后逐漸降低(圖8-B)。說明IAA水平能夠影響的表達(dá),推測(cè)高水平IAA可能促進(jìn)VvARF18蛋白的降解,植物體內(nèi)ARF18蛋白的降解容易受IAA水平的影響,也說明在植物生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑中起負(fù)調(diào)控作用。生長(zhǎng)素在生物合成水平上與GA存在相互作用[27]。GA3處理后,轉(zhuǎn)基因煙草中的表達(dá)量呈先下降后上升的變化趨勢(shì),且在100 μmol·L-1GA3處理下的表達(dá)量達(dá)到峰值(圖8-C)。100 μmol·L-1GA3使轉(zhuǎn)基因煙草中呈下降表達(dá)趨勢(shì),在1 h時(shí)表達(dá)量達(dá)到峰值(圖8-D)。
圖6 轉(zhuǎn)基因煙草不同發(fā)育時(shí)期花芽中激素含量的比值
圖7 轉(zhuǎn)基因煙草不同葉片組織中激素含量
圖8 VvARF18在外源IAA和 GA3處理下的表達(dá)
ARF是生長(zhǎng)素信號(hào)轉(zhuǎn)導(dǎo)途徑中的關(guān)鍵轉(zhuǎn)錄因子,能夠特異性結(jié)合生長(zhǎng)素響應(yīng)基因啟動(dòng)子區(qū)域的AuxRE元件,調(diào)控生長(zhǎng)素應(yīng)答基因的表達(dá),從而影響植物生長(zhǎng)發(fā)育[25]。本研究發(fā)現(xiàn)VvARF18屬于植物特有的ARF家族蛋白成員,這與白云赫等[27]從‘魏可’葡萄中克隆的結(jié)果一致。VvARF18蛋白性質(zhì)及結(jié)構(gòu)與WAN等[19]從葡萄基因組中篩選獲得的VvARF18蛋白類似。VvARF18蛋白與擬南芥AtARF3蛋白結(jié)構(gòu)相類似,而在早期花發(fā)育階段中發(fā)揮著重要調(diào)節(jié)作用,推測(cè)可能在葡萄花芽發(fā)育過程也具有重要的調(diào)節(jié)作用[36]。啟動(dòng)子不僅具有核心啟動(dòng)元件,還在高等植物的基因表達(dá)調(diào)控中發(fā)揮著重要作用[37]。白云赫等[27]發(fā)現(xiàn)啟動(dòng)子中除了含有基本的作用元件之外,還含有光響應(yīng)作用元件,脅迫相關(guān)作用元件及激素類響應(yīng)元件。而本研究通過對(duì)啟動(dòng)子分析發(fā)現(xiàn),葡萄啟動(dòng)子中包含多個(gè)光信號(hào)、生長(zhǎng)素和赤霉素相關(guān)的順式作用元件,還含有低溫、鹽脅迫及干旱脅迫等逆境脅迫相關(guān)的順式作用元件,由此推測(cè)可能參與生長(zhǎng)素和赤霉素等植物激素信號(hào)通路,協(xié)同調(diào)控葡萄花芽發(fā)育進(jìn)程。
花芽分化是植物開花的前提,植物激素在這個(gè)過程中起重要調(diào)節(jié)作用,并在體內(nèi)具有一定的動(dòng)態(tài)平衡,且通過平衡互作調(diào)控植物花芽分化過程[38]。本研究觀察異源表達(dá)的轉(zhuǎn)基因煙草,發(fā)現(xiàn)其花芽分化進(jìn)程和花器官的形態(tài)建成要快于野生型煙草,表明參與植物花芽發(fā)育和花器官形態(tài)建成過程,與SONG等[39]在果梅()中的研究結(jié)果類似。朝倉(cāng)花椒()和在花中的表達(dá)水平較高,可能在早期花發(fā)育過程中起重要作用[40]。在處于始分化期的葡萄花芽中表達(dá)量較高,表明的高表達(dá)可能會(huì)促進(jìn)葡萄花芽分化進(jìn)程[31]。本研究中在轉(zhuǎn)基因煙草花芽發(fā)育的4個(gè)時(shí)期中呈先升后降的表達(dá)趨勢(shì),且在S3時(shí)期時(shí)表達(dá)量達(dá)到最高,表明對(duì)植物花芽分化進(jìn)程具有促進(jìn)作用,與前期研究結(jié)果類似[31,40]。