亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        不同抗性遺傳背景棉蚜氟啶蟲胺腈及啶蟲脒抗性品系轉(zhuǎn)錄組分析

        2024-02-20 00:00:00王偉張仁福劉海洋丁瑞豐梁革梅姚舉
        新疆農(nóng)業(yè)科學(xué) 2024年12期
        關(guān)鍵詞:差異表達基因棉蚜抗性

        摘 要:【目的】研究不同抗性遺傳背景棉蚜對氟啶蟲胺腈和啶蟲脒抗性機制差異。

        【方法】利用Illumina高通量測序技術(shù),分別對2個不同抗性遺傳背景棉蚜(莎車縣和精河縣)的田間初始品系、啶蟲脒抗性品系和氟啶蟲胺腈抗性品系進行轉(zhuǎn)錄組測序,利用生物信息學(xué)方法比較分析2個不同抗性遺傳背景棉蚜種群各品系差異表達基因。

        【結(jié)果】莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系分別有806個和149個基因差異表達;精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系與精河縣的田間初始品系相比分別有233個和160個基因差異表達。在莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系中,CYP6CY59、CYP6DC1和CYP380C45均上調(diào)表達,CYP6CY12和CYP380C46均下調(diào)表達;在精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系中,CYP380C46均上調(diào)表達,CYP6DC1均下調(diào)表達。此外,CYP380C45在莎車縣氟啶蟲胺腈抗性品系、精河縣氟啶蟲胺腈抗性品系和莎車縣啶蟲脒抗性品系中均上調(diào)表達;CYP6DC1在莎車縣2個抗性品系中上調(diào)表達,但在精河縣2個抗性品系中下調(diào)表達;相反,CYP380C46在精河縣2個抗性品系中上調(diào)表達,但在莎車縣2個抗性品系中下調(diào)表達。

        【結(jié)論】有多個P450基因參與棉蚜對氟啶蟲胺腈和啶蟲脒的抗性。相同抗性遺傳背景的棉蚜氟啶蟲胺腈與啶蟲脒抗性品系之間差異表達的P450基因存在差異,而且不同抗性遺傳背景棉蚜的氟啶蟲胺腈抗性品系之間以及啶蟲脒抗性品系之間差異表達的P450基因也存在差異。

        關(guān)鍵詞:棉蚜;抗性;差異表達基因

        中圖分類號:S41"" 文獻標志碼:A"" 文章編號:1001-4330(2024)12-3078-11

        0 引 言

        【研究意義】棉蚜Aphis gossypii是棉花重要害蟲之一1,2?;瘜W(xué)防治不當(dāng)可導(dǎo)致棉蚜對有機磷類、氨基甲酸酯類、擬除蟲菊酯類和新煙堿類殺蟲劑產(chǎn)生抗性3。由于新疆各棉區(qū)生態(tài)環(huán)境不同、棉花田間管理差異較大,不同地域棉蚜對新煙堿類殺蟲劑抗性差異明顯。因此,研究不同抗性遺傳背景棉蚜抗藥性機制差異性,對新疆棉蚜的合理防治及抗藥性治理有重要意義。【前人研究進展】解毒代謝能力增強和靶標敏感性下降是棉蚜抗新煙堿類殺蟲劑兩個主要機制4。涉及棉蚜對新煙堿類殺蟲劑解毒代謝的酶和蛋白主要包括細胞色素P450多功能氧化酶(Cytochrome P450 monooxygenases,P450)、UDP-葡糖基轉(zhuǎn)移酶(Uridine diphosphate glycosyltransferases,UGT)和ABC轉(zhuǎn)運蛋白(ATP-binding cassette transporters)。以往研究已證實P450基因、UGT基因和ABC轉(zhuǎn)運蛋白基因的過量表達是棉蚜對新煙堿類殺蟲劑產(chǎn)生抗性的重要原因5-7。另外,煙堿型乙酰膽堿受體(nicotinic acetylcholine receptor,nAChR)是新煙堿類殺蟲劑的作用靶標8,nAChR靶標位點突變是棉蚜對新煙堿類殺蟲劑產(chǎn)生抗性的重要機制9。棉蚜nAChR β1亞基環(huán)D區(qū)域發(fā)生R81T、L80S、K264E和V62I突變涉及棉蚜對吡蟲啉抗性10-13,而且棉蚜nAChR β1、α1、α4-1、α4-2、α5和α7亞基表達顯著下降也會導(dǎo)致棉蚜對新煙堿類殺蟲劑抗性上升14?!颈狙芯壳腥朦c】氟啶蟲胺腈是一種砜亞胺類殺蟲劑,被抗殺蟲劑行動委員會(Insecticide Resistance Action Committee)歸為4C類15。氟啶蟲胺腈作為一種重要的替代殺蟲劑被廣泛用于防治粉虱類、飛虱類、蚜蟲類等刺吸式害蟲16。盡管氟啶蟲胺腈是一種nAChR競爭性調(diào)節(jié)劑16,但其與解毒代謝酶和nAChR相互作用方式不同于啶蟲脒和吡蟲啉等新煙堿類殺蟲劑(4A 類)15,17。棉蚜地理種群差異而形成抗藥性遺傳背景不同可能影響其對殺蟲劑抗性機制,而且棉蚜對不同殺蟲劑抗性機制可能也存在差異。需選取不同抗性遺傳背景棉蚜的氟啶蟲胺腈和啶蟲脒抗性品系進行轉(zhuǎn)錄組測序及差異基因比較,探明不同抗性遺傳背景棉蚜對氟啶蟲胺腈和啶蟲脒的抗性機制差異?!緮M解決的關(guān)鍵問題】研究利用Illumina高通量測序技術(shù),分別對2個不同抗性遺傳背景棉蚜(莎車縣和精河縣)的田間初始品系、啶蟲脒抗性品系和氟啶蟲胺腈抗性品系進行轉(zhuǎn)錄組測序,利用生物信息學(xué)方法比較分析2個不同抗性遺傳背景棉蚜種群各品系差異表達基因,研究不同抗性遺傳背景棉蚜對啶蟲脒和氟啶蟲胺腈抗性機制差異,為棉蚜抗藥性治理提供理論支撐。

