王扶凝 代會博 單云 俞曼殊 盛梅笑
摘要:目的 觀察大鼠骨髓間充質(zhì)干細(xì)胞(BMSCs)對高糖腹透液(PDF)誘導(dǎo)的大鼠腹膜間皮細(xì)胞(PMCs)凋亡的影響及可能作用機制。方法 提取并鑒定大鼠原代BMSCs及PMCs,使用高糖腹透液誘導(dǎo)PMCs凋亡,收集BMSCs培養(yǎng)24 h后的細(xì)胞上清液作為條件培養(yǎng)基(BMSCs-CM)或通過Transwell小室將PMCs與BMSCs共培養(yǎng)。將PMCs分為空白對照(CON)組、高糖腹透液(PDF)組及間充質(zhì)干細(xì)胞處理(PDF+BMSCs-CM)組,采用CCK-8法測定各組PMCs的增殖活力;JC-1法測定線粒體膜電位的去極化情況;TUNEL染色檢測細(xì)胞凋亡情況;Western blot檢測各組細(xì)胞凋亡相關(guān)蛋白B細(xì)胞淋巴瘤-2(Bcl-2)、Bcl-2相關(guān)X蛋白(Bax)、活化的胱天蛋白酶-3(Cleaved Caspase-3)和通路相關(guān)蛋白絲氨酸/蘇氨酸蛋白激酶(Raf)、絲裂原活化細(xì)胞外信號調(diào)節(jié)激酶(MEK)、細(xì)胞外信號調(diào)節(jié)激酶(ERK)及其磷酸化蛋白的表達(dá)水平。結(jié)果 與CON組比較,PDF組PMCs增殖活力、線粒體膜電位水平降低,而凋亡率、Bax/Bcl-2、Cleaved Caspase-3/Caspase-3、p-Raf/Raf、p-MEK/MEK、p-ERK/ERK比值升高(P<0.05);與PDF組比較,PDF+BMSCs-CM組PMCs增殖活力、線粒體膜電位升高,而凋亡率、Bax/Bcl-2、Cleaved Caspase-3/Caspase-3、p-Raf/Raf、p-MEK/MEK、p-ERK/ERK比值降低(P<0.05)。結(jié)論 BMSCs可減輕高糖腹透液誘導(dǎo)的PMCs凋亡,其機制可能與抑制Raf/MEK/ERK信號通路的活化有關(guān)。
關(guān)鍵詞:腹膜透析;細(xì)胞凋亡;骨髓間充質(zhì)干細(xì)胞;腹膜間皮細(xì)胞
中圖分類號:R285.5文獻(xiàn)標(biāo)志碼:ADOI:10.11958/20231064
Study on the effect and mechanism of bone marrow mesenchymal stem cells on apoptosis of peritoneal mesothelial cells
Abstract: Objective To observe the effect of rat bone marrow mesenchymal stem cells (BMSCs) on the apoptosis of rat peritoneal mesothelium cells (PMCs) induced by high glucose peritoneal dialysis fluid (PDF), and to explore its possible molecular mechanism. Methods The primary BMSCs and PMCs were extracted and identified. Apoptosis of PMCs was induced by high glucose PDF. Cell supernatant from BMSCs after 24 h of culture was collected as the conditioned medium (BMSCs-CM). PMCs were co-cultured with BMSCs by conditioned media or Transwell chambers. PMCs were randomly divided into the control group, the PDF group and the PDF+BMSCs-CM group. The viability of PMCs was measured by CCK-8 in each group. The depolarization of mitochondrial membrane potential was measured by JC-1 method. TUNEL staining was used to detect cell apoptosis. Western blot assay was used to detect the expression levels of apoptosis related proteins B-cell lymphoma-2 (Bcl-2), Bcl-2 associated X protein (Bax), Cleaved cysteine aspartase-3 (Cleaved Caspase-3) and pathway related protein serine/threonine protein kinase (Raf), mitogen-activated extracellular signal-regulated kinase (MEK), extracellular-signal regulated protein kinase (ERK) and their phosphorylated proteins in each group. Results Compared with the control group, the proliferative activity and mitochondrial membrane potential of PMCs were decreased in the PDF group, while the apoptosis rate and the ratio of Bax/Bcl-2, Cleaved Caspase-3/Caspase-3, p-Raf/Raf, p-MEK/MEK and p-ERK/ERK were increased (P<0.05). Compared with the PDF group, the proliferative activity and mitochondrial membrane potential of PMCs were increased in the PDF+BMSCs-CM group, while the apoptosis rate and the ratio of Bax/Bcl-2, Cleaved Caspase-3/Caspase-3, p-Raf/Raf, p-MEK/MEK and p-ERK/ERK were decreased (P<0.05). Conclusion BMSCs can reduce the apoptosis of PMCs induced by high glucose PDF, and its mechanism maybe related to inhibiting the activation of Raf/MEK/ERK signaling pathway.