植物內(nèi)源激素是果樹花芽分化的關(guān)鍵誘導(dǎo)因子之一,對(duì)花芽分化的順利進(jìn)行起著重要的調(diào)控作用。在果梅花芽發(fā)育過程中,GA含量變化和的表達(dá)趨勢(shì)一致;ABA和CTK含量變化總體上與的表達(dá)呈相反的趨勢(shì);而在成熟花器官中IAA的含量變化與的表達(dá)表現(xiàn)出相反的趨勢(shì)[29]。本研究推測(cè)可能受到GA與ABA的正調(diào)控作用和IAA與CTK負(fù)調(diào)控作用,協(xié)同參與植物花芽分化進(jìn)程,促進(jìn)成花誘導(dǎo),與果梅的研究結(jié)果略有不同,主要原因可能是物種與基因功能存在差異。植物的花芽分化不僅受單一激素的影響,也受各種內(nèi)源激素相互作用,協(xié)調(diào)達(dá)到一種動(dòng)態(tài)平衡關(guān)系,調(diào)控植物花芽分化進(jìn)程。CTK/IAA、ABA/IAA、CTK/GA、IAA/GA、ABA/GA之間的動(dòng)態(tài)平衡與綜合作用促進(jìn)了杏()的花芽分化,對(duì)花期的調(diào)控具有重要意義[41]。較高的CTK/IAA、ABA/IAA和GA/IAA的比值有利于棗()花芽分化和花芽形成[42]。本研究發(fā)現(xiàn)GA/IAA的變化模式與的表達(dá)趨勢(shì)相吻合,推測(cè)可能與GA、CTK和ABA信號(hào)轉(zhuǎn)導(dǎo)途徑中的關(guān)鍵因子相互作用協(xié)同調(diào)控植物花芽中的激素水平。
ARF不僅在植物生長(zhǎng)素信號(hào)途徑中發(fā)揮著重要的作用,對(duì)其他植物激素信號(hào)轉(zhuǎn)導(dǎo)調(diào)控途徑也產(chǎn)生重要影響[10]。麻風(fēng)樹()/在IAA處理1 h后顯著上調(diào)表達(dá),推測(cè)這些基因可能參與生長(zhǎng)素的響應(yīng)調(diào)控[43]。在薔薇科植物月季()中,的表達(dá)量隨著生長(zhǎng)素濃度的升高而降低,并以依賴生長(zhǎng)素的方式調(diào)控雄蕊和花瓣器官的發(fā)育[44]。擬南芥AtARF6/8特異性地與轉(zhuǎn)錄因子BZR1和PIF4相互作用,協(xié)同響應(yīng)GA和IAA激素信號(hào),以調(diào)控胚軸細(xì)胞伸長(zhǎng)和花芽器官的發(fā)育[45]。番茄降低的表達(dá)可誘發(fā)單性果實(shí)的形成,在番茄坐果和發(fā)育過程中起到IAA和GA激素信號(hào)反應(yīng)調(diào)節(jié)劑的作用[30]。本研究發(fā)現(xiàn)轉(zhuǎn)基因煙草中的表達(dá)量隨IAA濃度的增高而降低,的表達(dá)受IAA水平高低的影響。
‘紅地球’葡萄位于第13條染色體,含有3個(gè)外顯子,2個(gè)內(nèi)含子,其啟動(dòng)子區(qū)域含有光響應(yīng)、植物激素響應(yīng)及逆境響應(yīng)的順式作用元件。參與植物花芽發(fā)育過程,對(duì)植物花芽分化具有促進(jìn)作用,其可能通過與GA、CTK和ABA信號(hào)轉(zhuǎn)導(dǎo)途徑中的關(guān)鍵因子相互作用協(xié)同調(diào)控植物花芽中的激素水平,從而促進(jìn)植物花芽分化的進(jìn)程。IAA濃度水平能夠影響的表達(dá),與GA在IAA調(diào)控植物生長(zhǎng)發(fā)育和花芽分化過程中可能存在協(xié)同作用。
[1] 王博, 羅惠格, 覃富強(qiáng), 陳祥飛, 朱維, 謝太理, 曹雄軍, 白先進(jìn). 葡萄花芽分化研究進(jìn)展. 南方農(nóng)業(yè)學(xué)報(bào), 2023, 54(3): 957-968.
