郭艷 鮑莉 紀猛 吳月紅
摘要: 視網(wǎng)膜色素上皮細胞(Retinal pigment epithelial cells, RPE)是位于視網(wǎng)膜底部致密的細胞層,其損傷導(dǎo)致年齡相關(guān)性黃斑變性(Age-related macular degeneration, AMD)、Stargardt?。⊿targardt macular dystrophy, STGD)和色素性視網(wǎng)膜炎(Retinitis pigmentosa, RP)等視網(wǎng)膜疾病,RPE移植已成為治療RPE損傷性疾病的有效方案。來源于人多能干細胞(Human pluripotent stem cells, hPSC)的視網(wǎng)膜色素上皮細胞,具有與人原代RPE相似的功能和容易制備等優(yōu)點,已成為RPE移植的最主要細胞來源之一。文章對hPSC-RPE治療視網(wǎng)膜退行性疾病的臨床試驗進展進行了總結(jié)和歸納,并闡述了目前面臨的挑戰(zhàn)與風(fēng)險。
關(guān)鍵詞: 人多能干細胞;視網(wǎng)膜色素上皮細胞;年齡相關(guān)性黃斑變性;Stargardt??;色素性視網(wǎng)膜炎;細胞治療
中圖分類號: Q291
文獻標志碼: A
文章編號: 1673-3851 (2024) 01-0130-15
引文格式:郭艷,鮑莉,紀猛,等. 多能干細胞治療視網(wǎng)膜退行性疾?。簭膶嶒炇业脚R床轉(zhuǎn)化的現(xiàn)狀與挑戰(zhàn)[J]. 浙江理工大學(xué)學(xué)報(自然科學(xué)),2024,51(1):130-144.
Reference Format: GUO ?Yan,BAO ?Li,JI ?Meng, et al. Pluripotent stem cells in the treatment of retinal degenerative diseases: Current situation and challenges from bench to bedside[J]. Journal of Zhejiang Sci-Tech University,2024,51(1):130-144.
Pluripotent stem cells in the treatment of retinal degenerative diseases: Current situation and challenges from bench to bedside
GUO ?Yan1,BAO ?Li1,JI ?Meng2,WU ?Yuehong1
(1.College of Life Science and Medicine, Zhejiang Sci-Tech University, Hangzhou 310018, China;
2.Asia Stem Cell Therapeutics Co., Ltd., Hangzhou 310018, China)
Abstract: ?Retinal pigment epithelial (RPE) cells are located in a dense layer of cells at the bottom of the retina, and their damage can result in age-related macular degeneration (AMD), Stargardt macular dystrophy (STGD), Retinitis pigmentosa (RP) and other retinal degenerative diseases. RPE transplantation has become an effective treatment for such diseases at present. RPE cells derived from human pluripotent stem cells (hPSC), namely hPSC-RPE, have become the main source of RPE transplantation because of their similar function and easy preparation to human primary RPE. This article summarizes the clinical trials of hPSC-RPE in the treatment of retinal degenerative diseases, and expounds the challenges and risks we are facing at present.
Key words: human pluripotent stem cells; retinal pigment epithelium; age-related macular degeneration; stargardt macular dystrophy; retinitis pigmentosa; cell therapy
0引言
年齡相關(guān)性黃斑變性(Age-related macular degeneration, AMD)、色素性視網(wǎng)膜炎(Retinitis pigmentosa,RP)和Stargardt病(Stargardt macular dystrophy, STGD)[1-3]為常見的視網(wǎng)膜退行性疾病,是近些年導(dǎo)致失明的主要眼部疾病。AMD、RP和STGD是由視網(wǎng)膜感光細胞或視網(wǎng)膜色素上皮細胞(Retinal pigment epithelial cells, RPE)的退化和死亡引起[4],目前尚未有根治的方法。變性或死亡的RPE很難修復(fù)和再生[5];細胞治療可以替代受損的RPE來恢復(fù)視覺功能,相關(guān)治療方法已有大量報道[6-8]。人多能干細胞(Human pluripotent stem cells, hPSC)為細胞治療提供新的細胞來源,目前的臨床數(shù)據(jù)表明,來源于人多能干細胞的視網(wǎng)膜色素上皮細胞(Human pluripotent stem cells derived retinal pigment epithelial cells, hPSC-RPE)安全有效[6-8],但干細胞療法仍面臨很多風(fēng)險與挑戰(zhàn)。
本文對hPSC-RPE治療視網(wǎng)膜退行性疾病的臨床試驗進展及目前面臨的風(fēng)險和挑戰(zhàn)進行綜述。概述視網(wǎng)膜退行性疾病的發(fā)生及目前的治療方案,總結(jié)RPE細胞治療的研究進展,歸納 hPSC-RPE治療的現(xiàn)狀以及面臨的風(fēng)險和挑戰(zhàn)等。