Key words: peritoneal dialysis; apoptosis; bone marrow mesenchymal stem cells; peritoneal mesothelial cells
腹膜透析(peritoneal dialysis,PD)的長期實施會導(dǎo)致腹膜結(jié)構(gòu)損傷及功能進行性惡化。腹膜損傷以腹膜間皮細(xì)胞(peritoneal mesothelial cells,PMCs)的凋亡脫落為主要特征[1-2]。研究顯示,腹透液(peritoneal dialysis fluid,PDF)中高濃度葡萄糖及其降解產(chǎn)物是導(dǎo)致PMCs凋亡的關(guān)鍵因素,可引起PMCs細(xì)胞膜損傷、線粒體功能障礙,發(fā)生氧化應(yīng)激和炎癥反應(yīng);PMCs大量凋亡又啟動腹膜結(jié)構(gòu)重塑,引發(fā)超濾衰竭[3]。因此,抑制PMCs凋亡對維持長程PD具有重要意義。間充質(zhì)干細(xì)胞(mesenchymal stem cell,MSCs)因其強大的免疫調(diào)節(jié)和再生特性而被廣泛應(yīng)用于細(xì)胞治療[4-5]。研究表明,與骨髓間充質(zhì)干細(xì)胞(bone marrow mesenchymal stromal stem cells,BMSCs)共培養(yǎng)24 h能明顯改善高糖培養(yǎng)基誘導(dǎo)的小鼠足細(xì)胞凋亡[6]。BMSCs可通過抑制損傷細(xì)胞中細(xì)胞外信號調(diào)節(jié)激酶(extracellular-signalregulated protein kinase,ERK)及磷脂酰肌醇3激酶(phosphatidylinositol-3-kinase,PI3K)/蛋白激酶B(protein kinase B,AKT)的磷酸化,促進受損細(xì)胞的存活和再生[7]。然而,BMSCs對PDF環(huán)境下的PMCs的保護機制尚不明確。本實驗以大鼠原代PMCs及BMSCs作為研究對象,探討B(tài)MSCs對PDF誘導(dǎo)的PMCs凋亡的影響及可能作用機制,以期為保護腹膜組織提供新的思路。
1 材料與方法
1.1 實驗動物 SPF級雄性Sprague-Dawley(SD)大鼠20只,4周齡,體質(zhì)量100~150 g,購自濟南朋悅實驗動物繁育有限公司,動物生產(chǎn)許可證號:SCXK(魯)2022-0006。
1.2 主要試劑與儀器 4.25%葡萄糖PDF購自廣州百特醫(yī)療用品有限公司(國藥準(zhǔn)字H44025216,規(guī)格:2 L/袋);DMEM-F12培養(yǎng)液、胎牛血清和胰蛋白酶-EDTA(0.25%)購自美國Gibco公司;大鼠BMSCs成骨誘導(dǎo)分化試劑盒和成脂誘導(dǎo)分化試劑盒購自賽業(yè)生物科技有限公司;青霉素-鏈霉素溶液、ECL顯影液、CCK-8試劑購自白鯊生物科技有限公司;RIPA裂解緩沖液購自美國Thermo Fisher Scientific公司;4%~20%預(yù)制膠購自南京艾思易生物科技有限公司;JC-1線粒體膜電位檢測試劑盒、TUNEL細(xì)胞凋亡檢測試劑盒、抗熒光淬滅劑(含DAPI)、BCA蛋白檢測試劑盒、蛋白酶和磷酸酶抑制劑購自上海碧云天生物技術(shù)有限公司;兔抗B細(xì)胞淋巴瘤-2(Bcl-2)、兔抗Bcl-2相關(guān)X蛋白(Bax)抗體購自艾比瑪特生物醫(yī)藥(上海)有限公司;鼠抗β-肌動蛋白(β-actin)、兔抗胱天蛋白酶-3(Caspase-3)、鼠抗磷酸化的細(xì)胞外信號調(diào)節(jié)激酶(p-ERK)、鼠抗ERK、鼠抗絲裂原活化的細(xì)胞外信號調(diào)節(jié)激酶(MEK)、鼠抗p-MEK抗體和鼠抗絲氨酸/蘇氨酸蛋白激酶(Raf)抗體購自美國Santa