        1 材料與方法

        1.1 材 料

        2個棉蚜田間品系于2019年7月分別采自新疆莎車縣(77°281′E,38°546′N)和精河縣(82°896′E,44°588′N)棉田,在中國農(nóng)業(yè)科學(xué)院廊坊科研中試基地溫室用棉花幼苗飼養(yǎng),飼養(yǎng)條件為溫度(26 ± 5)℃,70%±10% RH,光周期16∶8 L/D。棉花品種為中棉49,由中國農(nóng)業(yè)科學(xué)院棉花所提供。每個田間種群分別被分為3個品系,第1個品系被連續(xù)暴露于氟啶蟲胺腈24代,作為氟啶蟲胺腈抗性品系;第2個品系被連續(xù)暴露于抗啶蟲脒24代,作為啶蟲脒抗性品系;第3個品系不接觸任何殺蟲劑,作為田間初始品系進行飼養(yǎng),共6個品系,即:莎車縣田間初始品系(Yarkant-FS)、莎車縣氟啶蟲胺腈抗性品系(Yarkant-SulR)、莎車縣啶蟲脒抗性品系(Yarkant-AceR)、精河縣田間初始品系(Jinghe-FS)、精河縣氟啶蟲胺腈抗性品系(Jinghe-SulR)、精河縣啶蟲脒抗性品系(Jinghe-AceR)。

        1.2 方 法

        1.2.1 RNA提取及測序

        在莎車縣和精河縣的田間初始品系、氟啶蟲胺腈抗性品系和啶蟲脒抗性品系中,分別隨機選取體型一致的無翅成蚜40頭,分裝于1.5 mL RNase-free 離心管,迅速液氮處理,并置于-80℃低溫冰箱保存。每個品系3個重復(fù),共計6品系18個樣品。采用Trizol法提取樣品RNA,通過NanoDrop 2000超微量分光光度計檢測RNA純度及濃度,利用Agient 2100生物分析儀檢測RNA完整性,采用Illumina NovaSeq6000測序平臺進行轉(zhuǎn)錄組測序。轉(zhuǎn)錄組測序委托北京百邁客生物科技有限公司完成。

        1.2.2 測序數(shù)據(jù)評估、組裝及功能注釋

        通過去除原始數(shù)據(jù)中含有接頭的和低質(zhì)量的Reads(N比例大于10%和質(zhì)量值Q≤10的堿基數(shù)占整條Read50%以上的Reads),獲得可后續(xù)分析的高質(zhì)量Clean Data。利用HISAT2系統(tǒng)18將Clean Data與棉蚜基因組數(shù)據(jù)(NCBI: ASM2018417v2)進行比對,獲得Mapped data。隨后,通過StringTie軟件 [19對Mapped data進行轉(zhuǎn)錄組組裝。最后,通過BLAST[20在Non-redundant protein sequences(NR) [21,Swiss-Prot [22,Gene ontology(GO)23,Database of clusters of orthologous genes(COG)24,KOG[25,Protein families database(Pfam)26,Kyoto encyclopedia of genes and genomes(KEGG)27和Evolutionary genealogy of genes: Non-supervised orthologous groups databases(eggNOG)28數(shù)據(jù)庫進行序列比對,獲得功能注釋。

        1.2.3 基因差異表達

        標準化樣品中Mapped Reads數(shù)目和轉(zhuǎn)錄本長度,并以FPKM(Fragments per kilobase of transcript per million fragments mapped)29作為基因表達水平指標。通過DESeq2[30對樣品組間進行差異表達分析,以|log2 Fold change| ≥ 1且FDR(False Discovery Rate)lt; 0.05作為篩選差異表達基因的標準,并對差異表達基因進行GO功能分析。