1視網(wǎng)膜退行性疾病
RPE為致密的單層細胞,位于光感受器和脈絡(luò)膜之間,呈“鵝卵石”形狀,富含色素顆粒,對于支持光感受器細胞的營養(yǎng)、結(jié)構(gòu)和代謝不可或缺[9]。RPE在維持視網(wǎng)膜功能方面具有重要作用,包括與感光細胞接觸并為其提供營養(yǎng)、代謝廢物的吞噬等,且參與構(gòu)成血-視網(wǎng)膜屏障防止物質(zhì)從脈絡(luò)膜非特異性擴散等功能[10-11]。RPE細胞的損傷和缺失會引起繼發(fā)性視網(wǎng)膜感光細胞耗竭,從而導(dǎo)致視網(wǎng)膜退行性病變[4]。
1.1年齡相關(guān)性黃斑變性
AMD又稱為老年性黃斑變性,是歐美國家老年人群中引起失明的主要眼部疾病[12]。目前全球超過2.00億人患AMD,預(yù)計在2040年將增加到2.88億人,并且約有10%的人處于疾病晚期[13]。年齡是導(dǎo)致AMD發(fā)生的主要因素,在歐洲人群中85歲以上的患病率約為30%[14];吸煙和飲食等生活方式也是導(dǎo)致AMD發(fā)生的因素[15];基因突變也與AMD患病率的增加相關(guān)[16-18]。晚期AMD包括干性AMD和濕性AMD。干性AMD是由于Bruch膜上脂褐素的過度積累和慢性炎癥導(dǎo)致RPE以及感光細胞氧化損傷以及退化,使得視力急劇下降甚至失明[19];濕性AMD是因為脈絡(luò)膜血管過度增殖到視網(wǎng)膜中,導(dǎo)致視力急劇下降,嚴重時也會導(dǎo)致失明[20]。目前濕性AMD的治療可以通過注射抗血管內(nèi)皮生長因子(Vascular endothelial growth factor, VEGF)衍生藥物緩解視力衰退,在臨床上常用治療藥物為雷珠單抗、貝伐單抗和阿柏西普等[21],但這些藥物不能完全阻止視網(wǎng)膜內(nèi)持續(xù)的血液和液體滲漏,從而導(dǎo)致慢性視網(wǎng)膜下間隙的纖維化,最終引起黃斑萎縮[22]。AMD患者中超過80%患有干性AMD,目前臨床上還沒有針對干性AMD的有效治療方法,也未見獲批的治療藥物。通過補體抑制、神經(jīng)保護和抗炎因子等多種靶點來治療AMD的研究已見報道,但均未獲得較好的治療效果[23-24]。
1.2Stargardt病
STGD是兒童和青少年常見的致盲性眼病,平均每8000~10000人中有1人患?。?5]。STGD是一種常染色體隱性遺傳病,由ABCA4突變引起[26-27]。ABCA4基因編碼的ABCA4蛋白在視網(wǎng)膜感光細胞和視網(wǎng)膜色素上皮細胞中特異性表達,ABCA4的突變會導(dǎo)致有毒的N-視黃醛-N-視黃乙醇胺(A2E)在視網(wǎng)膜底部積聚,使得RPE萎縮和視網(wǎng)膜感光細胞死亡[28]。STGD患者通常經(jīng)歷快速的雙眼中央視力喪失,并伴有視功能障礙和中央暗點。目前對于STGD的治療策略是修復(fù)或替換ABCA4,基于腺病毒的基因替換治療已經(jīng)成功地應(yīng)用于一些眼部疾病,但因ABCA4基因較大無法用腺病毒載體遞送[28]。
1.3色素性視網(wǎng)膜炎
RP是一種罕見的遺傳性視網(wǎng)膜退行性疾病,發(fā)病率約為1/4000,通常發(fā)生在青少年中[29]。RP通常是遺傳類眼部疾病,包括X連鎖隱性遺傳(5%~15%)、常染色體顯性遺傳(30%~40%)和常染色體隱性遺傳(40%~60%)。光轉(zhuǎn)導(dǎo)級聯(lián)、纖毛運輸和纖毛結(jié)構(gòu)的80多個基因的突變導(dǎo)致視網(wǎng)膜感光細胞的功能障礙和死亡,使得RPE細胞的功能紊亂和在視網(wǎng)膜內(nèi)遷移,從而導(dǎo)致RR的發(fā)生[30]。RP患者多見于20~30歲,出現(xiàn)夜盲和進行性視野喪失,晚期為完全失明。治療RP可通過對常染色體隱性和X連鎖隱性RP患者的基因補充以及對常染色體顯性RP患者進行基因組編輯,但該技術(shù)只能對黃斑沒有明顯光感受器丟失和已確定致病突變基因的患者有效[31-32]。
綜上可知,AMD、RP和STGD均未獲得有效治療方案,細胞治療可以替代受損的RPE。hPSC-RPE為細胞治療提供了充足的細胞來源,目前hPSC-RPE治療AMD、RP和STGD已進入臨床試驗階段[33-35](見圖1)。
2RPE細胞治療研究進展
目前應(yīng)用于細胞治療的RPE來源主要為人自體或異體RPE、胎兒RPE和來源人多能干細胞的RPE(見表1)。1991年首次進行了人RPE臨床移
植試驗,第一位AMD患者在切除黃斑下的增生組織后進行了自體RPE細胞移植,移植后部分患者視力有所提高;第二位AMD患者進行同種異體RPE移植,但結(jié)果未顯示對視力有所改善[36]。濕性AMD患者在脈絡(luò)膜新生血管膜(Choroidal neovascularization, CNV)移除后移植人胎兒RPE細胞片層,術(shù)后患者發(fā)生了免疫排斥反應(yīng)[37]。Weisz等[38]嘗試將胎兒RPE細胞懸浮液注射在干性AMD患者視網(wǎng)膜底部,發(fā)現(xiàn)患者視力無明顯改善,并且觀察到移植區(qū)域有進行性視網(wǎng)膜下纖維化。Del Priore等[39]將濕性AMD患者的CNV膜摘除后移植了同種異體來源的RPE細胞,但視力并沒有得到很好的改善。使用同種異體RPE移植的濕性AMD患者,由于CNV膜去除導(dǎo)致血-視網(wǎng)膜屏障受損,均表現(xiàn)出免疫排斥反應(yīng)和視力下降;2012年首次公布了hPSC-RPE細胞的臨床試驗結(jié)果[40],證明了hPSC-RPE移植的安全性與可行性,隨之hPSC-RPE移植在多個臨床Ⅰ/Ⅱ期應(yīng)用研究相繼展開。
3hPSC-RPE
3.1hPSC
hPSC是可以無限增殖的具有分化能力的多能性細胞,分為人胚胎干細胞(Human embryonic stem cells, hESC)和人誘導(dǎo)多能干細胞(Human induced pluripotent stem cells, hiPSC)。1998年Thomson等[45]從人受精囊胚內(nèi)的細胞團中分離并建立了hESC,發(fā)現(xiàn)hESC能夠分化成所有類型的細胞和組織。2006年Takahashi等[46]通過逆轉(zhuǎn)錄病毒介導(dǎo)的轉(zhuǎn)基因技術(shù),將4個轉(zhuǎn)錄因子Oct3/4、Sox2、c-Myc及Klf4導(dǎo)入小鼠胚胎成纖維細胞(Mousee mbryonic fibroblast, MEF),獲得了與hESC形態(tài)相似、分化能力相當?shù)募毎?,命名為誘導(dǎo)性多能干細胞。Takahashi等[47]和Yu等[48]進一步獲得了來源于人成纖維細胞(Human fibroblast, HF)的hiPSC細胞。目前研究已證實,由hPSC誘導(dǎo)分化的視網(wǎng)膜細胞,包括RPE[49]、視網(wǎng)膜神經(jīng)節(jié)細胞(Retinal ganglion cell, RGC)[50]和視網(wǎng)膜感光細胞[51],可為AMD、STGD和RP等視網(wǎng)膜疾病的治療提供新的細胞來源。