Cruz Biotechnology公司;山羊抗兔IgG、辣根過氧化物酶標(biāo)記山羊抗鼠IgG購自北京中杉金橋生物技術(shù)有限公司;兔抗p-Raf、鼠抗角蛋白(Pan-Keratin)抗體購自美國Cell Signaling Technology公司;兔抗波形蛋白(vimentin)抗體、Alex Fluor 488 Goat Anti-Mouse IgG(綠色)標(biāo)記二抗、Alex Fluor 594 Goat Anti-Rabbit IgG(紅色)標(biāo)記二抗購自武漢三鷹生物技術(shù)有限公司。HERAcell 150i二氧化碳細(xì)胞培養(yǎng)箱(美國Thermo Fisher Scientific公司);CKX31倒置生物顯微鏡(日本Olympus公司);SMI3000B熒光倒置顯微鏡攝像系統(tǒng)(德國Leica公司);LAS400超靈敏化學(xué)發(fā)光成像儀(美國GE Healthcare Lifescience公司);2300EnSpire酶標(biāo)儀(美國PerkinElmer公司)。
1.3 研究方法
1.3.1 大鼠原代PMCs的分離培養(yǎng)及鑒定 4%異氟烷過量麻醉處死大鼠,開腹后無菌摘離腸系膜,以含1%青霉素-鏈霉素溶液的磷酸鹽緩沖溶液(PBS)漂洗3遍后轉(zhuǎn)移至新的培養(yǎng)皿。在含EDTA的0.25%胰蛋白酶中均勻剪碎組織,搖床消化30 min,加入等體積含10%胎牛血清的DMEM-F12培養(yǎng)液終止消化,以70 μm細(xì)胞濾網(wǎng)過濾,300×g離心5 min,棄去上清液。以含10%胎牛血清+1%青霉素-鏈霉素溶液的DMEM-F12培養(yǎng)液于37 ℃恒溫、5%CO2的細(xì)胞培養(yǎng)箱培養(yǎng)24 h后換液。鏡下觀察PMCs生長情況,采用Pan-Keratin及vimentin免疫熒光雙染色對原代PMCs進行鑒定。取第1~2代細(xì)胞進行實驗。
1.3.2 大鼠原代BMSCs的培養(yǎng)及鑒定 脫頸法處死大鼠,無菌條件下摘取大鼠股骨、脛骨,洗滌并去除所取骨骼上的殘留肌肉、血液,以PBS緩慢沖出骨髓腔中的細(xì)胞,至骨髓腔發(fā)白,將沖出的骨髓細(xì)胞懸液離心重懸,接種到培養(yǎng)皿中,48 h后初次換液,后每2~3 d更換一次培養(yǎng)基,接種后5~7 d細(xì)胞融合達(dá)到70%~80%時傳代培養(yǎng)。通過誘導(dǎo)成骨及成脂分化對大鼠原代BMSCs進行鑒定。取第2~4代細(xì)胞進行后續(xù)實驗。收集培養(yǎng)24 h的BMSCs上清液作為條件培養(yǎng)基(BMSCs-conditioned media,BMSCs-CM)。
1.3.3 細(xì)胞分組 大鼠原代PMCs分為空白對照(CON)組、高糖PDF組和BMSCs處理(PDF+BMSCs-CM)組。PDF的實驗劑量和干預(yù)時間參照本課題組前期研究[8]。CON組加入DMEM-F12培養(yǎng)液,PDF組及PDF+BMSCs-CM處理組加入4.25% PDF干預(yù)24 h。PDF+BMSCs-CM處理組加入BMSCs-CM處理24 h或通過Transwell小室將PMCs與BMSCs共培養(yǎng)24 h,CON組、PDF組更換DMEM-F12培養(yǎng)液。
1.3.4 CCK-8法檢測細(xì)胞增殖活力 將PMCs以每孔1×104個接種至96孔板中,每組設(shè)5個復(fù)孔,分組及給藥劑量參照1.3.3。處理24 h后,各孔加入100 μL含10% CCK-8試劑的培養(yǎng)液,37 ℃孵育2 h,酶標(biāo)儀檢測450 nm波長處光密度(OD)值。細(xì)胞增殖活力(%)=實驗組OD值/空白對照組OD值×100%。
