摘" 要:存在于水生態(tài)系統(tǒng)和陸地生態(tài)系統(tǒng)中的藻類可以通過各種自然和人為的過程溢出到大氣中,形成空氣中的藻類。隨著水體和陸地富營養(yǎng)化、空氣污染、氣候變暖和人造夜間燈光等各種因素的加劇,各因素之間交互作用將可能進(jìn)一步刺激空氣中藻類及其毒素的繁殖和擴(kuò)散,最終形成“空氣富營養(yǎng)化”級聯(lián)效應(yīng).并且這一新興級聯(lián)效應(yīng)將可能會對人類健康和生態(tài)系統(tǒng)構(gòu)成嚴(yán)重威脅.
關(guān)鍵詞:級聯(lián)效應(yīng);空氣富營養(yǎng)化;空氣中的藻類;藻毒素
中圖分類號:X-1""""" 文獻(xiàn)標(biāo)志碼:A文章編號:1000-2367(2024)06-0148-05
隨著氣候變化和人類活動的不斷加劇,全球生態(tài)系統(tǒng)正面臨著多重生態(tài)危機(jī).更令人擔(dān)憂的是各種危機(jī)往往會相互影響并產(chǎn)生級聯(lián)效應(yīng),進(jìn)而對全球生態(tài)系統(tǒng)造成難以預(yù)測的后果.比如,極端炎熱干燥的氣候促使非洲內(nèi)陸水域中有害藍(lán)藻過度生長,藍(lán)藻的肆意繁殖將產(chǎn)生更多藻毒素,最終導(dǎo)致大量非洲大象因飲用含高濃度藍(lán)藻毒素的水而中毒死亡[1].關(guān)于非洲大象大量死亡這一離奇案例,歸因于水體富營養(yǎng)化(aquatic eutrophication)的級聯(lián)效應(yīng),這也為新興的與水體富營養(yǎng)化相關(guān)的級聯(lián)效應(yīng)研究提供了有力線索.團(tuán)隊前期研究指出,水體富營養(yǎng)化可能與其他因素相互作用,觸發(fā)一種新的級聯(lián)效應(yīng)——“空氣富營養(yǎng)化(air eutrophication)”效應(yīng)[2].這一新興級聯(lián)效應(yīng)不僅影響全球生態(tài)系統(tǒng),更重要的是會威脅公眾健康,為人類實現(xiàn)更美好、更可持續(xù)未來的藍(lán)圖帶來更大的挑戰(zhàn).
1" 空氣中的藻類及其毒素對生態(tài)環(huán)境和人體健康構(gòu)成潛在威脅
空氣中的藻類(airborne algae)是由陸地和水體中的藻類溢出到大氣中,并能隨氣團(tuán)遠(yuǎn)距離傳播的一種生物氣溶膠[3].與大氣中的細(xì)菌或病毒相比,空氣中的藻類是空氣生物學(xué)中研究最少的生物[4].研究表明,空氣中的藻類不僅可以通過人體呼吸藏匿于鼻孔和肺部[5],還能將重金屬、殺蟲劑等其他毒素帶入人體,嚴(yán)重威脅人類健康[6-7].同時,空氣中的藻類還參與冰核的形成,并可通過吸收和散射太陽輻射來促進(jìn)地球的輻射預(yù)算[8].此外,存在于空氣中的藻毒素也可能會誘發(fā)人體多種健康疾?。?-10].因此,空氣中的藻類及其毒素對人類健康的威脅和全球氣候變化的影響不容忽視[11].然而,迄今為止我們對空氣中藻類及其毒素的了解仍然十分有限.
收稿日期:2024-06-19;修回日期:2024-06-30.
基金項目:云南省科學(xué)技術(shù)廳重點基金(202401AS070119);云南省科學(xué)技術(shù)廳科技計劃項目(202103AC100001).
作者簡介:王海軍(1978-),男,江西玉山人,云南大學(xué)研究員,研究方向為水域生態(tài)學(xué),E-mail:wanghaijun@ynu,edu.cn.
通信作者:劉瑩,E-mail:ly@ynu.edu.cn.
引用本文:王海軍,孫彥峰,劉瑩,等.新興的生態(tài)危機(jī)——“空氣富營養(yǎng)化”[J].河南師范大學(xué)學(xué)報(自然科學(xué)版),2024,52(6):148-152.(Wang Haijun,Sun Yanfeng,Liu Ying,et al.The emerging ecological crisis:\"air eutrophication\"[J].Journal of Henan Normal University(Natural Science Edition),2024,52(6):148-152.DOI:10.16366/j.cnki.1000-2367.2024.06.19.0002.)
