摘 要:在肉與肉制品加工、貯藏等過程中,氧化與微生物是導(dǎo)致肉與肉制品腐敗的首要因素。由于殼聚糖良好的抗菌活性和抗氧化活性,其在提高肉與肉制品品質(zhì)與延長貨架期中得以廣泛應(yīng)用。雖然目前已有較多關(guān)于殼聚糖在肉與肉制品中應(yīng)用的研究,但其抑菌機(jī)制仍需進(jìn)一步明確,同時缺乏殼聚糖在肉與肉制品中的應(yīng)用方式、影響因素及與其他技術(shù)協(xié)同作用的系統(tǒng)總結(jié)。因此,本文首先概括國內(nèi)外殼聚糖在肉類產(chǎn)業(yè)中的應(yīng)用研究進(jìn)展,然后總結(jié)殼聚糖在肉與肉制品中的保鮮機(jī)制和影響因素,最后分析和總結(jié)能與殼聚糖起協(xié)同作用的相關(guān)技術(shù),旨在為殼聚糖在肉與肉制品中應(yīng)用和研究提供新思路。
關(guān)鍵詞:殼聚糖;抗菌活性;抗氧化活性;肉與肉制品
Recent Advances in the Application of Chitosan in the Preservation of Meat and Meat Products
YAN Xiaoying, LIANG Rongrong, ZHANG Yimin, MAO Yanwei*
(College of Food Science and Engineering, Shandong Agricultural University, Tai’an 271018, China)
Abstract: The decay of meat and meat products is primarily attributed to oxidation and microbial contamination during processing and storage. Chitosan, renowned for its remarkable antibacterial and antioxidant properties, has found wide applications in enhancing meat and meat product quality as well as extending their shelf life. Despite this, the antibacterial mechanism of chitosan remains unclear, and there is a dearth of systematic and comprehensive summaries regarding its application in meat and meat products as well as influential factors thereof and its potential synergistic effects with other preservation techniques. Consequently, in order to provide new ideas for the application and research of chitosan in meat and meat products, this article reviews recent progress in the application of chitosan in the meat industry, elucidates its preservation mechanism, systematically analyzes the factors that affect its efficacy in meat and meat products, and summarizes the preservation techniques that can synergistically enhance the efficacy of chitosan.
Keywords: chitosan; antibacterial activity; antioxidant activity; meat and meat products
DOI:10.7506/rlyj1001-8123-20240417-079
中圖分類號:TS251.5" " " " " " " " " " " " " " " " " " " 文獻(xiàn)標(biāo)志碼:A 文章編號:1001-8123(2024)05-0071-06
引文格式:
閆曉穎, 梁榮蓉, 張一敏, 等. 殼聚糖在肉與肉制品保鮮中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2024, 38(5): 71-76. DOI:10.7506/rlyj1001-8123-20240417-079." " http://www.rlyj.net.cn
YAN Xiaoying, LIANG Rongrong, ZHANG Yimin, et al. Recent advances in the application of chitosan in the preservation of meat and meat products[J]. Meat Research, 2024, 38(5): 71-76. (in Chinese with English abstract) DOI:10.7506/rlyj1001-8123-20240417-079." " http://www.rlyj.net.cn