3.2hPSC-RPE
2004年首次提出將hESC自發(fā)分化為RPE細胞[52],隨后建立多種分化方案,并通過添加細胞因子和小分子化合物,如Nicotinamide、Activin A、CHIR99021、Noggin和SB431542等,來縮短分化時間和提高分化效率[53-55]。目前進入臨床試驗所用的分化方法有擬胚體和單層分化法兩種,Hirami等[56]將hiPSC在含有Dkk-1 (100 ng/mL)和Lefty A (500 ng/mL)的無血清培養(yǎng)基進行擬胚體懸浮培養(yǎng),第20天將擬胚體接種在涂有多聚D-賴氨酸、層粘連蛋白和纖維連接蛋白的載玻片上,第40天可見到典型的RPE形態(tài);Lu等[57]利用hESC系MA01和MA09進行分化,在含有B-27補充劑的培養(yǎng)液中擬胚體懸浮培養(yǎng)7 d,接種在明膠包被的培養(yǎng)板中培養(yǎng)直到出現(xiàn)RPE;Liu等[58]利用Q-CTS-hESC-2細胞系單層自發(fā)向RPE分化,以上分化獲得的RPE已進入人的臨床試驗[56-58],其他臨床級別的分化方案已見報道 [59-60]。
3.3hPSC-RPE治療視網(wǎng)膜退行性疾病
hPSC-RPE具有與人原代RPE細胞相似的功能,且比原代培養(yǎng)的RPE細胞更容易制備等優(yōu)勢,已成為視網(wǎng)膜退行性疾病細胞治療的主要來源,hPSC-RPE治療視網(wǎng)膜退行性疾病的策略(見圖2)。已證實hPSC-RPE在視網(wǎng)膜下間隙發(fā)揮免疫調(diào)節(jié)作用:抑制T細胞激活,增加T細胞凋亡,并促進某些抗炎細胞因子的分泌[61]。hPSC-RPE細胞具有以下特點,更適合臨床應(yīng)用[34]:a)具有所需的功能;b)能夠提供足夠數(shù)量的移植細胞;c)可以達到臨床級別質(zhì)量認證和臨床純度標準。因此,多能干細胞,尤其是hPSC-RPE細胞,在眼科領(lǐng)域的臨床應(yīng)用中已顯示出巨大潛力。
4hPSC-RPE的臨床應(yīng)用研究進展
4.1hESC-RPE的臨床應(yīng)用研究進展
2012年Schwartz等[40]公布了首個hESC-RPE臨床試驗結(jié)果,將hESC來源的RPE細胞產(chǎn)品MA09-hRPE移植到1名干性AMD患者(注冊號:NCT01344993)和1名STGD患者(注冊號:NCT01345006)的視網(wǎng)膜下腔,每只眼睛注射50000個細胞。在隨后的4個月觀察中兩位患者未出現(xiàn)過度增殖、致瘤性、異位組織形成或明顯排斥的現(xiàn)象,STGD患者的最佳矯正視力(Best-corrected visual acuity, BCVA)有所提高,干性AMD患者的視力也有所改善[40]。2015年Schwartz等[62]又對9名干性AMD患者(年齡>55歲)(注冊號:NCT01344993)和9名STGD患者(年齡>18歲)(注冊號:NCT01345006)進行了2項前瞻性的臨床Ⅰ/Ⅱ期研究,將MA09-hRPE分別以50000、100000個和150000個細胞的劑量注射到患者的視網(wǎng)膜腔下進行22個月隨訪檢查。在18名患者中,1名患者術(shù)后4 d出現(xiàn)了嚴重的玻璃體炎癥,通過在玻璃體內(nèi)注射抗生素、抗生素滴眼液和停用免疫抑制劑2個月后炎癥消失;在觀察期內(nèi)所有患者均未發(fā)生不良增殖、注射部位移植組織生長畸胎瘤、異位組織或其他與hESC-RPE相關(guān)的明顯眼部不良安全事件;患者也沒有發(fā)生視網(wǎng)膜脫離、增殖性玻璃體視網(wǎng)膜病變或微血管阻塞;所有患者中10名患者BCVA提高,7名患者BCVA有微弱的提高或者保持不變,1名患者BCVA有所下降[62]。2018年Mehat等[63]針對hESC-RPE移植區(qū)域視網(wǎng)膜結(jié)構(gòu)和功能檢測開啟了另一項臨床Ⅰ/Ⅱ期試驗(注冊號:NCT01469832),將hESC-RPE懸液移植到12名晚期STGD病患者,全身免疫抑制治療13周,12名患者隨訪1年內(nèi)均未出現(xiàn)移植不良反應(yīng),視力均保持穩(wěn)定。AIRM有1項hESC-RPE臨床試驗被撤回,注冊號為NCT02563782,原因是改變研究設(shè)計與細胞系;Ocata Therapeutics公司有1項臨床試驗被撤回,注冊號為NCT02122159,原因是研究待修訂、未來計劃待定(https://clinicaltrials.gov/)。Song等[64]將hESC-RPE細胞懸液分別注射到2名干性AMD患者(注冊號:NCT01674829)和2名Stargardt病患者(注冊號:NCT01625559)的視網(wǎng)膜下,每只眼睛注射40000個細胞,隨訪1年未發(fā)現(xiàn)與移植細胞相關(guān)的嚴重安全問題例如不良增殖、致瘤性、異位組織形成等,患者在隨訪期間出現(xiàn)的其他身體問題經(jīng)專家鑒定均與手術(shù)無關(guān);3名患者BCVA提高,1名患者BCVA保持穩(wěn)定,進一步證明了hESC來源的細胞可以作為一種潛在的安全的再生醫(yī)學(xué)新的細胞來源。Youngje等[65]公布了針對3名Stargardt病患者的臨床Ⅰ期試驗結(jié)果(注冊號:NCT01625559),將50000個hESC-RPE細胞懸液注射到患者眼中,隨訪3年未觀察到任何嚴重的全身不良事件以及與hESC-RPE細胞相關(guān)的嚴重眼部不良事件,也未發(fā)現(xiàn)畸胎瘤形成等異常增生以及嚴重的眼部炎癥或明顯的免疫排斥癥狀;有1名患者術(shù)后19周發(fā)生了視網(wǎng)膜脫落,但經(jīng)鑒定認為與hESC-RPE細胞移植無關(guān),1名患者BCVA提高,而其他患者BCVA保持穩(wěn)定。Liu等[58]報道hESC-RPE移植的臨床研究(注冊號:NCT02749734),3名濕性AMD患者先進行脈絡(luò)膜新生血管切除,視網(wǎng)膜底部注射hESC-RPE懸液,術(shù)后9個月出現(xiàn)了白內(nèi)障等不良反應(yīng)事件;在術(shù)后12個月的隨訪期間沒有觀察到病變區(qū)域有任何新的滲出性新血管生成、血管滲漏或持續(xù)的局部視網(wǎng)膜炎癥,視覺功能有所改善,實驗數(shù)據(jù)為使用hESC-RPE細胞緩解早期濕性AMD的策略提供了支撐。為了確定移植細胞的長期存活能力和視覺功能的進一步發(fā)展變化,Li等[66]針對NCT02749734臨床試驗將hESC-RPE細胞治療擴展到7名早期STGD患者,患者隨訪5年以評價hESC-RPE治療的遠期安全性和有效性,發(fā)現(xiàn)除1名患者術(shù)后出現(xiàn)短暫性高眼壓外,其余患者均無全身性或局部不良反應(yīng),7只手術(shù)眼在移植后1至4個月均有短暫的視覺功能增加或穩(wěn)定。