2" “空氣富營養(yǎng)化”的顯著表征是空氣中藻類的發(fā)展
富營養(yǎng)化最初是指水生態(tài)系統(tǒng)中營養(yǎng)物質(zhì)的過度富集,引起水生生物特別是浮游藻類增加和水環(huán)境理化性質(zhì)改變的過程[12].事實上,這是一個非常緩慢的自然過程,但隨著人類活動的影響,這一過程將大大加速[13-14].目前,富營養(yǎng)化已經(jīng)成為一個全球性的話題,并且關(guān)于富營養(yǎng)化的研究不僅局限于水生態(tài)系統(tǒng),還延伸到了陸地環(huán)境[15].然而,關(guān)于富營養(yǎng)化在空氣中的研究關(guān)注較少.因此,本團(tuán)隊在經(jīng)典“水體富營養(yǎng)化”概念基礎(chǔ)上,首次提出不斷加劇的多重生態(tài)危機(jī)之間交互作用,可能會促進(jìn)空氣中藻類的生長和藻類毒素的釋放,從而引發(fā)與空氣中藻類相關(guān)的新興級聯(lián)效應(yīng)和危機(jī)——“空氣富營養(yǎng)化”(如圖1所示)[2].具體而言,隨著水生和陸地生態(tài)系統(tǒng)富營養(yǎng)化、空氣污染、氣候變暖和人造夜間燈光等生態(tài)危機(jī)的日益凸顯,可能會為空氣中藻類(甚至包括其他微生物)提供豐富的物種庫、充足的營養(yǎng)源、良好的傳播載體、適宜的生長溫度和光照,從而導(dǎo)致空氣中藻類(甚至包括其他微生物)及其毒素傳播風(fēng)險急劇上升,最終造成大氣的清潔度和安全質(zhì)量下降、人類的生命和健康受到威脅,我們將此現(xiàn)象定義為“空氣富營養(yǎng)化”.
3" 影響“空氣富營養(yǎng)化”發(fā)生的幾種關(guān)鍵驅(qū)動因素
3.1" 水體和陸地生態(tài)系統(tǒng)富營養(yǎng)化是空氣中藻類來源的放大器
由于空氣中的藻類主要來自水體和陸地生態(tài)系統(tǒng),因此這些系統(tǒng)中的藻類越多,也就意味著可能有更多的藻類溢出到大氣中[16].水體富營養(yǎng)化是全球各類水體面臨的一個重大環(huán)境問題[17-18].越來越多的證據(jù)表明,水體富營養(yǎng)化呈上升趨勢,過量的營養(yǎng)物質(zhì)會刺激藻類大量繁殖,嚴(yán)重時可形成藍(lán)藻水華[19-21].尤其近幾十年來,藻華的多樣性、頻率、規(guī)模和地理范圍在全球范圍內(nèi)都在增加[22].水生態(tài)系統(tǒng)中藻類大量繁殖為空氣中的藻類提供了充足的種源.此外,氣候變化、氮沉降和施肥效應(yīng)也增加了陸地生態(tài)系統(tǒng)富營養(yǎng)化的風(fēng)險[23-24].陸地生態(tài)系統(tǒng)的富營養(yǎng)化可能會為陸生藻類提供豐富的營養(yǎng)支持,進(jìn)一步導(dǎo)致陸地藻類大量繁殖,而陸地藻類的大量繁殖也會大大增加空氣中藻類的來源.因此,隨著水體和陸地生態(tài)系統(tǒng)富營養(yǎng)化的加劇,空氣中的藻類物種來源也越來越豐富.
3.2" 空氣污染為空氣中藻類提供了良好的傳播基質(zhì)和營養(yǎng)源
空氣污染作為一種外部營養(yǎng)源可能會促進(jìn)空氣中藻類的生長.隨著全球人口密度的增加,空氣污染已經(jīng)成為一個日漸顯著的環(huán)境問題[25].作為空氣污染的主要污染物,大氣顆粒物主要由無機(jī)離子、含碳化合物和礦物粉塵組成[26].這些懸浮在大氣中的顆粒物不僅是空氣中藻類良好的載體,而且還是空氣中藻類傳播的優(yōu)良媒介.同時,野火產(chǎn)生的氣溶膠沉降可促進(jìn)浮游藻類大量繁殖[27],火山熔巖攜帶的金屬和營養(yǎng)物質(zhì)也可刺激浮游藻類生長[28].并且,受人類活動影響,大多數(shù)城市的二氧化氮、氨和活性揮發(fā)性有機(jī)化合物的排放量顯著增加[29].特別是農(nóng)業(yè)施肥和化石燃料燃燒向大氣排放的氮比陸地生態(tài)系統(tǒng)所有自然過程產(chǎn)生的氮還要多[30].因此,空氣污染將可能為空氣中的藻類提供充足的附生載體和營養(yǎng)基質(zhì),有助于空氣中藻類更好地生存和繁殖.