1.3.5 JC-1染色法檢測線粒體膜電位 將PMCs以每孔4×104個接種于12孔板過夜培養(yǎng),分組及給藥劑量參照1.3.3。處理24 h后,以PBS洗滌細(xì)胞2次,每孔加入JC-1染色工作液500 μL,細(xì)胞培養(yǎng)箱中37 ℃孵育20 min。吸棄染色液,用4 ℃預(yù)冷的JC-1染色緩沖液洗滌2次,每孔加500 μL細(xì)胞培養(yǎng)液,熒光顯微鏡下隨機讀取3個視野區(qū),通過紅綠熒光比率(JC-1 aggregates/monomers)反映線粒體膜電位變化。
1.3.6 TUNEL染色檢測細(xì)胞凋亡情況 將PMCs以每孔4×104個接種于12孔板過夜培養(yǎng),分組及給藥劑量參照1.3.3。處理24 h后,PBS洗滌細(xì)胞2~3次,每孔加入4%多聚甲醛500 μL,室溫固定30 min,吸棄固定液以PBS洗滌3次。加入0.2%的Trition X-100通透30 min,PBS洗滌,每孔滴加50 μL TUNEL檢測液,使用圓形塑片使檢測液均勻覆蓋細(xì)胞,37 ℃避光孵育60 min,PBS洗滌,抗熒光淬滅劑封片,熒光顯微鏡下隨機讀取3個視野觀察。凋亡率(%)=TUNEL陽性細(xì)胞數(shù)(紅色熒光)/總細(xì)胞數(shù)(DAPI)×100%。
1.3.7 Western blot檢測相關(guān)蛋白表達(dá) 將PMCs以每孔2×105個接種于6孔板培養(yǎng),CON組加入DMEM-F12培養(yǎng)液,PDF組及PDF+BMSCs-CM組以3% PDF干預(yù)24 h,此后PDF組更換DMEM-F12培養(yǎng)液,PDF+BMSCs-CM組加入Transwell小室,上室為2×105個的BMSCs,下室為PDF干預(yù)后的PMCs,以DMEM-F12培養(yǎng)液共培養(yǎng)。Transwell共培養(yǎng)24 h后,移去小室,PBS洗滌,將每孔中的PMCs在細(xì)胞裂解液(RIPA∶蛋白酶抑制劑∶磷酸酶抑制劑=50∶1∶1)中4 ℃裂解20 min,提取細(xì)胞總蛋白并定量。在恒壓條件下電泳,采用恒流濕轉(zhuǎn)法將蛋白轉(zhuǎn)移至PVDF膜上。用5%牛血清蛋白室溫封閉1 h,分別加入抗Bax、抗Bcl-2、抗Caspase-3、抗ERK1/2、抗p-ERK1/2、抗MEK、抗p-MEK、抗Raf、抗p-Raf和抗β-actin抗體(1∶1 000)在4 ℃下孵育過夜。用TBST溶液洗滌5 min/次×4次,室溫孵育二抗(1∶20 000)1 h。TBST溶液洗滌5 min/次×4次,滴加ECL曝光液顯影,β-actin作為內(nèi)參照,使用Image Lab軟件對獲取的蛋白條帶進行灰度分析。
1.4 統(tǒng)計學(xué)方法 采用SPSS 26.0軟件進行數(shù)據(jù)分析。符合正態(tài)分布的計量資料以[x] ±s表示,多組間比較使用單因素方差分析,組間多重比較采用LSD-t檢驗,以P<0.05為差異有統(tǒng)計學(xué)意義。
2 結(jié)果
2.1 大鼠原代BMSCs與PMCs的培養(yǎng)與鑒定 光鏡下可見BMSCs貼壁生長,融合度大于80%時呈螺旋狀排列。成脂誘導(dǎo)2周后鏡下可見脂滴,成骨誘導(dǎo)3周后鏡下見鈣結(jié)節(jié),符合BMSCs的分化特點,見圖1A—C。光鏡下可見PMCs貼壁生長,呈鋪路石樣,免疫熒光染色顯示vimentin和Pan-Keratin陽性,符合PMCs的標(biāo)記特點,見圖1D、E。