2018年Moorfields Eye HospitalMoorfields眼科醫(yī)院公布了hESC-RPE貼片PF-05206388(注冊號為:NCT01691261)植入2名急性濕性AMD和近期快速視力下降患者的安全性和可行性的臨床Ⅰ期研究結(jié)果[67],該研究發(fā)生了3起嚴重的不良事件,包括用于免疫抑制的氟松龍植入物的縫合線暴露、視網(wǎng)膜脫離以及口服強的松龍后糖尿病的惡化,但與hESC-RPE貼片移植無關(guān);移植后12個月,2名患者的BCVA均有15個字母以上的改善。隨后該臨床試驗又招募10位患者,正在進行中(https://clinicaltrials.gov/)。2018年Regenerative Patch Technologiesg公布的一項Ⅰ/Ⅱa期臨床研究結(jié)果顯示:使用由在微聚苯乙烯膜上培養(yǎng)的單層hESC-RPE細胞組成的復(fù)合植入物CPCB-RPE1(注冊號:NCT02590692)治療5名年齡在69~85歲之間患有晚期干性AMD和GA的患者,其中,有4名患者接受了CPCB-RPE1的移植,1名患者因為術(shù)中視網(wǎng)膜下間隙中存在纖維蛋白碎片沒有接受移植;對4名患者進行120~365 d隨訪,發(fā)現(xiàn)CPCB-RPE1的整體外觀包括色素沉著、位置和大小沒有變化,位置穩(wěn)定未發(fā)生移位;所有患者均未出現(xiàn)與移植、手術(shù)或免疫抑制相關(guān)的意外嚴重不良事件,接受移植的患者視力均保持穩(wěn)定,沒有惡化,其中1名患者BCVA改善了17個字母[68]。2021年該團隊又對16名患者進行移植CPCB-RPE1治療并長達一年隨訪觀察[69],結(jié)果顯示,其中15名患者接受了復(fù)合體移植,有4名患者出現(xiàn)嚴重的眼部不良事件,包括視網(wǎng)膜下出血、水腫、局灶性視網(wǎng)膜脫離或RPE脫離,出血原因為在手術(shù)中和術(shù)后從視網(wǎng)膜切開部位漏出,通過修改手術(shù)方案這些癥狀得到緩解;15名患者接受移植后一年沒有發(fā)生與移植、手術(shù)或免疫抑制相關(guān)的意外嚴重不良事件,也沒有發(fā)生移植物遷移的跡象;5名患者BCVA提高了5個字母以上。2022年該團隊為了檢測CPCB-RPE1移植后是否產(chǎn)生免疫反應(yīng),在移植2年后進行了一系列檢測[70],發(fā)現(xiàn)移植時經(jīng)過短期的免疫抑制藥物治療可以避免視網(wǎng)膜炎、玻璃體炎、血管炎、脈絡(luò)膜炎等免疫反應(yīng)臨床癥狀的發(fā)生。2023年Federal University of So Paulo公布了臨床Ⅰ期研究結(jié)果(注冊號:NCT02903576)[71],該研究將hESC-RPE懸液移植到12名晚期STGD患者中。術(shù)后未發(fā)生眼部炎癥、眼內(nèi)炎、視網(wǎng)膜脫離、眼出血、眼壓升高、角膜水腫等手術(shù)相關(guān)不良事件。在1年的隨訪中未發(fā)生與hES-RPE移植相關(guān)的不良反應(yīng),即異常增生、排斥反應(yīng)或嚴重的眼部或全身安全問題,所有患者手術(shù)眼的BCVA均無明顯改善,可能與該疾病是晚期有關(guān)。2014年Lineage Cell Therapeutics進行了一項Ⅰ/Ⅱa期臨床試驗(注冊號:NCT02286089),將制備的hESC-RPE產(chǎn)品OpRegen治療24名干性AMD患者以評估其移植的安全性和耐受性(https://clinicaltrials.gov/)。Allen等[72]公布臨床結(jié)果,所有患者中有9名患者在最后一次隨訪時BCVA保持穩(wěn)定,目前的臨床數(shù)據(jù)說明OpRegen具有良好的耐受性,長達5年的隨訪正在進行。2021年12月,Lineage Cell Therapeutics和Hoffmann-La Roche(OTCQX:RHHBY)的子公司Genentech達成了獨家全球合作和許可協(xié)議,用于開發(fā)和商業(yè)化OpRegen用于治療眼部疾病,交易金額高達6.7億美元。根據(jù)協(xié)議,Lineage Cell Therapeutics將繼續(xù)負責(zé)RG6501(OpRegen)的生產(chǎn),Genentech將負責(zé)進一步臨床開發(fā)和商業(yè)化,目前正在開展GA晚期干性AMD患者臨床試驗(注冊號:NCT05626114)。
截至目前hESC-RPE的臨床數(shù)據(jù)表明,hESC-RPE移植是安全,未發(fā)生移植細胞產(chǎn)生的嚴重不良事件,且大部分患者視力保持穩(wěn)定或提高。hESC-RPE在RP患者中也開始臨床試驗,2019年Centre D'etude Des Cellules Souches啟動臨床Ⅰ/Ⅱ期研究(注冊號:NCT03963154),在RP患者視網(wǎng)膜下移植hESC-RPE貼片以評估安全性與耐受性、貼片位置是否移動、視覺功能的改善等(https://clinicaltrials.gov/)。2020年中國北京同仁醫(yī)院啟動臨床Ⅰ期研究(注冊號:NCT03944239),在10名RP患者(18~80歲)視網(wǎng)下注射150000個hESC-RPE,為期1年隨訪以評估不良事件的發(fā)生和視覺功能的改善(https://clinicaltrials.gov/)。其他臨床試驗正在進行,目前所有hESC-RPE的臨床試驗共有23項(見表2)。
4.2hiPSC-RPE的臨床應(yīng)用研究進展