WANG B, LUO H G, QIN F Q, CHEN X F, ZHU W, XIE T L, CAO X J, BAI X J. Research progress of grape flower bud differentiation. Journal of Southern Agriculture, 2023, 54(3): 957-968. (in Chinese)
[2] 劉帥, 徐偉榮, 張亞紅, 劉鑫, 郭松濤, 胡莉. 基于轉(zhuǎn)錄組研究補(bǔ)光對(duì)設(shè)施‘紅地球’葡萄萌芽的影響. 果樹學(xué)報(bào), 2021, 38(3): 305-317.
LIU S, XU W R, ZHANG Y H, LIU X, GUO S T, HU L. Effects of supplementary light on the bud burst of ‘Red Globe’ grape under protected cultivation based on transcriptome sequencing. Journal of Fruit Science, 2021, 38(3): 305-317. (in Chinese)
[3] 張克坤, 劉鳳之, 王孝娣, 史祥賓, 王寶亮, 鄭曉翠, 冀曉昊, 王海波. 不同光質(zhì)補(bǔ)光對(duì)促早栽培‘瑞都香玉’葡萄果實(shí)品質(zhì)的影響. 應(yīng)用生態(tài)學(xué)報(bào), 2017, 28(1): 115-126.
ZHANG K K, LIU F Z, WANG X D, SHI X B, WANG B L, ZHENG X C, JI X H, WANG H B. Effects of supplementary light with different wavelengths on fruit quality of ‘Ruidu Xiangyu’ grape under promoted cultivation. Chinese Journal of Applied Ecology, 2017, 28(1): 115-126. (in Chinese)
[4] MORGAN D C, STANLEY C J, WARRINGTON I J. The effects of simulated daylight and shade-light on vegetative and reproductive growth in kiwifruit and grapevine. Journal of Horticultural Science, 1985, 60(4): 473-484.
[5] 鄭婷, 張克坤, 張培安, 賈海鋒, 房經(jīng)貴. 葡萄營(yíng)養(yǎng)生長(zhǎng)與生殖生長(zhǎng)間的轉(zhuǎn)變研究進(jìn)展. 植物生理學(xué)報(bào), 2020, 56(7): 1361-1372.
ZHENG T, ZHANG K K, ZHANG P A, JIA H F, FANG J G. Recent progress in the study of transition between vegetative and reproductive growth in grapevine. Plant Physiology Journal, 2020, 56(7): 1361-1372. (in Chinese)
[6] 賈楠. 葡萄花芽分化及其主要影響因素的研究進(jìn)展. 河北果樹, 2020(1): 1-3.
JIA N. Review on grape floral bud differentiation and its major influencing factors. Hebei Fruits, 2020(1): 1-3. (in Chinese)
[7] ZHANG D, REN L, YUE J H, WANG L, ZHUO L H, SHEN X H. GA4 and IAA were involved in the morphogenesis and development of flowers inssp.. Journal of Plant Physiology, 2014, 171(11): 966-976.
[8] WANG Y D, ZHANG T, WANG R C, ZHAO Y D. Recent advances in auxin research in rice and their implications for crop improvement. Journal of Experimental Botany, 2018, 69(2): 255-263.
[9] VANNESTE S, FRIML J. Auxin: A trigger for change in plant development. Cell, 2009, 136(6): 1005-1016.
[10] 李艷林, 高志紅, 宋娟, 王萬(wàn)許, 侍婷. 植物生長(zhǎng)素響應(yīng)因子ARF與生長(zhǎng)發(fā)育. 植物生理學(xué)報(bào), 2017, 53(10): 1842-1858.
LI Y L, GAO Z H, SONG J, WANG W X, SHI T. Auxin response factor (ARF) and its functions in plant growth and development. Plant Physiology Journal, 2017, 53(10): 1842-1858. (in Chinese)
[11] GUILFOYLE T J. The PB1 domain in auxin response factor and Au/IAA proteins: A versatile protein interaction module in the auxin response. The Plant Cell, 2015, 27(1): 33-43.
[12] LI S B, XIE Z Z, HU C G, ZHANG J Z. A review of auxin response factors (ARFs) in plants. Frontiers in Plant Science, 2016, 7: 47.