3.3" 氣候干暖化將會促進(jìn)空氣中藻類的生長和傳播
空氣中的藻類對環(huán)境條件具有較強(qiáng)適應(yīng)力,從而顯現(xiàn)出強(qiáng)大的定殖能力[31].近年來地球氣候正經(jīng)歷著以全球暖化為基本特征的顯著變化,對生態(tài)系統(tǒng)的影響正在不斷加?。?2].氣候變暖不僅會促進(jìn)水生態(tài)系統(tǒng)中浮游藻類(尤其是產(chǎn)毒藻類)的生長和繁殖[33-34],還會促使水生態(tài)系統(tǒng)中藍(lán)藻的細(xì)胞尺寸趨于小型化[35].尺寸較小的藻類更容易被霧化并排放到大氣中,并且粒徑越小的藻類在大氣中傳播的距離會越遠(yuǎn)[6].另外,氣候變化將加劇極端天氣事件的發(fā)生,例如持續(xù)的干旱.然而,空氣中的藻類在干燥條件下具有較強(qiáng)的耐高溫能力[36]和良好的抗紫外線能力[37].因此,氣候干暖化可能會促進(jìn)更多的藻類擴(kuò)散到大氣中,并為空氣中藻類在大氣層的遠(yuǎn)距離遷移提供有利環(huán)境.
3.4" 人造夜間燈光為空氣中藻類生長供給了額外光源
光是初級生產(chǎn)者進(jìn)行光合作用及其相關(guān)過程的關(guān)鍵因素.城市化進(jìn)程的加快促使人造夜間燈光的空間迅速擴(kuò)大,2012年至2016年間,地球的人造夜間燈光戶外面積每年增長2.2%[38].人造夜間燈光已被證明會擾亂人類和其他動物的睡眠[39],造成海洋生態(tài)系統(tǒng)的光污染[40],改變?nèi)~片的生理或化學(xué)性質(zhì)[41],影響附生藻類的群落組成[42].并且,不同波長和強(qiáng)度的人造夜間燈光對藻類的生物量和多樣性有不同的影響,尤其紅光和綠光能增加藻類的生物量[43].因此,人造夜間燈光也將為空氣中藻類的生長提供額外的光源,以促進(jìn)其光合作用、改變其物種多樣性和生物量.
4" 結(jié)論和展望
氣候變化和人類活動對生態(tài)系統(tǒng)產(chǎn)生的影響正在引發(fā)一系列的級聯(lián)效應(yīng).為實現(xiàn)人與自然的和諧共存,我們必須更深入地理解大自然中發(fā)生的各種復(fù)雜關(guān)系,主動掌握應(yīng)對多種風(fēng)險的策略.因此,“空氣富營養(yǎng)化”作為一種新興級聯(lián)效應(yīng)和新領(lǐng)域,亟須多學(xué)科的合力關(guān)注和深入探究.
作者貢獻(xiàn):王海軍與孫彥峰為共同第一作者.
參" 考nbsp; 文" 獻(xiàn)
[1] ""WANG H J,XU C,LIU Y,et al.From unusual suspect to serial killer:Cyanotoxins boosted by climate change may jeopardize megafauna[J].The Innovation,2021,2(2):100092.
[2]SUN Y F,GUO Y M,XU C,et al.Will \"air eutrophication\" increase the risk of ecological threat to public health?[J].Environmental Science amp; Technology,2023,57(29):10512-10520.
[3]FROEHLICH-NOWOISKY J,KAMPF C J,WEBER B,et al.Bioaerosols in the Earth system:Climate,health,and ecosystem interactions[J].Atmospheric Research,2016,182:346-376.
[4]WIS′NIEWSKA K,LEWANDOWSKA A U,S′LIWIN′SKA-WILCZEWSKA S.The importance of cyanobacteria and microalgae present in aerosols to human health and the environment-review study[J].Environment International,2019,131:104964.