Souied等[43]首次將患者皮膚成纖維細胞來源的hiPSC分化為RPE,hiPSC-RPE細胞片層移植到2名晚期濕性AMD患者視網(wǎng)膜底部(臨床備案號:UMIN000011929);77歲女性患者術(shù)后1年的觀察中未發(fā)現(xiàn)免疫排斥反應(yīng)以及其他不良反應(yīng),視力沒有得到很大改善但也沒有惡化,初次證明了hiPSC-RPE治療的安全性,68歲男性患者因為檢測到hiPSC-RPE的3個基因缺失突變,沒有接受手術(shù)治療;2019年Takagi等[73]針對UMIN000011929臨床試驗公布了77歲女性患者的術(shù)后4年隨訪結(jié)果,移植眼的hiPSC-RPE在4年后仍存活,沒有發(fā)生任何不良事件及免疫排斥反應(yīng),視力保持穩(wěn)定,沒有顯著改善可能是術(shù)前感光層嚴重受損,并含有纖維化瘢痕,使視力恢復(fù)的潛力有限。同時Takagi等也通過彩色眼底攝影、OCT、熒光素血管造影、吲哚青綠血管造影等評估77歲女性患者移植部位hiPSC-RPE的功能,發(fā)現(xiàn)具備支持脈絡(luò)膜生長等功能。
2023年Maeda等[44]針對UMIN000011929這一臨床試驗公布77歲女性患者5年隨訪結(jié)果,術(shù)后5年hiPSC-RPE存活,未觀察到術(shù)中并發(fā)癥、腫瘤發(fā)生、移植失敗、排斥反應(yīng)或其他移植細胞嚴重并發(fā)癥等。相比于自體移植,異體移植可以減少制備時間和降低成本。2020年,Sugita等[42]從hiPSC庫中制備人類白細胞抗原(Human leukocyte Antigens, HLA)純合子同種異體的hiPSC-RPE移植到具有相同HLA單倍型特征的5名濕性AMD患者(臨床備案號:UMIN000026003),建立了兩個評估和管理異體RPE移植免疫排斥反應(yīng)的測試系統(tǒng),即淋巴細胞移植物免疫反應(yīng)(LGIR)測試和血清中RPE特異性抗體檢測(RSA試驗)。通過LGIR測試和RSA試驗,發(fā)現(xiàn)在隨訪觀察的1年內(nèi)僅1/5患者表現(xiàn)出輕微免疫排斥癥狀,在聯(lián)合使用局部類固醇藥物后癥狀緩解。移植的hiPSC-RPE在1年觀察期內(nèi)是存活的,但部分患者觀察到息肉樣病變,而且由于移植的位置沒有控制好,無法判斷該治療方法的療效。
美國國家眼科研究所(National Eye Institute, NEI)正在進行一項Ⅰ/Ⅱa期試驗(注冊號:NCT04339764)(https://clinicaltrials.gov/),將患者的血細胞來源hiPSC分化為RPE,hiPSC-RPE細胞片層移植到AMD患者視網(wǎng)膜底部以評估安全性。2022年8月第一例干性AMD患者已完成移植(https://www.nei.nih.gov)。EyestemResearch是一家印度細胞治療公司,異體hiPSC-RPE移植在動物模型中證明是安全的,并已首次開始人干性AMD患者臨床試驗(https://eyestem.com/)。法國TreeFrogTherapeutics(https://treefrog.fr/)和日本HealiosK.K.(https://www.healios.co.jp/en/)公司也開始嘗試hiPSC-RPE治療干性AMD患者。
截至目前hiPSC-RPE臨床試驗數(shù)據(jù)表明,hiPSC-RPE自體或異體移植是安全和可行的,沒有移植hiPSC-RPE帶來嚴重事件,且患者視力有所提高。其他hiPSC-RPE臨床試驗正在進行,目前hiPSC-RPE臨床試驗共有9項(見表3)。
綜上所述,基于hiPSC-RPE的細胞移植治療視網(wǎng)膜退行性疾病安全可行,但其治療的有效性、長期性尚需有更多的臨床試驗數(shù)據(jù)支持。
5hPSC-RPE治療的風(fēng)險及挑戰(zhàn)
hPSC-RPE為視網(wǎng)膜退行性疾病的治療提供了新的思路,并初步顯示出一定的發(fā)展前景,hPSC-RPE已經(jīng)用于開展臨床試驗研究,但治療的有效性和長期安全性的數(shù)據(jù)還遠遠不夠,并且仍存在風(fēng)險和挑戰(zhàn)。
a)為了確保移植的hPSC-RPE安全,需要對hPSC-RPE進行臨床前的驗證,包括細胞純度、基因組穩(wěn)定性和致瘤性的評估。移植前必須確認參與多能性、早期發(fā)育和非上皮相關(guān)基因表達情況及沒有細胞增殖標志物;在體外檢測hPSC-RPE是否具有成熟RPE的正常功能[74]。至目前的臨床研究數(shù)據(jù),還未出現(xiàn)受試者眼睛中形成畸胎瘤、移植的hPSC-RPE細胞增殖和遷移到其他器官,也未發(fā)生因移植hPSC-RPE產(chǎn)生眼部嚴重不良事件。
b)移植后要確保hPSC-RPE細胞的存活率并具備完整功能,目前hPSC-RPE的細胞懸液移植和細胞片層移植均在臨床上取得重大進展,RPE片層的制備比細胞懸液更復(fù)雜、成本更高,但RPE片層是一種成熟的、具有良好特性的細胞產(chǎn)品,具有體內(nèi)RPE固有的形態(tài)和特性[75]。
c)手術(shù)本身帶來的不良反應(yīng)也是hPSC-RPE視網(wǎng)膜下移植安全評估的挑戰(zhàn)。手術(shù)操作會給眼部帶來創(chuàng)傷,如增殖性玻璃體視網(wǎng)膜病變,導(dǎo)致視力喪失的嚴重并發(fā)癥包括視網(wǎng)膜脫離、眼內(nèi)炎癥和脈絡(luò)膜上出血,輕微并發(fā)癥包括脈絡(luò)膜脫離、玻璃體出血、黃斑水腫、青光眼和視網(wǎng)膜裂孔等[76]。由于RPE貼片移植前手術(shù)侵入性更大,切口更大,RPE貼片移植手術(shù)并發(fā)癥的風(fēng)險一般高于RPE懸液移植,目前已有幾例與手術(shù)相關(guān)的不良事件的報道[43,67-69]。
d)移植后免疫排斥的發(fā)生也是該治療方法所面臨的挑戰(zhàn)。hESC細胞本身組織相容性復(fù)合體Ⅰ(Major histocompatibility complex Ⅰ, MHC Ⅰ)表達很低,但在體外分化階段MHC Ⅰ表達會升高,移植到視網(wǎng)膜下腔在炎癥微環(huán)境的影響下hESC-RPE的MHC Ⅰ表達也會升高[77]。hiPSC-RPE自體移植后雖然表現(xiàn)出較小的免疫反應(yīng),但在逆轉(zhuǎn)錄病毒介導(dǎo)重編程過程中可能會帶來免疫排斥風(fēng)險[78]。目前的臨床試驗中大多數(shù)移植采用免疫抑制劑藥物避免免疫排斥的發(fā)生,但這會對老年人的身體產(chǎn)生一定的負擔(dān)。MHC配型為hPSC-RPE細胞移植在解決免疫排斥問題方面提供了新思路[42],但仍需要很長的路要走。
參考文獻:
[1]Thomas C J, Mirza R G, Gill M K. Age-related macular degeneration[J]. The Medical Clinics of North America, 2021, 105(3): 473-491.