2.2 各組PMCs增殖活力、線粒體膜電位水平及凋亡率比較 與CON組比較,PDF組PMCs增殖活力、線粒體膜電位降低,凋亡率增加(P<0.05);與PDF組比較,PDF+BMSCs-CM組PMCs增殖活力、線粒體膜電位增加,凋亡率降低(P<0.05),見表1,圖2、3。
2.3 各組Bcl-2、Bax、Cleaved Caspase-3蛋白表達(dá)水平比較 與CON組比較,PDF組Bax/Bcl-2比值、Cleaved Caspase-3蛋白表達(dá)水平增加(P<0.05);與PDF組比較,BMSCs干預(yù)后Bax/Bcl-2比值、Cleaved Caspase-3蛋白表達(dá)水平降低(P<0.05),見圖4、表2。
2.4 各組Raf/MEK/ERK信號通路相關(guān)蛋白表達(dá)水平比較 與CON組比較,PDF組p-Raf、p-MEK和p-ERK蛋白表達(dá)水平升高(P<0.05);與PDF組比較,BMSCs干預(yù)后p-Raf、p-MEK和p-ERK蛋白表達(dá)水平降低(P<0.05),見圖5、表3。
3 討論
腹膜由單層間皮細(xì)胞及成纖維細(xì)胞、脂肪細(xì)胞、膠原纖維、神經(jīng)、淋巴管和毛細(xì)血管構(gòu)成的間質(zhì)層組成[9]。PMCs位于腹膜腔表面,是構(gòu)成腹膜抵御外來損傷的第一道屏障,參與水與溶質(zhì)的跨膜轉(zhuǎn)運,在維持腹膜穩(wěn)態(tài)中起重要作用[10]。PD治療過程中,PMCs長期暴露于高糖腹透液,使細(xì)胞凋亡異常增加,細(xì)胞增殖與凋亡失衡,有效細(xì)胞群體數(shù)量減少,細(xì)胞外基質(zhì)在間皮下區(qū)域過度沉積,導(dǎo)致腹膜結(jié)構(gòu)重塑,功能喪失[11]。因此,抑制PMCs過度凋亡和減少PMCs的脫落對維護正常的腹膜結(jié)構(gòu)和功能、延長腹膜透析治療時間具有重要意義。
BMSCs具有抗炎、抗凋亡、調(diào)節(jié)免疫、促進再生等特點,其作用在各領(lǐng)域的基礎(chǔ)和臨床研究中被證實并受到關(guān)注[12-13]。在慢性阻塞性肺?、衿谂R床試驗中發(fā)現(xiàn),自體輸注BMSCs可有效改善患者肺功能,該作用與MSCs的旁分泌功能有關(guān)[14-15]。BMSCs-CM中包含多種生長因子、細(xì)胞因子、補體調(diào)節(jié)因子以及微小核糖核酸(microRNAs,miRNAs)等物質(zhì),這些因子可以刺激腎小管上皮細(xì)胞的再生[16-17]。BMSCs-CM中提取的外泌體(exosome,Exo)通過抑制Akt磷酸化,從而減輕高糖誘導(dǎo)的腎上皮細(xì)胞的凋亡[18],上調(diào)BMSCs-Exo中miR-126-3p的表達(dá),可進一步降低炎癥損傷細(xì)胞中ERK1/2、p38/絲裂原活化蛋白激酶(p38/ mitogen-activated protein kinase,p38/MAPK)的磷酸化水平,增強BMSCs對炎癥誘導(dǎo)的軟骨細(xì)胞凋亡的保護作用[19]。此外,BMSCs還可將自身線粒體轉(zhuǎn)移至受損細(xì)胞,改善受損細(xì)胞線粒體膜電位水平,抑制線粒體介導(dǎo)的凋亡途徑的激活,同時改善組織纖維排列和細(xì)胞外基質(zhì)沉積,促進跟腱愈合[20]。上述研究證明BMSCs具有良好的抗凋亡潛力,且可能與線粒體及MAPK信號通路相關(guān)。因此,本研究關(guān)注BMSCs對PDF誘導(dǎo)的PMCs凋亡的保護作用及機制,采用3%PDF刺激PMCs細(xì)胞凋亡并給予BMSCs-CM進行干預(yù),CCK-8實驗結(jié)果表明,BMSCs-CM能顯著改善3% PDF對PMCs增殖的抑制作用。