[5]FACCIPONTE D N,BOUGH M W,SEIDLER D,et al.Identifying aerosolized cyanobacteria in the human respiratory tract:a proposed mechanism for cyanotoxin-associated diseases[J].The Science of the Total Environment,2018,645:1003-1013.
[6]LEWANDOWSKA A U,S′LIWIN′SKA-WILCZEWSKA S,WOZ′NICZKA D.Identification of cyanobacteria and microalgae in aerosols of various sizes in the air over the Southern Baltic Sea[J].Marine Pollution Bulletin,2017,125(1/2):30-38.
[7]SINGH H W,WADE R M,SHERWOOD A R.Diurnal patterns of airborne algae in the Hawaiian Islands:a preliminary study[J].Aerobiologia,2018,34(3):363-373.
[8]DESPRES V R,HUFFMAN J A,BURROW S M,et al.Primary biological aerosol particles in the atmosphere:A review[J].Tellus B:Chemical and Physical Meteorology,2012,64:15598.
[9]OLSON N E,COOKE M E,SHI J H,et al.Harmful algal bloom toxins in aerosol generated from inland lake water[J].Environmental Science amp; Technology,2020,54(8):4769-4780.
[10]WIS′NIEWSKA K,S′LIWIN′SKA-WILCZEWSKA S,SAVOIE M,et al.Quantitative and qualitative variability of airborne cyanobacteria and microalgae and their toxins in the coastal zone of the Baltic Sea[J].The Science of the Total Environment,2022,826:154152.
[11]ROGERS M M,STANLEY R K.Airborne algae:a rising public health risk[J].Environmental Science amp; Technology,2023,57(14):5501-5503.
[12]KHAN F A,ALI ANSARI A.Eutrophication:an ecological vision[J].The Botanical Review,2005,71(4):449-482.
[13]JUPP A R,BEIJER S,NARAIN G C,et al.Phosphorus recovery and recycling-closing the loop[J].Chemical Society Reviews,2021,50(1):87-101.
[14]STEVENS C J.Nitrogen in the environment[J].Science,2019,363(6427):578-580.
[15]KOBETIOV K,ERNY′ R.Terrestrial eutrophication of building materials and buildings:an emerging topic in environmental studies[J].The Science of the Total Environment,2019,689:1316-1328.
[16]MAY N W,OLSON N E,PANAS M,et al.Aerosol emissions from great lakes harmful algal blooms[J].Environmental Science amp; Technology,2018,52(2):397-405.
[17]IBEZ C,PEUELAS J.Changing nutrients,changing rivers[J].Science,2019,365(6454):637-638.
[18]ZHAO X,LIU Y,GUO Y M,et al.Meta-analysis reveals cyanotoxins risk across African inland waters[J].Journal of Hazardous Materials,2023,451:131160.
[19]HO J C,MICHALAK A M,PAHLEVAN N.Widespread global increase in intense lake phytoplankton blooms since the 1980s[J].Nature,2019,574(7780):667-670.
[20]HUISMAN J,CODD G A,PAERL H W,et al.Cyanobacterial blooms[J].Nature Reviews Microbiology,2018,16(8):471-483.
[21]WURTSBAUGH W,PAERL H,DODDS W.Nutrients,eutrophication and harmful algal blooms along the freshwater to marine continuum[J].Wiley Interdisciplinary Reviews Water,2019,6(5):e1373.
[22]SVIREV Z,LALIC′ D,BOJADIJA SAVIC′ G,et al.Global geographical and historical overview of cyanotoxin distribution and cyanobacterial poisonings[J].Archives of Toxicology,2019,93(9):2429-2481.
[23]SERROUYA R,DICKIE M,LAMB C,et al.Trophic consequences of terrestrial eutrophication for a threatened ungulate[J].Proceedings Biological Sciences,2021,288(1943):20202811.
[24]ZHU Z C,PIAO S L,MYNENI R B,et al.Greening of the Earth and its drivers[J].Nature Climate Change,2016,6:791-795.
[25]CHEN J D,WANG B,HUANG S,et al.The influence of increased population density in China on air pollution[J].The Science of the Total Environment,2020,735:139456.
[26]MCDUFFIE E E,MARTIN R V,SPADARO J V,et al.Source sector and fuel contributions to ambient PM2.5 and attributable mortality across multiple spatial scales[J].Nature Communications,2021,12(1):3594.
[27]TANG W Y,LLORT J,WEIS J,et al.Widespread phytoplankton blooms triggered by 2019-2020 Australian wildfires[J].Nature,2021,597(7876):370-375.