[13] OKUSHIMA Y, OVERVOORDE P J, ARIMA K, ALONSO J M, CHAN A, CHANG C, ECKER J R, HUGHES B, LUI A, NGUYEN D, ONODERA C, QUACH H, SMITH A, YU G X, THEOLOGIS A. Functional genomic analysis of the auxin response factor gene family members in: Unique and overlapping functions of arf7 and arf19. The Plant Cell, 2005, 17(2): 444-463.
[14] 孫亭亭, 張磊, 陳樂, 龔達(dá)平, 王大偉, 陳雅瓊, 陳蕾, 孫玉合. 普通煙草基因家族序列的鑒定與表達(dá)分析. 植物遺傳資源學(xué)報(bào), 2016, 17(1): 162-168.
SUN T T, ZHANG L, CHEN L, GONG D P, WANG D W, CHEN Y Q, CHEN L, SUN Y H. Identification and expression analysis of thegene family in. Journal of Plant Genetic Resources, 2016, 17(1): 162-168. (in Chinese)
[15] WANG D K, PEI K M, FU Y P, SUN Z X, LI S J, LIU H Q, TANG K, HAN B, TAO Y Z. Genome-wide analysis of the auxin response factors () gene family in rice (). Gene, 2007, 394(1/2): 13-24.
[16] VAN HA C, LE D T, NISHIYAMA R, WATANABE Y, SULIEMAN S, TRAN U T, MOCHIDA K, VAN DONG N, YAMAGUCHI- SHINOZAKI K, SHINOZAKI K, TRAN L S P. The auxin response factor transcription factor family in soybean: Genome-wide identification and expression analyses during development and water stress. DNA Research, 2013, 20(5): 511-524.
[17] WU J, WANG F Y, CHENG L, KONG F L, PENG Z, LIU S Y, YU X L, LU G. Identification, isolation and expression analysis of auxin response factor () genes in. Plant Cell Reports, 2011, 30(11): 2059-2073.
[18] LIU S Q, HU L F. Genome-wide analysis of the auxin response factor gene family in cucumber. Genetics and Molecular Research, 2013, 12(4): 4317-4331.
[19] WAN S B, LI W L, ZHU Y Y, LIU Z M, HUANG W D, ZHAN J C. Genome-wide identification, characterization and expression analysis of the auxin response factor gene family in. Plant Cell Reports, 2014, 33(8): 1365-1375.
[20] 歐春青, 姜淑苓, 王斐, 趙亞楠. 梨全基因組生長(zhǎng)素反應(yīng)因子(ARF)基因家族鑒定及表達(dá)分析. 中國(guó)農(nóng)業(yè)科學(xué), 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012.
OU C Q, JIANG S L, WANG F, ZHAO Y N. Genome-wide identification and expression analysis of auxin response factor() gene family in pear. Scientia Agricultura Sinica, 2018, 51(2): 327-340. doi: 10.3864/j.issn.0578-1752.2018.02.012. (in Chinese)
[21] ELLIS C M, NAGPAL P, YOUNG J C, HAGEN G, GUILFOYLE T J, REED J W. Auxin response factor1 and auxin response factor2 regulate senescence and floral organ abscission in. Development, 2005, 132(20): 4563-4574.
[22] LIU X G, DINH T T, LI D M, SHI B H, LI Y P, CAO X W, GUO L, PAN Y Y, JIAO Y L, CHEN X M. AUXIN RESPONSE FACTOR 3 integrates the functions of AGAMOUS and APETALA2 in floral meristem determinacy. The Plant Journal, 2014, 80(4): 629-641.
[23] NAGPAL P, ELLIS C M, WEBER H, PLOENSE S E, BARKAWI L S, GUILFOYLE T J, HAGEN G, ALONSO J M, COHEN J D, FARMER E E, ECKER J R, REED J W. Auxin response factors ARF6 and ARF8 promote jasmonic acid production and flower maturation. Development, 2005, 132(18): 4107-4118.
[24] WANG B, XUE J S, YU Y H, LIU S Q, ZHANG J X, YAO X Z, LIU Z X, XU X F, YANG Z N. Fine regulation of ARF17 for another development and pollen formation. BMC Plant Biology, 2017, 17(1): 243.
[25] KUMAR R, TYAGI A K, SHARMA A K. Genome-wide analysis of auxin response factor () gene family from tomato and analysis of their role in flower and fruit development. Molecular Genetics and Genomics, 2011, 285(3): 245-260.