線粒體是細(xì)胞物質(zhì)代謝、能量轉(zhuǎn)化的重要場所,同時也介導(dǎo)細(xì)胞凋亡。生理環(huán)境下,線粒體內(nèi)膜上呼吸鏈質(zhì)子轉(zhuǎn)運,形成膜電位,維持膜內(nèi)外的物質(zhì)平衡。高糖環(huán)境下,線粒體膜通透性增加,膜電位耗散,釋放細(xì)胞色素C,啟動Caspase級聯(lián)反應(yīng),細(xì)胞骨架蛋白及DNA裂解,最終細(xì)胞凋亡[21]。本研究采用JC-1熒光探針檢測PMCs線粒體膜電位水平,發(fā)現(xiàn)PDF干預(yù)后PMCs線粒體膜電位下降,BMSCs-CM處理后膜電位有所回升,提示BMSCs-CM改善了PDF誘導(dǎo)的PMCs早期凋亡;TUNEL染色分析檢測DNA斷裂情況顯示,BMSCs-CM處理減輕了PDF誘導(dǎo)的PMCs凋亡,進一步證實了BMSCs對PDF誘導(dǎo)的PMCs凋亡的保護作用。
Bcl-2家族參與線粒體膜電位的調(diào)節(jié),促凋亡蛋白Bax被激活后在線粒體膜上形成多聚體孔洞,使線粒體外膜通透化,而抗凋亡蛋白Bcl-2可以結(jié)合并抑制促凋亡蛋白Bax活性,兩者的失衡引發(fā)Caspase級聯(lián)反應(yīng),激活Caspase-3,啟動細(xì)胞分解凋亡[22]。本研究構(gòu)建Transwell共培養(yǎng)模式以模擬體內(nèi)環(huán)境,發(fā)現(xiàn)與BMSCs共培養(yǎng)后,PMCs中Bax/Bcl-2的比值下降,凋亡相關(guān)Cleaved Caspase-3的蛋白表達(dá)下調(diào),證實了BMSCs通過改善抗凋亡與促凋亡蛋白的失衡,抑制PDF誘導(dǎo)的PMCs細(xì)胞凋亡。
Raf/MEK/ERK是MAPK信號通路的主要分支,不僅介導(dǎo)細(xì)胞增殖和存活,還介導(dǎo)不同類型細(xì)胞的生長停滯和死亡[23]。Raf/MEK/ERK通路介導(dǎo)的生長抑制信號傳導(dǎo)的常見標(biāo)志是ERK1/2的持續(xù)激活,當(dāng)ERK1/2活化高于觸發(fā)細(xì)胞死亡的閾值,將從生長停滯反應(yīng)切換為Caspase依賴性凋亡,抑制MAPK/ERK的激活可改善線粒體碎片化[24-25]。研究證實,高糖可激活ERK相關(guān)信號通路,參與細(xì)胞的損傷進程[26]。在人角質(zhì)形成細(xì)胞和大鼠上皮細(xì)胞的高糖損傷模型中,抑制ERK1/2的激活均有利于減輕細(xì)胞損傷[27-28]。本研究發(fā)現(xiàn),PDF干預(yù)誘導(dǎo)PMCs中Raf/MEK/ERK信號通路廣泛激活,而與BMSCs共培養(yǎng)后PMCs中Raf、MEK和ERK蛋白磷酸化水平被部分抑制,提示BMSCs對PDF誘導(dǎo)的PMCs凋亡的保護作用可能是通過抑制Raf/MEK/ERK通路的過度活化而實現(xiàn)。
綜上所述,大鼠BMSCs對高糖腹透液誘導(dǎo)的PMCs凋亡具有保護作用,其機制可能與抑制Raf/MEK/ERK信號通路活化和線粒體凋亡途徑的激活有關(guān)。本研究為骨髓間充質(zhì)干細(xì)胞的腹膜保護作用提供了實驗依據(jù)。
參考文獻(xiàn)
[1] MASOLA V,BONOMINI M,BORRELLI S,et al. Fibrosis of peritoneal membrane as target of new therapies in peritoneal dialysis[J]. Int J Mol Sci,2022,23(9):4831. doi:10.3390/ijms23094831.