[2]Lang M, Harris A, Ciulla T A, et al. Vascular dysfunction in retinitis pigmentosa[J]. Acta Ophthalmologica, 2019, 97(7): 660-664.
[3]Heath Jeffery R C, Chen F K. Stargardt disease: Multimodal imaging: A review[J]. Clinical & Experimental Ophthalmology, 2021, 49(5): 498-515.
[4]Yip Henry K. Retinal stem cells and regeneration of vision system[J]. Anatomical Record, 2014, 297(1): 137-160.
[5]Chichagova V, Hallam D, Collin J, et al. Cellular regeneration strategies for macular degeneration: Past, present and future[J]. Eye, 2018, 32(5):946-971.
[6]Rohowetz Landon J, Peter K. Stem cell-derived retinal pigment epithelium cell therapy: Past and future directions[J]. Frontiers in Cell and Developmental Biology, 2023, 11:1098406.
[7]Akiba R, Takahashi M, Baba T, et al. Progress of iPS cell-based transplantation therapy for retinal diseases[J]. Japanese Journal of Ophthalmology, 2023, 67(2):119-128.
[8]Devika B, Davide O, Mitra F, et al. Considerations for developing an autologous induced pluripotent stem cell (iPSC)-derived retinal pigment epithelium (RPE) replacement therapy [J].Cold Spring Harbor Perspectives in Medicine, 2023, 13(8): a041295.
[9]Lakkaraju A, Umapathy A, Tan L X, et al. The cell biology of the retinal pigment epithelium[J]. Progress in Retinal and Eye Research, 2020, 78: 100846.
[10]Lehmann G L, Benedicto I, Philp N J, et al. Plasma membrane protein polarity and trafficking in RPE cells: Past, present and future[J]. Experimental Eye Research_, 2014, 126: 5-15.
[11]Rudraraju M, Narayanan S P, Somanath P R. Regulation of blood-retinal barrier cell-junctions in diabetic retinopathy[J]. Pharmacological Research, 2020, 161: 105115.
[12]Rein D B, Wittenborn J S, Burke-Conte Z, et al. Prevalence of age-related macular degeneration in the US in 2019[J]. JAMA Ophthalmology, 2022, 140(12): 1202-1208.
[13]Wong W L, Su X Y, Li X, et al. Global prevalence of age-related macular degeneration and disease burden projection for 2020 and 2040: A systematic review and meta-analysis[J]. The Lancet Global Health, 2014, 2(2): e106-e116.
[14]Li J Q, Welchowski T, Schmid M, et al. Prevalence and incidence of age-related macular degeneration in Europe: A systematic review and meta-analysis[J]. The British Journal of Ophthalmology, 2020, 104(8): 1077-1084.
[15]Somasundaran S, Constable I J, Mellough C B, et al. Retinal pigment epithelium and age-related macular degeneration: A review of major disease mechanisms[J]. Clinical & Experimental Ophthalmology, 2020, 48(8): 1043-1056.
[16]Fritsche L G, Igl W, Bailey J N C, et al. A large genome-wide association study of age-related macular degeneration highlights contributions of rare and common variants[J]. Nature Genetics, 2016, 48(2): 134-143.
[17]Kanda A, Chen W, Othman M, et al. A variant of mitochondrial protein LOC387715/ARMS2, not HTRA1, is strongly associated with age-related macular degeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2007, 104(41): 16227-16232.
[18]Fritsche L G, Loenhardt T, Janssen A, et al. Age-related macular degeneration is associated with an unstable ARMS2 (LOC387715) mRNA[J]. Nature Genetics, 2008, 40(7): 892-896.
[19]Ambati J, Fowler B J. Mechanisms of age-related macular degeneration[J]. Neuron, 2012, 75(1): 26-39.
[20]Sharma R, Bose D, Maminishkis A, et al. Retinal pigment epithelium replacement therapy for age-related macular degeneration: Are we there yet?[J]. Annual Review of Pharmacology and Toxicology, 2020, 60: 553-572.
[21]Selcuk S, Ebru E, Puren I, et al. Comparison of intravitreal injections of Ranibizumab and Aflibercept in neovascular age related macular degeneration[J]. Clinical & Experimental Optometry, 2021, 105(1): 55-60.
[22]Ricci F, Bandello F, Navarra P, et al. Neovascular age-related macular degeneration: therapeutic management and new-upcoming approaches[J].International Journal of Molecular Sciences, 2020, 21(21): 8242.
[23]Fabre M, Mateo L, Lamaa D, et al. Recent advances in age-related macular degeneration therapies[J]. Molecules, 2022, 27(16): 5089.
[24]Mania H, Sajjad M, Aslam Tariq M. Macular atrophy of the retinal pigment epithelium in patients with neovascular age-related macular degeneration: What is the link? Part I: A review of disease characterization and morphological associations[J].Ophthalmology and Therapy, 2019, 8(2): 235-249.
[25]Piotter E, McClements M E, MacLaren R E. Therapy approaches for stargardt disease[J]. Biomolecules, 2021, 11(8): 1179.