[26] 袁華招, 趙密珍, 吳偉民, 于紅梅, 錢亞明, 王壯偉, 王西成. 葡萄生長(zhǎng)素響應(yīng)基因家族生物信息學(xué)鑒定和表達(dá)分析. 遺傳, 2015, 37(7): 720-730.
YUAN H Z, ZHAO M Z, WU W M, YU H M, QIAN Y M, WANG Z W, WANG X C. Genome-wide identification and expression analysis of auxin-related gene families in grape. Hereditas, 2015, 37(7): 720-730. (in Chinese)
[27] 白云赫, 王文然, 董天宇, 管樂, 宿子文, 賈海鋒, 房經(jīng)貴, 王晨. Vvi-miR160s介導(dǎo)應(yīng)答赤霉素調(diào)控葡萄種子的發(fā)育. 中國(guó)農(nóng)業(yè)科學(xué), 2020, 53(9): 1890-1903. doi: 10.3864/j.issn.0578-1752. 2020.09.015.
BAI Y H, WANG W R, DONG T Y, GUAN L, SU Z W, JIA H F, FANG J G, WANG C. Vvi-miR160s in mediatingresponse to gibberellin regulation of grape seed development. Scientia Agricultura Sinica, 2020, 53(9): 1890-1903. doi: 10.3864/j.issn.0578- 1752.2020.09.015. (in Chinese)
[28] LIU K D, YUAN C C, LI H L, LIN W H, YANG Y J, SHEN C J, ZHENG X L. Genome-wide identification and characterization of auxin response factor (ARF) family genes related to flower and fruit development in papaya (L.). BMC Genomics, 2015, 16: 901.
[29] 李艷林, Iqbal S, 侍婷, 宋娟, 倪照君, 高志紅. 梅. 中國(guó)農(nóng)業(yè)科學(xué), 2021, 54(13): 2843-2857. doi: 10.3864/j.issn.0578-1752.2021.13.013.
LI Y L, IQBAL S, SHI T, SONG J, NI Z J, GAO Z H. Isolation ofand its regulation pattern of endogenous hormones during flower development in. Scientia Agricultura Sinica, 2021, 54(13): 2843-2857. doi: 10.3864/j.issn.0578-1752.2021.13.013. (in Chinese)
[30] DE JONG M, WOLTERS-ARTS M, GARCíA-MARTíNEZ J L, MARIANI C, VRIEZEN W H. Theauxin response factor 7 (slarf7) mediates cross-talk between auxin and gibberellin signalling during tomato fruit set and development. Journal of Experimental Botany, 2011, 62(2): 617-626.
[31] 袁苗, 徐偉榮, 劉鑫, 黨仕卓, 周娟, 張亞紅. ‘紅地球’葡萄花芽分化過程中基因克隆與表達(dá)分析. 植物生理學(xué)報(bào), 2023, 59(6): 1184-1194.
YUAN M, XU W R, LIU X, DANG S Z, ZHOU J, ZHANG Y H. Cloning and expression analysis ofgene during ?ower bud differentiation in ‘Red Globe’ grape. Plant Physiology Journal, 2023, 59(6): 1184-1194. (in Chinese)
[32] 肖迪, 劉軼, 李開隆, 鄭密, 曲冠證. 小黑楊基因在煙草中的遺傳轉(zhuǎn)化與功能分析. 植物研究, 2020, 40(4): 593-601.
XIAO D, LIU Y, LI K L, ZHENG M, QU G Z. Genetic transformation and function analysis ofgene isolated from×in. Bulletin of Botanical Research, 2020, 40(4): 593-601. (in Chinese)
[33] 劉鑫, 張亞紅, 袁苗, 黨仕卓, 周娟. ‘紅地球’葡萄花芽分化過程中的轉(zhuǎn)錄組分析. 中國(guó)農(nóng)業(yè)科學(xué), 2022, 55(20): 4020-4035. doi: 10.3864/j.issn.0578-1752.2022.20.013.