[2] WANG R,GUO T,LI J. Mechanisms of peritoneal mesothelial cells in peritoneal adhesion[J]. Biomolecules,2022,12(10):1498. doi:10.3390/biom12101498.
[3] ROUMELIOTIS S,DOUNOUSI E,SALMAS M,et al. Unfavorable effects of peritoneal dialysis solutions on the peritoneal membrane: the role of oxidative stress [J]. Biomolecules,2020,10(5):768. doi:10.3390/biom10050768.
[4] LOTFY A,ABOQUELLA N M,WANG H. Mesenchymal stromal/stem cell(MSC)-derived exosomes in clinical trials[J]. Stem Cell Res Ther,2023,14(1):66. doi:10.1186/s13287-023-03287-7.
[5] HOANG D M,PHAM P T,BACH T Q,et al. Stem cell-based therapy for human diseases[J]. Signal Transduct Target Ther,2022,7(1):272. doi:10.1038/s41392-022-01134-4.
[6] SUN J,ZHAO F,ZHANG W,et al. BMSCs and miR-124a ameliorated diabetic nephropathy via inhibiting notch signalling pathway[J]. J Cell Mol Med,2018,22(10):4840-4855. doi:10.1111/jcmm.13747.
[7] LIN M,LIU X,ZHENG H,et al. IGF-1 enhances BMSC viability,migration,and anti-apoptosis in myocardial infarction via secreted frizzled-related protein 2 pathway[J]. Stem Cell Res Ther,2020,11(1):22. doi:10.1186/s13287-019-1544-y.
[8] 趙君誼,單云,朱曉琳,等. 黃芪多糖對高糖腹透液誘導(dǎo)HMrSV5細(xì)胞凋亡的影響[J]. 中華中醫(yī)藥學(xué)刊,2020,38(10):113-117,280-281. ZHAO J Y,SHAN Y,ZHU X L,et al. Effect of astragalus polysaccharide on apoptosis of hmrsv5 induced by peritoneal dialysis solution[J]. Chin Arch Tradit Chin Med,2020,38(10):113-117,280-281. doi:10.13193/j.issn.1673-7717.2020.10.026.
[9] TEITELBAUM I. Peritoneal dialysis[J]. N Engl J Med,2021,385(19):1786-1795. doi:10.1056/NEJMra2100152.
[10] HUANG Q,SUN Y,PENG L,et al. Extracellular vesicle-packaged ILK from mesothelial cells promotes fibroblast activation in peritoneal fibrosis[J]. J Extracell Vesicles,2023,12(7):e12334. doi:10.1002/jev2.12334.
[11] HU Q,XIA X,KANG X,et al. A review of physiological and cellular mechanisms underlying fibrotic postoperative adhesion[J]. Int J Biol Sci,2021,17(1):298-306. doi:10.7150/ijbs.54403.
[12] ZHOU T,YUAN Z,WENG J,et al. Challenges and advances in clinical applications of mesenchymal stromal cells[J]. J Hematol Oncol,2021,14(1):24. doi:10.1186/s13045-021-01037-x.
[13] ZHOU L,ZHU H,BAI X,et al. Potential mechanisms and therapeutic targets of mesenchymal stem cell transplantation for ischemic stroke[J]. Stem Cell Res Ther,2022,13(1):195. doi:10.1186/s13287-022-02876-2.
[14] SQUASSONI S D,SEKIYA E J,F(xiàn)ISS E,et al. Autologous infusion of bone marrow and mesenchymal stromal cells in patients with chronic obstructive pulmonary disease: phase I randomized clinical trial[J]. Int J Chron Obstruct Pulmon Dis,2021,16:3561-3574. doi:10.2147/copd.S332613.