[26]Molday Robert S, Garces Fabian A, Fernandes S J, et al. Structure and function of ABCA4 and its role in the visual cycle and Stargardt macular degeneration[J]. Progress in Retinal and Eye Research, 2021, 89: 101036.
[27]Lenis T L, Hu J, Ng S Y, et al. Expression of ABCA4 in the retinal pigment epithelium and its implications for Stargardt macular degeneration[J]. Proceedings of the National Academy of Sciences of the United States of America, 2018, 115(47): E11120-E11127.
[28]Hu F Y, Gao F J, Li J K, et al. Novel variants of ABCA4 in Han Chinese families with Stargardt disease[J]. BMC Medical Genetics, 2020, 21(1): 213.
[29]Verbakel S K, van Huet R A C, Boon C J F, et al. Non-syndromic retinitis pigmentosa[J]. Progress in Retinal and Eye Research, 2018, 66: 157-186.
[30]Daiger S P, Sullivan L S, Bowne S J. Genes and mutations causing retinitis pigmentosa[J]. Clinical Genetics, 2013, 84(2): 132-141.
[31]Cehajic-Kapetanovic J, Xue K M, Martinez-Fernandez de la Camara C, et al. Initial results from a first-in-human gene therapy trial on X-linked retinitis pigmentosa caused by mutations in RPGR[J]. Nature Medicine, 2020, 26(3): 354-359.
[32]DiCarlo James E, Mahajan Vinit B, Tsang Stephen H. Gene therapy and genome surgery in the retina[J]. The Journal of Clinical Investigation, 2018, 128(6): 2177-2188.
[33]Hinkle J W, Mahmoudzadeh R, Kuriyan A E. Cell-based therapies for retinal diseases: A review of clinical trials and direct to consumer cell therapy clinics[J]. Stem Cell Research & Therapy, 2021, 12(1): 538.
[34]Ahmed I, Johnston R J Jr, Singh M S. Pluripotent stem cell therapy for retinal diseases[J]. Annals of Translational Medicine, 2021, 9(15): 1279.
[35]Voisin A, Pnaguin A, Gaillard A, et al. Stem cell therapy in retinal diseases[J]. Neural Regeneration Research, 2023, 18(7): 1478.
[36]Peyman G A, Blinder K J, Paris C L, et al. A technique for retinal pigment epithelium transplantation for age-related macular degeneration secondary to extensive subfoveal scarring[J]. Ophthalmic surgery, 1991, 22(2): 102-108.
[37]Algvere P V, Berglin L, Gouras P, et al. Transplantation of RPE in age-related macular degeneration: Observations in disciform lesions and dry RPE atrophy[J]. Graefe's Archive for Clinical and Experimental Ophthalmology, 1997, 235(3): 149-158.
[38]Weisz J M, Humayun M S, De Juan E Jr, et al. Allogenic fetal retinal pigment epithelial cell transplant in a patient with geographic atrophy[J]. Retina, 1999, 19(6): 540-545.
[39]Del Priore L V, Kaplan H J, Tezel T H, et al. Retinal pigment epithelial cell transplantation after subfoveal membranectomy in age-related macular degeneration: Clinicopathologic correlation[J]. American Journal of Ophthalmology, 2001, 131(4): 472-480.
[40]Schwartz S D, Hubschman J P, Heilwell G, et al. Embryonic stem cell trials for macular degeneration: a preliminary report[J]. Lancet, 2012, 379(9817): 713-720.
[41]Jin Z B, Gao M L, Deng W L, et al. Stemming retinal regeneration with pluripotent stem cells[J]. Progress in Retinal and Eye Research, 2019, 69: 38-56.
[42]Sugita S, Mandai M, Hirami Y, et al. HLA-matched allogeneic iPS cells-derived RPE transplantation for macular degeneration[J]. Journal of Clinical Medicine, 2020, 9(7): 2217.
[43]Souied E, Pulido J, Staurenghi G. Autologous induced stem-cell-derived retinal cells for macular degeneration[J]. The New England Journal of Medicine, 2017, 377(8): 792.
[44]Maeda T, Takahashi M. IPSC-RPE in retinal degeneration: Recent advancements and future perspectives[J]. Cold Spring Harbor Perspectives in Medicine, 2023,13(8):a041308.
[45]Thomson J A, Itskovitz-Eldor J, Shapiro S S, et al. Embryonic stem cell lines derived from human blastocysts[J]. Science, 1998, 282(5391):1145-1147.
[46]Takahashi K, Yamanaka S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors[J]. Cell, 2006, 126(4): 663-676.
[47]Takahashi K, Tanabe K, Ohnuki M, et al. Induction of pluripotent stem cells from adult human fibroblasts by defined factors[J]. Cell, 2007, 131(5): 861-872.
[48]Yu J Y, Vodyanik M A, Smuga-Otto K, et al. Induced pluripotent stem cell lines derived from human somatic cells[J]. Science, 2007, 318(5858): 1917-1920.
[49]Plaza Reyes A, Petrus-Reurer S, Antonsson L, et al. Xeno-Free and defined human embryonic stem cell-derived retinal pigment epithelial cells functionally integrate in a large-eyed preclinical model[J]. Stem Cell Reports, 2016, 6(1): 9-17.
[50]Tanaka T, Yokoi T, Tamalu F, et al. Generation of retinal ganglion cells with functional axons from human induced pluripotent stem cells[J]. Scientific Reports, 2015, 5: 8344.
[51]Mellough Carla B, Evelyne S, Inmaculada M G, et al. Efficient stage-specific differentiation of human pluripotent stem cells toward retinal photoreceptor cells[J]. Stem Cells (Dayton, Ohio), 2012, 30(4): 673-686.
[52]Klimanskaya I, Hipp J, Rezai K A, et al. Derivation and comparative assessment of retinal pigment epithelium from human embryonic stem cells using transcriptomics[J]. Cloning and Stem Cells, 2004, 6(3): 217-245.
[53]Regent F, Morizur L, Lesueur L, et al. Automation of human pluripotent stem cell differentiation toward retinal pigment epithelial cells for large-scale productions [J]. Scientific Reports, 2019, 9(1): 10646.
[54]Fabio M, Aishwarya B, Nickolas T, et al. Rapid generation of purified human RPE from pluripotent stem cells using 2D cultures and lipoprotein uptake-based sorting [J].Stem Cell Research & Therapy, 2020, 11(1): 47.