        2 結(jié)果與分析

        2.1 測序數(shù)據(jù)評估

        研究表明,測序數(shù)據(jù)經(jīng)過去除含有接頭序列和低質(zhì)量序列,莎車縣田間初始品系、氟啶蟲胺腈抗性品系和啶蟲脒抗性品系9個樣品共獲得55.53 Gb Clean Data,各樣品Clean Data均達到5.84 Gb,Q30堿基百分比均在94.32%以上,共計185 620 518個Clean reads;精河縣田間初始品系、氟啶蟲胺腈抗性品系和啶蟲脒抗性品系9個樣品共獲得56.03 Gb Clean Data,各樣品Clean Data均達到5.81 Gb,Q30堿基百分比在93.15%以上,共計190 527 062個Clean reads。表1

        2.2 測序數(shù)據(jù)與參考基因組比對效率

        研究表明,與棉蚜參考基因組序列(NCBI: ASM2018417v2)比對,莎車縣3個品系9個樣品的Clean Reads對比效率在92.74% ~ 96.11%,唯一比對讀數(shù)占總讀數(shù)比例在87.78% ~ 92.94%,多位點比對度數(shù)占總讀數(shù)比例在2.56% ~ 7.14%;精河縣3個品系9個樣品的Clean Reads對比效率在80.02% ~ 90.46%,唯一比對讀數(shù)占總讀數(shù)比例在75.85% ~ 85.73%,多位點比對度數(shù)占總讀數(shù)比例在4.17% ~ 4.86%。表2

        2.3 差異表達基因

        研究表明,莎車縣氟啶蟲胺腈品系相對其田間初始品系共有806條基因差異表達,其中434條基因顯著性上調(diào)表達,372條基因顯著性下調(diào)表達(圖1A);啶蟲脒抗性品系相對其田間初始品系共有149條基因差異表達,其中92條基因顯著性上調(diào)表達,57條基因顯著性下調(diào)表達(圖1B)。圖1

        精河縣氟啶蟲胺腈品系相對其田間初始品系共有233條基因差異表達,其中140條基因顯著性上調(diào)表達,93條基因顯著性下調(diào)表達(圖2A);啶蟲脒抗性品系相對其田間初始品系共有160條基因差異表達,其中有75條基因顯著性上調(diào)表達,85條基因顯著性下調(diào)表達(圖2B)。圖2

        2.4 差異表達基因GO功能分類

        研究表明,莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因經(jīng)GO功能分類,參與生物過程(biological process)的差異表達基因數(shù)目最多,其次為分子功能(molecular function),最少為細胞組件(cellular component)。與莎車縣田間初始品系相比,莎車縣氟啶蟲胺腈抗性品系在生物過程中差異基因888個,主要分布于細胞過程(cellular process)(上調(diào)114個,下調(diào)110個)和代謝過程(metabolic process)(上調(diào)103個,下調(diào)99個);在分子功能中,差異基因516個,主要分布于細胞結(jié)合(binding)(上調(diào)125個,下調(diào)96個)和催化活性(catalytic activity)(上調(diào)91個,下調(diào)103個);在細胞組件中,差異基因351個,主要分布于細胞解剖實體(cellular anatomical entity)(上調(diào)105個,下調(diào)94個)和細胞內(nèi)(intracellular)(上調(diào)59個,下調(diào)47個)(圖3A)。莎車縣啶蟲脒抗性品系在生物過程中差異基因175個,主要分布于代謝過程(上調(diào)29個,下調(diào)19個)和細胞過程(上調(diào)33個,下調(diào)10個);在分子功能中,差異基因114個,主要分布于細胞結(jié)合(上調(diào)30個,下調(diào)11個)和催化活性(上調(diào)29個,下調(diào)18個);在細胞組件中,差異基因67個,主要分布于細胞解剖實體(上調(diào)25個,下調(diào)11個)和細胞內(nèi)(上調(diào)15個,下調(diào)7個)(圖3B)。圖3

        精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因經(jīng)GO功能分類,差異表達基因數(shù)目由高到低依次為生物過程、細胞組件和分子功能。與精河縣田間初始品系相比,精河縣氟啶蟲胺腈抗性品系在生物過程中差異表達基因166個,主要分布于單生物過程(single-organism process)(上調(diào)30個,下調(diào)20)和細胞過程(cellular process)(上調(diào)25個,下調(diào)11);細胞組件中差異表達基因166個,主要分布于膜(membrane)(上調(diào)10個,下調(diào)16個)和細胞(Cell)(上調(diào)21個,下調(diào)7個);分子功能差異表達基因128個,主要分布于細胞結(jié)合(上調(diào)29個,下調(diào)23個)和催化活性(上調(diào)19個,下調(diào)18個)(圖4A)。精河縣啶蟲脒抗性品系生物過程中差異表達基因217個,主要分布于單生物過程(上調(diào)18個,下調(diào)22)和細胞過程(上調(diào)11個,下調(diào)23);細胞組件中差異表達基因149個,主要分布于細胞部分(cell part)(上調(diào)15個,下調(diào)16個)和細胞器(organelle)(上調(diào)9個,下調(diào)15個);分子功能差異表達基因95個,主要分布于細胞結(jié)合(上調(diào)17個,下調(diào)35個)和催化活性(上調(diào)12個,下調(diào)17個)(圖4B)。圖4