[15] CHEN T Y,LIU C H,CHEN T H,et al. Conditioned media of adipose-derived stem cells suppresses sidestream cigarette smoke extract induced cell death and epithelial-mesenchymal transition in lung epithelial cells[J]. Int J Mol Sci,2021,22(21):12069. doi:10.3390/ijms222112069.
[16] BEHZADIFARD M,ABOUTALEB N,DOLATSHAHI M,et al. Neuroprotective effects of conditioned medium of mesenchymal stem cells (MSC-CM) as a therapy for ischemic stroke recovery: a systematic review[J]. Neurochem Res,2023,48(5):1280-1292. doi:10.1007/s11064-022-03848-x.
[17] CALCAT I C S,SANZ-NOGU?S C,O'BRIEN T. When origin matters: properties of mesenchymal stromal cells from different sources for clinical translation in kidney disease[J]. Front Med (Lausanne),2021,8:728496. doi:10.3389/fmed.2021.728496.
[18] WANG H,WANG J,LIU T,et al. Stem cell-derived exosomal MicroRNAs: potential therapies in diabetic kidney disease[J]. Biomed Pharmacother,2023,164:114961. doi:10.1016/j.biopha.2023.114961.
[19] LI S,ST?CKL S,LUKAS C,et al. Curcumin-primed human BMSC-derived extracellular vesicles reverse IL-1β-induced catabolic responses of OA chondrocytes by upregulating miR-126-3p[J]. Stem Cell Res Ther,2021,12(1):252. doi:10.1186/s13287-021-02317-6.
[20] WEI B,JI M,LIN Y,et al. Mitochondrial transfer from bone mesenchymal stem cells protects against tendinopathy both in vitro and in vivo[J]. Stem Cell Res Ther,2023,14(1):104. doi:10.1186/s13287-023-03329-0.
[21] RAMIL-G?MEZ O,L?PEZ-PARDO M,F(xiàn)ERN?NDEZ-RODR?GUEZ J A,et al. Involvement of mitochondrial dysfunction in the inflammatory response in human mesothelial cells from peritoneal dialysis effluent[J]. Antioxidants (Basel),2022,11(11):2184. doi:10.3390/antiox11112184.
[22] GREEN D R. The mitochondrial pathway of apoptosis: part I: MOMP and beyond[J]. Cold Spring Harb Perspect Biol,2022,14(5):a041038. doi:10.1101/cshperspect.a041038.
[23] WU P K,BECKER A,PARK J I. Growth inhibitory signaling of the Raf/MEK/ERK pathway[J]. Int J Mol Sci,2020,21(15):5436. doi:10.3390/ijms21155436.
[24] ZHONG Y,LI M Y,HAN L,et al. Galangin inhibits programmed cell death-ligand 1 expression by suppressing STAT3 and MYC and enhances T cell tumor-killing activity[J]. Phytomedicine,2023,116:154877. doi:10.1016/j.phymed.2023.154877.
[25] KUMARI S,DHAPOLA R,REDDY D H. Apoptosis in Alzheimer's disease: insight into the signaling pathways and therapeutic avenues[J]. Apoptosis,2023,28(7/8):943-957. doi:10.1007/s10495-023-01848-y.
[26] LIU Y,CHEN J,LIANG H,et al. Human umbilical cord-derived mesenchymal stem cells not only ameliorate blood glucose but also protect vascular endothelium from diabetic damage through a paracrine mechanism mediated by MAPK/ERK signaling[J]. Stem Cell Res Ther,2022,13(1):258. doi:10.1186/s13287-022-02927-8.
[27] LANG J,YANG C,LIU L,et al. High glucose activates ERK1/2 to stabilize AP1 and increase MMP9 expression in diabetic foot ulcers[J]. Exp Cell Res,2021,403(1):112550. doi:10.1016/j.yexcr.2021.112550.
[28] PAN L,ZHANG X,GAO Q. Histatin-1 alleviates high-glucose injury to skin keratinocytes through MAPK signaling pathway[J]. J Cosmet Dermatol,2022,21(11):6281-6291. doi:10.1111/jocd.15235.