[55]Zahabi A, Shahbazi E, Ahmadieh H, et al. A new efficient protocol for directed differentiation of retinal pigmented epithelial cells from normal and retinal disease induced pluripotent stem cells [J].Stem Cells and Development, 2012, 21(12): 2262-2272.
[56]Hirami Y, Osakada F, Takahashi K, et al. Generation of retinal cells from mouse and human induced pluripotent stem cells [J]. Neuroscience Letters, 2009, 458(3): 126-131.
[57]Lu B, Malcuit C, Wang S M, et al. Long-term safety and function of RPE from human embryonic stem cells in preclinical models of macular degeneration[J]. Stem Cell, 2009, 27(9): 2126-2135.
[58]Liu Y, Xu H W, Wang L, et al. Human embryonic stem cell-derived retinal pigment epithelium transplants as a potential treatment for wet age-related macular degeneration[J]. Cell Discovery, 2018, 4: 50.
[59]Limnios Ioannis J, Qian C Y, Skabo Stuart J, et al. Efficient differentiation of human embryonic stem cells to retinal pigment epithelium under defined conditions[J]. Stem Cell Research & Therapy, 2021, 12(1):248.
[60]Petrus-Reurer S, Lederer A R, Baqu-Vidal L, et al. Molecular profiling of stem cell-derived retinal pigment epithelial cell differentiation established for clinical translation[J]. Stem Cell Reports, 2022, 17(6): 1458-1475.
[61]Idelson M, Alper R, Obolensky A, et al. Immunological properties of human embryonic stem cell-derived retinal pigment epithelial cells[J]. Stem Cell Reports, 2018, 11(3): 681-695.
[62]Schwartz S D, Regillo C D, Lam B L, et al. Human embryonic stem cell-derived retinal pigment epithelium in patients with age-related macular degeneration and Stargardt's macular dystrophy: Follow-up of two open-label phase 1/2 studies[J]. Lancet, 2015, 385(9967): 509-516.
[63]Mehat M S, Sundaram V, Ripamonti C, et al. Transplantation of human embryonic stem cell-derived retinal pigment epithelial cells in macular degeneration[J]. Ophthalmology, 2018, 125(11): 1765-1775.
[64]Song W, Park K M, Kim H J, et al. Treatment of macular degeneration using embryonic stem cell-derived retinal pigment epithelium: Preliminary results in Asian patients[J]. Stem Cell Reports, 2015, 4(5): 860-872.
[65]Youngje S, Ji L, Jinjung C, et al. Long-term safety and tolerability of subretinal transplantation of embryonic stem cell-derived retinal pigment epithelium in Asian Stargardt disease patients[J]. The British Journal of Ophthalmology, 2020, 105(6): 829-837.
[66]Li S Y, Liu Y, Wang L, et al. A phase I clinical trial of human embryonic stem cell-derived retinal pigment epithelial cells for early-stage Stargardt macular degeneration: 5-years' follow-up[J]. Cell Proliferation, 2021, 54(9): e13100.
[67]da Cruz L, Fynes K, Georgiadis O, et al. Phase 1 clinical study of an embryonic stem cell-derived retinal pigment epithelium patch in age-related macular degeneration[J]. Nature Biotechnology, 2018, 36(4):328-337.
[68]Kashani A H, Lebkowski J S, Rahhal F M, et al. A bioengineered retinal pigment epithelial monolayer for advanced, dry age-related macular degeneration[J]. Science Translational Medicine, 2018, 10(435): eaao4097.
[69]Kashani A H, Lebkowski J S, Rahhal F M, et al. One-year follow-up in a phase 1/2a clinical trial of an allogeneic RPE cell bioengineered implant for advanced dry age-related macular degeneration[J]. Translational Vision Science & Technology, 2021, 10(10): 13.
[70]Kashani A H, Lebkowski J S, Hinton D R, et al. Survival of an HLA-mismatched, bioengineered RPE implant in dry age-related macular degeneration[J]. Stem Cell Reports, 2022, 17(3):448-458.
[71]Brant Fernandes M Rodrigo A, Lojudice Fernando H, Zago R L, et al. Transplantation of subretinal stem cell-derived retinal pigment epithelium for stargardts disease: A phase I clinical trial[J]. Retina, 2023, 43(2): 263-274.
[72]Allen C Ho, Eyal Banin, Adiel Barak, et al. Safety and Efficacy of a Phase 1/2a Clinical Trial of Transplanted Allogeneic Retinal Pigmented Epithelium (RPE, OpRegen) Cells in Advanced Dry Age-Related Macular Degeneration (AMD) [J]. Investigative Ophthalmology & Visual Science, 2022, 63(7):1862.
[73]Takagi S, Mandai M, Gocho K, et al. Evaluation of transplanted autologous induced pluripotent stem cell-derived retinal pigment epithelium in exudative age-related macular degeneration[J]. Ophthalmology Retina, 2019, 3(10): 850-859.
[74]納濤,王磊,郝捷,等.人胚胎干細胞來源的視網(wǎng)膜色素上皮細胞質(zhì)量控制研究[J]. 生命科學(xué), 2018, 30(3): 248-260.
[75]Rajendran Nair Deepthi S, Zhu D H, Ruchi S, et al. Long-term transplant effects of iPSC-RPE monolayer in immunodeficient RCS rats[J]. Cells, 2021, 10(11): 2951.
[76]Shields R A, Ludwig C A, Powers M A, et al. Surgical timing and presence of a vitreoretinal fellow on postoperative adverse events following pars plana vitrectomy[J]. European Journal of Ophthalmology, 2020, 30(1): 81-87.
[77]Drukker M, Katz G, Urbach A, et al. Characterization of the expression of MHC proteins in human embryonic stem cells[J]. Proceedings of the National Academy of Sciences of the United States of America, 2002, 99(15): 9864-9869.
[78]Araki R, Uda M, Hoki Y, et al. Negligible immunogenicity of terminally differentiated cells derived from induced pluripotent or embryonic stem cells[J]. Nature, 2013, 494(7435): 100-104.
(責(zé)任編輯:張會巍)
收稿日期:2023-06-18中文收稿日期網(wǎng)絡(luò)出版日期:2023-11-02網(wǎng)絡(luò)出版日期
基金項目:企業(yè)委托研發(fā)項目(21040400-J) 中文基金項目
作者簡介:郭艷(1998—),女,甘肅通渭人,碩士研究生,主要從事多能干細胞方面的研究。
中文作者簡介
通信作者:吳月紅,E-mail:wuyuehong2003@163.com中文通信作者