        2.5 莎車縣與精河縣各抗性品系轉(zhuǎn)錄組中P450基因的表達差異

        研究表明,與莎車縣田間初始品系相比,莎車縣氟啶蟲胺腈抗性品系顯著上調(diào)和下調(diào)表達的P450基因數(shù)目均多于啶蟲脒抗性品系。氟啶蟲胺腈抗性品系中,6個P450基因顯著上調(diào)表達,即:CYP6CY59、CYP6CY20、CYP6DC1、CYP6CY13、CYP380C44和CYP380C45;3個P450基因顯著下調(diào)表達,即:CYP18A1、CYP6CY12和CYP380C46。啶蟲脒抗性品系中,3個P450基因顯著上調(diào)表達,即:CYP6CY59、CYP6DC1和CYP380C45;2個P450基因顯著下調(diào)表達,即:CYP6CY12和CYP380C46。與精河縣田間初始品系相比,精河縣氟啶蟲胺腈抗性品系顯著上調(diào)和下調(diào)表達的P450基因數(shù)目均多于啶蟲脒抗性品系。氟啶蟲胺腈抗性品系中,3個P450基因顯著上調(diào)表達,即:CYP6CY24、CYP380C46和CYP380C45;1個P450基因顯著下調(diào)表達,即:CYP6DC1。啶蟲脒抗性品系中,CYP6CY9和CYP380C46顯著上調(diào)表達,CYP6DC1顯著下調(diào)表達。表3

        3 討 論

        3.1

        不同地域的環(huán)境、害蟲管理和殺蟲劑使用習(xí)慣的不同,包括殺蟲劑種類、施藥量和施藥頻率,使得不同地域棉蚜田間種群對新煙堿類殺蟲劑抗性存在差異31,不同地域棉蚜種群具有不同的抗性抗性遺傳背景。啶蟲脒與氟啶蟲胺腈都是煙堿型乙酰膽堿受體激動劑,然而氟啶蟲胺腈作用機制有別于啶蟲脒等新煙堿類殺蟲劑32

        相同抗性遺傳背景下,氟啶蟲胺腈抗性品系差異表達基因數(shù)量要多于啶蟲脒抗性品系。莎車縣氟啶蟲胺腈品系和啶蟲脒抗性品系分別有806個(上調(diào)434個,下調(diào)372個)和149個(上調(diào)92個,下調(diào)57個)基因差異表達,精河縣氟啶蟲胺腈品系和啶蟲脒抗性品系分別有233個(上調(diào)140個,下調(diào)93個)和160個(上調(diào)75個,下調(diào)85個)基因差異表達。產(chǎn)生關(guān)于殺蟲劑抗性和關(guān)鍵生活史性狀的能量權(quán)衡33-35。由于莎車縣和精河縣氟啶蟲胺腈抗性品系差異表達基因均多于啶蟲脒抗性品系,氟啶蟲胺腈品系可能伴隨著更高的能量消耗,這種能量的高消耗導(dǎo)致了氟啶蟲胺腈抗性品系適合度低于啶蟲脒抗性品系36

        3.2

        經(jīng)GO功能分析,莎車縣、精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因在生物過程、分子功能和細胞組件中分布不同。莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因分布由高到低依次為生物過程、分子功能和細胞組件,而精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因分布由高到低依次為生物過程、細胞組件和分子功能。除此之外,在生物過程、分子功能和細胞組件中的具體分布亦有所不同。莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因在生物過程中主要分布于細胞過程和代謝過程,在分子功能中主要分布于細胞結(jié)合和催化活性,在細胞組件中主要分布于細胞解剖實體和細胞內(nèi)。精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達基因在生物過程中差異表達基因主要分布于單生物過程和細胞過程,分子功能差異表達基因主要分布于細胞結(jié)合和催化活性。在細胞組件中,精河縣氟啶蟲胺腈抗性品系差異表達基因主要分布于膜和細胞,而啶蟲脒抗性品系差異表達基因主要分布于細胞部分和細胞器。