LIU X, ZHANG Y H, YUAN M, DANG S Z, ZHOU J. Transcriptome analysis during flower bud differentiation of Red Globe grape. Scientia Agricultura Sinica, 2022, 55(20): 4020-4035. doi: 10.3864/ j.issn.0578-1752.2022.20.013. (in Chinese)
[34] 吳文浩, 曹凡, 劉壯壯, 彭方仁, 梁有旺, 譚鵬鵬. NAA對(duì)薄殼山核桃扦插生根過程中內(nèi)源激素含量變化的影響. 南京林業(yè)大學(xué)學(xué)報(bào)(自然科學(xué)版), 2016, 40(5): 191-196.
WU W H, CAO F, LIU Z Z, PENG F R, LIANG Y W, TAN P P. Effects of NAA treatment on the endogenous hormone changes in cuttings ofduring rooting. Journal of Nanjing Forestry University (Natural Sciences Edition), 2016, 40(5): 191-196. (in Chinese)
[35] LAKEHAL A, CHAABOUNI S, CAVEL E, LE HIR R, RANJAN A, RANESHAN Z, NOVáK O, P?CURAR D I, PERRONE I, JOBERT F, GUTIERREZ L, BAKò L, BELLINI C. A molecular framework for the control of adventitious rooting by TIR1/AFB2-Au/IAA-dependent auxin signaling in. Molecular Plant, 2019, 12(11): 1499-1514.
[36] ZHENG Y, ZHANG K, GUO L, LIU X, ZHANG Z. AUXIN RESPONSE FACTOR3 plays distinct role during early flower development. Plant Signaling & Behavior, 2018, 13(5): e1467690.
[37] 王雪, 王盛昊, 于冰. 轉(zhuǎn)錄因子和啟動(dòng)子互作分析技術(shù)及其在植物應(yīng)答逆境脅迫中的研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2021, 37(33): 112-119.
WANG X, WANG S H, YU B. Interaction analysis of transcription factors and promoters and its application in response of plants to stress. Chinese Agricultural Science Bulletin, 2021, 37(33): 112-119. (in Chinese)
[38] 段娜, 賈玉奎, 徐軍, 陳海玲, 孫鵬. 植物內(nèi)源激素研究進(jìn)展. 中國(guó)農(nóng)學(xué)通報(bào), 2015, 31(2): 159-165.
DUAN N, JIA Y K, XU J, CHEN H L, SUN P. Research progress on plant endogenous hormones. Chinese Agricultural Science Bulletin, 2015, 31(2): 159-165. (in Chinese)
[39] SONG J, GAO Z H, HUO X M, SUN H L, XU Y S, SHI T, NI Z J. Genome-wide identification of the auxin response factor () gene family and expression analysis of its role associated with pistil development in Japanese apricot (Sieb. et Zucc). Acta Physiologiae Plantarum, 2015, 37(8): 145.
[40] 劉偉, 趙懿琛, 廖震, 趙德剛. 朝倉(cāng)花椒基因家族的鑒定及表達(dá)分析. 植物生理學(xué)報(bào), 2020, 56(7): 1627-1640.
LIU W, ZHAO Y C, LIAO Z, ZHAO D G. Identification and expression analysis of auxin response factor () gene family invar.. Plant Physiology Journal, 2020, 56(7): 1627-1640. (in Chinese)
[41] 趙通, 陳翠蓮, 程麗, 張繼強(qiáng), 劉生虎, 郭榮, 朱祖雷, 朱燕芳, 王延秀. ‘李光杏’花芽分化時(shí)期內(nèi)源激素及碳氮比值的動(dòng)態(tài)研究. 干旱地區(qū)農(nóng)業(yè)研究, 2020, 38(3): 97-104.
ZHAO T, CHEN C L, CHENG L, ZHANG J Q, LIU S H, GUO R, ZHU Z L, ZHU Y F, WANG Y X. Dynamic study on endogenous hormones and C/N ratio during flower-bud differentiation of Li-Guang Apricot. Agricultural Research in the Arid Areas, 2020, 38(3): 97-104. (in Chinese)
[42] 阿布都卡尤木?阿依麥提, 樊丁宇, 岳婉婉, 趙婧彤, 郝慶. 棗花芽分化過程中營(yíng)養(yǎng)物質(zhì)和內(nèi)源激素含量及抗氧化酶活性變化研究. 西北植物學(xué)報(bào), 2021, 41(1): 142-150.