[28]WILSON S T,HAWCO N J,ARMBRUST E V,et al.Kīlauea lava fuels phytoplankton bloom in the North Pacific Ocean[J].Science,2019,365(6457):1040-1044.
[29]VOHRA K,MARAIS E A,BLOSS W J,et al.Rapid rise in premature mortality due to anthropogenic air pollution in fast-growing tropical cities from 2005 to 2018[J].Science Advances,2022,8(14):eabm4435.
[30]GALLOWAY J N,COWLING E B.Reactive nitrogen and the world:200 years of change[J].Ambio,2002,31(2):64-71.
[31]WIS′NIEWSKA K,S′LIWIN′SKA-WILCZEWSKA S,LEWANDOWSKA A,et al.The effect of abiotic factors on abundance and photosynthetic performance of airborne cyanobacteria and microalgae isolated from the southern Baltic Sea Region[J].Cells,2021,10(1):103.
[32]HOEGH-GULDBERG O,JACOB D,TAYLOR M,et al.The human imperative of stabilizing global climate change at 1.5 ℃[J].Science,2019,365(6459):eaaw6974.
[33]GRTNER G,STOYNEVA-GRTNER M,UZUNOV B.Algal toxic compounds and their aeroterrestrial,airborne and other extremophilic producers with attention to soil and plant contamination:a review[J].Toxins,2021,13(5):322.
[34]MICHALAK A M,ANDERSON E J,BELETSKY D,et al.Record-setting algal bloom in Lake Erie caused by agricultural and meteorological trends consistent with expected future conditions[J].Proceedings of the National Academy of Sciences,2013,110(16):6448-6452.
[35]FLOMBAUM P,GALLEGOS J L,GORDILLO R A,et al.Present and future global distributions of the marine Cyanobacteria Prochlorococcus and Synechococcus[J].Proceedings of the National Academy of Sciences ,2013,110(24):9824-9829.
[36]NAKAJIMA M,MASUEDA D,HOKOI S,et al.Measurement of airborne algal mortality rates due to heat shock treatment[J].Building and Environment,2020,183:107123.
[37]CHIU C S,CHIU P H,YONG T C,et al.Mechanisms protect airborne green microalgae during long distance dispersal[J].Scientific Reports,2020,10(1):13984.
[38]KYBA C C M,KUESTER T,SNCHEZ DE MIGUEL A,et al.Artificially lit surface of Earth at night increasing in radiance and extent[J].Science Advances,2017,3(11):e1701528.
[39]AULSEBROOK A E,CONNELLY F,JOHNSSON R D,et al.White and amber light at night disrupt sleep physiology in birds[J].Current Biology,2020,30(18):3657-3663.
[40]SMYTH T J,WRIGHT A E,MCKEE D,et al.A global atlas of artificial light at night under the sea[J].Elem Sci Anth,2021,9(1):00049.
[41]SEGRESTIN J,MONDY N,BOISSELET C,et al.Effects of artificial light at night on the leaf functional traits of freshwater plants[J].Freshwater Biology,2021,66(12),2264-2271.
[42]GRUBISIC M,SINGER G,BRUNO M C,et al.A pigment composition analysis reveals community changes in pre-established stream periphyton under low-level artificial light at night[J].Limnologica,2018,69(4):55-58.
[43]DIAMANTOPOULOU C,CHRISTOFOROU E,DOMINONI D M,et al.Wavelength-dependent effects of artificial light at night on phytoplankton growth and community structure[J].Proceedings Biological Sciences,2021,288(1953):20210525.
The emerging ecological crisis:\"air eutrophication\"
Wang Haijun1, Sun Yanfeng1, Liu Ying1, Xu Chi2
(1. School of Ecology and Environmental Science; Institute for Ecological Research and Pollution Control of Plateau Lakes, Yunnan University, Kunming 650500, China; 2. School of Life Sciences, Nanjing University, Nanjing 210023, China)
Abstract: The presence of algae in aquatic and terrestrial ecosystems can spill over into the atmosphere through a variety of natural and anthropogenic processes to form airborne algae. As factors such as aquatic and terrestrial eutrophication, air contamination, climate warming and artificial light at night intensify increase, the interactions between these factors may further stimulate the growth and spread of airborne algae and their toxins, ultimately leading to a cascading effect of \"air eutrophication\". And this new emerging cascading effect will likely pose a serious threat to human health and ecosystems.
Keywords: cascading effect; air eutrophication; airborne algae; algal toxin
[責(zé)任編校" 劉洋" 楊浦]