        3.3

        細胞色素P450多功能氧化酶是害蟲重要的解毒酶。以往大量研究已經(jīng)證實棉蚜5,37,38、桃蚜39、煙粉虱40和褐飛虱41等害蟲對新煙堿類殺蟲劑抗性發(fā)展與部分P450基因過量表達有關(guān)?;谵D(zhuǎn)錄組數(shù)據(jù),研究對莎車縣和精河縣棉蚜種群的P450相關(guān)基因進行了篩選。在4個抗性品系共涉及差異表達P450相關(guān)基因11個,莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達P450相關(guān)基因分別為9個(6個上調(diào),3個下調(diào))和5個(3個上調(diào),2個下調(diào)),精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達P450相關(guān)基因分別為4個(3個上調(diào),1個下調(diào))和3個(2個上調(diào),1個下調(diào))。莎車縣和精河縣氟啶蟲胺腈抗性品系顯著上調(diào)表達P450相關(guān)基因數(shù)量多于2個啶蟲脒抗性品系,而且莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品顯著上調(diào)表達P450相關(guān)基因數(shù)量均分別多于精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系。此外,CYP380C45均在莎車縣氟啶蟲胺腈抗性品系、莎車縣啶蟲脒抗性品系和精河縣氟啶蟲胺腈抗性品系中顯著上調(diào)表達。CYP380C46在莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系中均顯著下調(diào)表達,卻在精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系均顯著上調(diào)表達。相反,CYP6DC1在莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系中均顯著上調(diào)表達,卻在精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系均顯著下調(diào)表達。莎車縣和精河縣棉蚜對氟啶蟲胺腈抗性發(fā)展要快于啶蟲脒,莎車縣2個抗性品系抗性發(fā)展快于精河縣2個抗性品系36,可能與上述P450相關(guān)基因在地域和品系之間表達差異有關(guān)。

        4 結(jié) 論

        有多個P450基因參與棉蚜對氟啶蟲胺腈和啶蟲脒的抗性。差異表達的P450基因在不同抗性品系間存在差異,而且在不同抗性遺傳背景棉蚜種群之間也存在差異。相同抗性遺傳背景下,氟啶蟲胺腈抗性品系差異表達P450基因數(shù)量多于啶蟲脒抗性品系;不同抗性遺傳背景下,莎車縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系差異表達P450基因數(shù)量均分別多于精河縣氟啶蟲胺腈抗性品系和啶蟲脒抗性品系。

        參考文獻(References)

        [1]熱依汗古麗·阿布都熱合曼, 艾合買提·吾斯曼, 魏新政, 等. 2019年新疆棉花主要病蟲害發(fā)生概況[J]. 中國棉花, 2019, 46(11): 7-9.

        Reyihanguli Abudureheman, Aihemaiti Wusiman, WEI Xinzheng, et al. Overview of main cotton diseases and insect pests in Xinjiang in 2019[J]. China Cotton, 2019, 46(11): 7-9.

        [2] 熱依汗古麗·阿布都熱合曼, 伊力亞爾·達吾提江, 艾合買提江·努力買買提, 等. 2020年新疆棉花主要病蟲害發(fā)生概況[J]. 中國棉花, 2021, 48(2): 10-12, 16.

        Reyihanguli Abudureheman, Yiliyaer Dawutijiang, Aihemaitijiang Nulimaimaiti, et al. Overview of main cotton diseases and insect pests in Xinjiang in 2020[J]. China Cotton, 2021, 48(2): 10-12, 16.

        [3] 帕提瑪·烏木爾汗, 郭佩佩, 馬少軍, 等. 新疆地區(qū)棉蚜田間種群對10種殺蟲劑的抗性[J]. 植物保護, 2019, 45(6): 273-278.

        Patima Wumuerhan, GUO Peipei, MA Shaojun, et al. Resistance of different field populations of Aphis gossypii to ten insecticides in Xinjiang[J]. Plant Protection, 2019, 45(6): 273-278.

        [4] 馬康生, 王靜慧, 解曉平, 等. 棉蚜對新煙堿類殺蟲劑的抗性現(xiàn)狀及其治理策略[J]. 植物保護學(xué)報, 2021, 48(5): 947-957.

        MA Kangsheng, WANG Jinghui, XIE Xiaoping, et al. Status and management strategies of neonicotinoid insecticide resistance in Aphis gossypii Glover[J]. Journal of Plant Protection, 2021, 48(5): 947-957.

        [5] Zhang H H, Yang H L, Dong W Y, et al. Mutations in the nAChR β1 subunit and overexpression of P450 genes are associated with high resistance to thiamethoxam in melon aphid, Aphis gossypii Glover[J]. Comparative Biochemistry and Physiology Part B, Biochemistry amp; Molecular Biology, 2022, 258: 110682.

        [6] Chen X W, Xia J, Shang Q L, et al. UDP-glucosyltransferases potentially contribute to imidacloprid resistance in Aphis gossypii glover based on transcriptomic and proteomic analyses[J]. Pesticide Biochemistry and Physiology, 2019, 159: 98-106.

        [7] Pan Y O, Zeng X C, Wen S Y, et al. Multiple ATP-binding cassette transporters genes are involved in thiamethoxam resistance in Aphis gossypii glover[J]. Pesticide Biochemistry and Physiology, 2020, 167: 104558.

        [8] Bass C, Denholm I, Williamson M S, et al. The global status of insect resistance to neonicotinoid insecticides[J]. Pesticide Biochemistry and Physiology, 2015, 121: 78-87.