ABUDOUKAYOUMU?Ayimaiti, FAN D Y, YUE W W, ZHAO J T, HAO Q. Changes of nutrients, endogenous hormones and antioxidant enzymes activities during flower bud differentiation process of. Acta Botanica Boreali-Occidentalia Sinica, 2021, 41(1): 142-150. (in Chinese)
[43] TANG Y H, BAO X X, LIU K, WANG J, ZHANG J, FENG Y W, WANG Y Y, LIN L X, FENG J C, LI C W. Genome-wide identification and expression profiling of the auxin response factor () gene family in physic nut. PLoS One, 2018, 13(8): e0201024.
[44] CHEN J W, LI Y, LI Y H, LI Y Q, WANG Y, JIANG C Y, CHOISY P, XU T, CAI Y M, PEI D, JIANG C Z, GAN S S, GAO J P, MA N. Auxin response factor 18-histone deacetylase 6 module regulates floral organ identity in rose (hybrida). Plant Physiology, 2021, 186(2): 1074-1087.
[45] OH E, ZHU J Y, BAI M Y, ARENHART R A, SUN Y, WANG Z Y. Cell elongation is regulated through a central circuit of interacting transcription factors in thehypocotyl. eLife, 2014, 3: e03031.
Functional Analysis ofGene in Red Globe Grape
YUAN Miao, ZHOU Juan, DANG ShiZhuo, TANG XueShen, ZHANG YaHong
College of Enology and Horticulture, Ningxia University, Yinchuan 750021
【Objective】Auxin response factor (ARF) is a significant regulatory factor in the auxin signaling pathway and plays an important role in plant growth and development as well as various physiological processes.Analysis of the Red Globe grapepromoter, heterologous expression, endogenous hormone content and its expression in response to hormones was made in order to explore the mechanism ofgene in the auxin (IAA) signaling pathway and flower bud differentiation process in Red Globe grapes.【Method】Thegene sequence was obtained by homologous cloning by using facility Red Globe grape flower buds as experimental materials. The cis-acting elements of the promoter were analyzed using the online database PLACE. The plant overexpression vector pC2300-was constructed based on the pCAMBIAI2300 plant expression vector by double enzyme digestion and homologous recombination method. The recombinant vector pC2300-was transformed intostrain GV3101 by using electrical shock method. The tobacco leaves were used as explants and transferred into tobacco by-mediated callus transformationmethod, and positive transgenic seedlings were obtained by PCR. The quantitative real-time PCR (qRT-PCR) was used to analyze the expression level oftransgenic tobacco lines, and the transgenic lines with high expression level were screened and cultured to T3 generation, and treated with IAA and GA3to analyze the expression level of. The content of IAA, GA, ABA and CTK in flower buds and leaves of transgenic tobacco were determined by enzyme-linked immunosorbent assay. 【Result】of Red Globe grape located on chromosome 13, and contained 3 exons and 2 introns.There are multiple cis-acting elements in thepromoter region that respond to light, plant hormones, and stress.The phenotypic analysis found that the process of flower bud differentiation was faster in transgenic tobacco than in wild-type tobacco. The qRT-PCR results showed that the expression of VvARF18 showed an increasing and then decreasing trend during the four periods of flower bud development in transgenic tobacco, and the highest expression level was reached in the S3 stage. The results of IAA, CTK, GA and ABA determination in flower buds and leaves of transgenic tobacco plants showed that the content of four plant hormones in flower buds and leaves of transgenic tobacco plants were higher than those of wild-type plants. The change trend of GA/IAA during the four periods of transgenic tobacco flower bud development were consistent with the expression trend of. The expressionlevel ofVvARF18 in transgenic tobacco plants treated with IAA and GA decreased with the increase of IAA treatment concentration and alsodecreased with the extension of GA3treatmenttime.【Conclusion】Grapenegatively regulated auxin to participate in the process of plant flower bud differentiation, which could interact with key factors in the gibberellin signaling pathway to synergistically regulate hormone levels in plant flower buds and had a facilitative effect on plant flower bud differentiation.
Red Globe grape;; transgenic plants; flower bud differentiation; phytohormone
10.3864/j.issn.0578-1752.2024.07.012
2023-05-11;
2024-02-29
寧夏回族自治區(qū)重點(diǎn)研發(fā)計(jì)劃(2021BEF02016)
袁苗,E-mail:yuanmiao970915@163.com。通信作者張亞紅,E-mail:zhyhcau@sina.com
(責(zé)任編輯 趙伶俐)