        [9] Hirata K, Jouraku A, Kuwazaki S, et al. The R81T mutation in the nicotinic acetylcholine receptor of Aphis gossypii is associated with neonicotinoid insecticide resistance with differential effects for cyano- and nitro-substituted neonicotinoids[J]. Pesticide Biochemistry and Physiology, 2017, 143: 57-65.

        [10] Kim J I, Kwon M, Kim G H, et al. Two mutations in nAChR beta subunit is associated with imidacloprid resistance in the Aphis gossypii[J]. Journal of Asia-Pacific Entomology, 2015, 18(2): 291-296.

        [11] Chen X W, Li F, Chen A Q, et al. Both point mutations and low expression levels of the nicotinic acetylcholine receptor β1 subunit are associated with imidacloprid resistance in an Aphis gossypii (Glover) population from a Bt cotton field in China[J]. Pesticide Biochemistry and Physiology, 2017, 141: 1-8.

        [12] Shi X G, Zhu Y K, Xia X M, et al. The mutation in nicotinic acetylcholine receptor β1 subunit may confer resistance to imidacloprid in Aphis gossypii (Glover)[J]. Journal of Food, Agriculture and Environment, 2012, 10(2): 1227-1230.

        [13] Koo H N, An J J, Park S E, et al. Regional susceptibilities to 12 insecticides of melon and cotton aphid, Aphis gossypii (Hemiptera: Aphididae) and a point mutation associated with imidacloprid resistance[J]. Crop Protection, 2014, 55: 91-97.

        [14] Wei X, Pan Y O, Xin X C, et al. Cross-resistance pattern and basis of resistance in a thiamethoxam-resistant strain of Aphis gossypii Glover[J]. Pesticide Biochemistry and Physiology, 2017, 138: 91-96.

        [15] IRAC. The IRAC mode of action classification online [J/OL] 2023, [2023-4-12]. https://irac-online.org/mode-of-action/classification-online.

        [16] Babcock J M, Gerwick C B, Huang J X, et al. Biological characterization of sulfoxaflor, a novel insecticide[J]. Pest Management Science, 2011, 67(3): 328-334.

        [17] Cutler P, Slater R, Edmunds A J F, et al. Investigating the mode of action of sulfoxaflor: a fourth-generation neonicotinoid[J]. Pest Management Science, 2013, 69(5): 607-619.

        [18] Kim D, Langmead B, Salzberg S L. HISAT: a fast spliced aligner with low memory requirements[J]. Nature Methods, 2015, 12(4): 357-360.

        [19] Pertea M, Pertea G M, Antonescu C M, et al. StringTie enables improved reconstruction of a transcriptome from RNA-seq reads[J]. Nature Biotechnology, 2015, 33(3): 290-295.

        [20] Altschul S F, Madden T L, Schffer A A, et al. Gapped BLAST and PSI-BLAST: a new generation of protein database search programs[J]. Nucleic Acids Research, 1997, 25(17): 3389-3402.

        [21] 鄧泱泱, 荔建琦, 吳松鋒, 等. nr數(shù)據(jù)庫分析及其本地化[J]. 計算機工程, 2006, 32(5): 71-73, 76.

        DENG Yangyang, LI Jianqi, WU Songfeng, et al. Integrated nr database in protein annotation system and its localization[J]. Computer Engineering, 2006, 32(5): 71-73, 76.

        [22] The UniProt Consortium. UniProt: the universal protein knowledgebase[J]. Nucleic Acids Research, 2017, 45(D1): D158-D169.

        [23] Ashburner M, Ball C A, Blake J A, et al. Gene ontology: tool for the unification of biology. The Gene Ontology Consortium[J]. Nature Genetics, 2000, 25(1): 25-29.

        [24] Tatusov R L, Galperin M Y, Natale D A, et al. The COG database: a tool for genome-scale analysis of protein functions and evolution[J]. Nucleic Acids Research, 2000, 28(1): 33-36.

        [25] Koonin E V, Fedorova N D, Jackson J D, et al. A comprehensive evolutionary classification of proteins encoded in complete eukaryotic genomes[J]. Genome Biology, 2004, 5(2): R7.

        [26] Punta M, Coggill P C, Eberhardt R Y, et al. The Pfam protein families database[J]. Nucleic Acids Research, 2012, 40(Database issue): D290-D301.

        [27] Kanehisa M, Goto S, Kawashima S, et al. The KEGG resource for deciphering the genome[J]. Nucleic Acids Research, 2004, 32(Database issue): D277-D280.

        [28] Huerta-Cepas J, Szklarczyk D, Heller D, et al. eggNOG 5.0: a hierarchical, functionally and phylogenetically annotated orthology resource based on 5090 organisms and 2502 viruses[J]. Nucleic Acids Research, 2019, 47(D1): 309-314.

        [29] Florea L, Song L, Salzberg S L. Thousands of exon skipping events differentiate among splicing patterns in sixteen human tissues[J]. F1000Research, 2013,2: 188.

        [30] Love M I, Huber W, Anders S. Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2[J]. Genome Biology, 2014, 15(12): 550.

        [31] 趙鵬程, 李焱, 閆文靜, 等. 新疆棉蚜不同地理種群對殺蟲劑的敏感性[J]. 石河子大學(xué)學(xué)報(自然科學(xué)版), 2018, 36(2): 159-163.

        ZHAO Pengcheng, LI Yan, YAN Wenjing, et al. Sensitivity of different geographical populations of Aphis gossypii(Glover) in Xinjiang to different insecticides[J]. Journal of Shihezi University (Natural Science), 2018, 36(2): 159-163.

        [32] Oliveira E E, Schleicher S, Büschges A, et al. Desensitization of nicotinic acetylcholine receptors in central nervous system neurons of the stick insect (Carausius morosus) by imidacloprid and sulfoximine insecticides[J]. Insect Biochemistry and Molecular Biology, 2011, 41(11): 872-880.

        [33] ffrench-Constant R H, Bass C. Does resistance really carry a fitness cost?[J]. Current Opinion in Insect Science, 2017, 21: 39-46.

        [34] Roush R T, McKenzie J A. Ecological genetics of insecticide and acaricide resistance[J]. Annual Review of Entomology, 1987, 32: 361-380.

        [35] Rivero A, Magaud A, Nicot A, et al. Energetic cost of insecticide resistance in Culex pipiens mosquitoes[J]. Journal of Medical Entomology, 2011, 48(3): 694-700.

        [36] Wang W, Zhang R F, Liu H Y, et al. Resistance development, cross-resistance, and fitness costs associated with Aphis gossypii resistance towards sulfoxaflor and acetamiprid in different geographical regions[J]. Journal of Integrative Agriculture, 2024, 23(7): 2332-2345.

        [37] Zhao L K, Wang C P, Gao X K, et al. Characterization of P450 monooxygenase gene family in the cotton aphid, Aphis gossypii Glover[J]. Journal of Asia-Pacific Entomology, 2022, 25(2): 101861.

        [38] Wang L, Cui L, Wang Q Q, et al. Sulfoxaflor resistance in Aphis gossypii: resistance mechanism, feeding behavior and life history changes[J]. Journal of Pest Science, 2022, 95(2): 811-825.

        [39] Pym A, Umina P A, Reidy-Crofts J, et al. Overexpression of UDP-glucuronosyltransferase and cytochrome P450 enzymes confers resistance to sulfoxaflor in field populations of the aphid, Myzus persicae[J]. Insect Biochemistry and Molecular Biology, 2022, 143: 103743.

        [40] He C, Liang J J, Liu S N, et al. Molecular characterization of an NADPH cytochrome P450 reductase from Bemisia tabaci Q: potential involvement in susceptibility to imidacloprid[J]. Pesticide Biochemistry and Physiology, 2020, 162: 29-35.

        [41] Cheng Y B, Li Y M, Li W R, et al. Inhibition of hepatocyte nuclear factor 4 confers imidacloprid resistance in Nilaparvata lugens via the activation of cytochrome P450 and UDP-glycosyltransferase genes[J]. Chemosphere, 2021, 263: 128269.

        Transcriptome analysis of Aphis gossypii sulfoxaflor and acetamiprid-resistant strains with different genetic backgrounds of resistance

        WANG Wei1, 2, ZHANG Renfu1, LIU Haiyang1, DING Ruifeng1, LIANG Gemei2, YAO Ju1

        (1. Key Laboratory of Integrated Pest Management on Crop in Northwestern Oasis, Ministry of Agriculture and Rural Affairs/ Xinjiang Key Laboratory of Agricultural Biosafety /Institute of Plant Protection,Xinjiang Academy of Agricultural Sciences,Urumqi 830091,China;2. State Key Laboratory for Biology of Plant Diseases and Insect Pests, Institute of Plant Protection, Chinese Academy of Agricultural Sciences, Beijing 100193, China)

        Abstract:【Objective】 To explore the differences in resistance mechanisms to sulfoxaflor and acetamiprid in cotton aphid with different genetic backgrounds of resistance.

        【Methods】 Transcriptome sequencing by Illumina high-throughput sequencing technology was performed on initial field strain, acetamiprid-resistant strain and sulfoxaflor-resistant strain of cotton aphids with different genetic backgrounds (Yarkant and Jinghe), respectively.Meanwhile, differentially expressed genes in resistant strains of cotton aphid with different genetic backgrounds were analyzed by bioinformatics methods.

        【Results】 By comparing the transcriptome data of sulfoxaflor- and acetamiprid-resistant strains from Yarkant and Jinghe, it was found that the sulfoxaflor- and acetamiprid-resistant strains from Yarkant had differential expression of 806 and 149 genes, respectively, and the sulfoxaflor- and acetamiprid-resistant strains from Jinghe had differential expression of 233 and 160 genes.In the sulfoxaflor- and acetamiprid-resistant strains of Yarkant, CYP6CY59, CYP6DC1, and CYP380C45 were up-regulated, but CYP6CY12 and CYP380C46 were down-regulated.In the sulfoxaflor- and acetamiprid-resistant strains of Jinghe, CYP380C46 was up-regulated whereas CYP6DC1 was down-regulated.In addition, CYP380C45 was up-regulated in Yarkant sulfoxaflor- and acetamiprid-resistant strains, and the Jinghe acetamiprid-resistant strain.CYP6DC1 was up-regulated in both Yarkant resistant strains, but down-regulated in both Jinghe resistant strains.CYP380C46 was up-regulated in both resistant strains in Jinghe but down-regulated in both resistant strains in Yarkant.

        【Conclusion】" Several P450 genes were involved in resistance to sulfoxaflor and acetamiprid in cotton aphids.Differences in differentially expressed P450 genes were found between sulfoxaflor- and acetamiprid-resistant strains of cotton aphids with the same genetic background, and found between sulfoxaflor-resistant strains of cotton aphids of different genetic backgrounds, as well as between acetamiprid-resistant strains.

        Key words: Aphis gossypii; resistance; differentially expressed genes

        Fund projects:National Key Ramp;D Program of China (2022YFD1400300); Project for Stable Support to Agricultural Sci - Tech Renovation (xjnkywdzc-2023004-1)

        Correspondence author:YAO Ju (1969-), male, from Shandong, researcher, bachelor's degree, research direction: integrated pest management in cotton, (E-mail) yaoju500@sohu.com

        LIANG Gemei (1970-), female," from Beijing, researcher, doctor's degree, research direction: integrated pest management in cotton, (E-mail) gmliang@ippcaas.cn

        基金項目:國家重點研發(fā)計劃(2022YFD1400300);農(nóng)業(yè)科技創(chuàng)新穩(wěn)定支持項目(xjnkywdzc-2023004-1)

        作者簡介:王偉(1982-),男,天津人,研究員,博士,研究方向為棉花有害生物防治,(E-mail)wlzforever2004@sina.com

        通訊作者:姚舉(1969-),男,山東人,研究員,碩士,研究方向為棉花有害生物防治,(E-mail)yaoju500@sohu.com

        梁革梅(1970-),女,北京人,研究員,博士,研究方向為棉花有害生物防治,(E-mail)gmliang@ippcaas.cn

        猜你喜歡
        差異表達基因棉蚜抗性
        Hap1型棉蚜在5種春季雜草上的生長發(fā)育情況
        植物保護(2023年1期)2023-02-03 10:22:08
        低劑量啶蟲脒和雙丙環(huán)蟲酯對棉蚜繭蜂寄生功能的影響
        一個控制超強電離輻射抗性開關(guān)基因的研究進展
        棉蚜取食被棉長管蚜危害棉花后其相關(guān)酶的活性
        生物信息學(xué)分析患有乳腺癌的乳腺球樣本中與自我更新相關(guān)的關(guān)鍵基因
        甲基對硫磷抗性菌的篩選及特性研究
        甜玉米常見病害的抗性鑒定及防治
        中國果菜(2016年9期)2016-03-01 01:28:44
        棉蚜田間藥效試驗篩選
        用于黃瓜白粉病抗性鑒定的InDel標記
        中國蔬菜(2015年9期)2015-12-21 13:04:40
        條斑紫菜優(yōu)良品系的基因芯片表達譜分析
        国产精品农村妇女一区二区三区| 少妇寂寞难耐被黑人中出| 亚洲精品高清你懂的| 免费观看视频在线播放| 国产精品毛片极品久久| 潮喷大喷水系列无码久久精品| 在线看高清中文字幕一区| 亚洲综合国产成人丁香五月激情| 成人三级a视频在线观看| 永久免费无码av在线网站| 久久99久久99精品免观看女同| 91乱码亚洲精品中文字幕| 把女人弄爽特黄a大片| 国产极品久久久久极品| 狠狠色丁香婷婷久久综合2021| 国内精品极品久久免费看| 国产成人av三级三级三级在线| 妺妺窝人体色777777| 99久久人人爽亚洲精品美女| 中国精品视频一区二区三区| 中文字幕成人精品久久不卡91| 少妇夜夜春夜夜爽试看视频| 亚洲欧洲日产国码高潮αv| 中文字幕人妻系列一区尤物视频| 久久精品女同亚洲女同| 国产日产欧洲系列| av天堂久久天堂av色综合| 国产自在自线午夜精品视频在| 一区二区三区在线免费av| 国产黄色av一区二区三区| 青青草视频免费观看| 精品91精品91精品国产片| 一区二区三区四区黄色av网站 | 国精品午夜福利视频不卡| 欧美色综合高清视频在线| 国产精品人成在线765| 激情五月婷婷一区二区| 国产午夜福利在线播放| 国产91网址| 日本高清一区二区三区在线| 人妻av中文字幕久久|