殼聚糖是由D-葡萄糖胺和N-乙?;?D-葡萄糖胺組成的線性多糖,其中D-葡萄糖胺和N-乙?;?D-葡萄糖胺之間通過β-1,4糖苷鍵連接(圖1)[1]。提取殼聚糖的原料來源廣泛,資源豐富,主要包括蝦蟹殼、植物、微生物和昆蟲[2-4]。殼聚糖具有良好的生物相容性、無毒性及較好的成膜性等特點,還能夠有效抑制肉與肉制品氧化及微生物腐敗[5],在肉類產(chǎn)業(yè)中得以廣泛應(yīng)用[6-8]。
然而,殼聚糖在肉與肉制品保鮮中的確切抑菌機(jī)制仍需進(jìn)一步明確。同時,雖然目前已有諸多關(guān)于殼聚糖在肉與肉制品保鮮中應(yīng)用的研究,但仍缺乏對殼聚糖在肉與肉制品保鮮中的應(yīng)用方式、應(yīng)用效果、影響因素及與其他技術(shù)協(xié)同作用的系統(tǒng)總結(jié)。因此,本文綜述殼聚糖在肉類產(chǎn)業(yè)中的應(yīng)用研究進(jìn)展,殼聚糖在肉與肉制品中的保鮮機(jī)制、影響因素及能與殼聚糖起協(xié)同作用的相關(guān)技術(shù)。
1 殼聚糖在肉與肉制品中的應(yīng)用方式及影響因素
1.1 殼聚糖在肉與肉制品中的應(yīng)用方式
殼聚糖的作用效果受使用方式和添加量影響,為了使殼聚糖在肉與肉制品中發(fā)揮最大作用,應(yīng)選擇合適的使用方式和添加量。近年來,殼聚糖主要通過以下2 種方式應(yīng)用于肉與肉制品保鮮:1)制備殼聚糖復(fù)合薄膜;2)制備殼聚糖復(fù)合涂層。
殼聚糖復(fù)合涂層和殼聚糖復(fù)合薄膜水蒸氣滲透率低、機(jī)械強(qiáng)度差,在肉與肉制品保鮮中的應(yīng)用受到限制,因而通常將殼聚糖與其他物質(zhì)復(fù)合,制成殼聚糖復(fù)合薄膜或復(fù)合涂層來改善殼聚糖在肉與肉制品中的應(yīng)用性能[9]。
殼聚糖復(fù)合薄膜的制備方式主要有2 種:溶液流延法和層層擠出法[10]。由于溶液流延法操作簡單而被廣泛應(yīng)用,其主要包括以下6 個步驟:1)使用酸性溶液(一般為醋酸溶液)溶解殼聚糖;2)根據(jù)不同的體積比或質(zhì)量比與其他物質(zhì)混合;3)攪拌獲得均勻、黏稠溶液;
4)通過過濾、離心和超聲等方式除去溶液中殘留的氣泡和不溶性顆粒;5)將溶液均勻平鋪于干燥、潔凈的平板;6)干燥冷卻后將薄膜剝離平板[11-12]。Siripatrawan等[13]
將綠茶提取物與殼聚糖混合制成綠茶提取物-殼聚糖混合薄膜,結(jié)果表明,綠茶提取物的加入可有效改善殼聚糖薄膜的拉伸強(qiáng)度和斷裂伸長率等機(jī)械性能。此外,將果膠與殼聚糖混合制成果膠-殼聚糖復(fù)合薄膜可有效改善殼聚糖薄膜的透明度和機(jī)械性能等[10]。含有葵花籽油的殼聚糖薄膜能夠有效減緩豬肉漢堡高鐵肌紅蛋白含量的增加,同時抑制漢堡中微生物的生長[14]。將均勻、黏稠的殼聚糖復(fù)合溶液直接涂在肉類等食品表面可以形成殼聚糖復(fù)合涂層[15-17]。Zheng Kaixi等[18]研究表明,含有牛至精油的殼聚糖涂層能夠顯著抑制冷藏雞胸肉中微生物的生長,同時抑制其脂質(zhì)氧化和蛋白質(zhì)氧化。
1.2 殼聚糖在肉制品中應(yīng)用的影響因素
殼聚糖的應(yīng)用效果受到很多因素的影響,肉與肉制品表面微生物的類型和細(xì)胞生長階段會影響殼聚糖的應(yīng)用效果,殼聚糖的脫乙酰度、分子質(zhì)量及濃度等也均會對殼聚糖的應(yīng)用效果產(chǎn)生顯著影響[19]。
1.2.1 殼聚糖的分子質(zhì)量
殼聚糖分為低分子質(zhì)量(<100 kDa)、中分子質(zhì)量(100~1 000 kDa)和高分子質(zhì)量(>1 000 kDa)3 種類型[20]。研究表明,低分子質(zhì)量殼聚糖更有利于保持肉與肉制品的品質(zhì)。Li Xiaofang等[21]對比研究3、50、1 000 kDa殼聚糖溶液的抑菌活性,結(jié)果表明,50 kDa殼聚糖溶液對大腸桿菌的抑制作用最強(qiáng)。Ye Mu等[22]研究發(fā)現(xiàn),低分子質(zhì)量殼聚糖對于單核細(xì)胞增生李斯特氏菌的抑制作用比中分子質(zhì)量的殼聚糖更強(qiáng)。
1.2.2 殼聚糖的脫乙酰度
殼聚糖可分為低(55%~70%)、中(70%~85%)、高(85%~95%)、超高(95%以上)脫乙酰度4 種類型[23]。在肉與肉制品貯藏保鮮中,所使用殼聚糖的脫乙酰度一般在90%以上,為高脫乙酰度殼聚糖。脫乙酰度高的殼聚糖對微生物的抑制作用較強(qiáng),原因為殼聚糖脫乙酰度越高,所攜帶的正電荷越多[24],溶解度越大,結(jié)晶越少,反應(yīng)活性越強(qiáng)[25](表1)。
含量的增加,有效抑制金黃色葡萄球菌和大腸桿菌的生長 [26]
2 殼聚糖在肉與肉制品應(yīng)用中的保鮮機(jī)制
2.1 殼聚糖的抗菌活性
微生物的腐敗作用是導(dǎo)致肉與肉制品腐敗變質(zhì)的主要因素。導(dǎo)致肉與肉制品腐敗的微生物種類繁多,主要包括假單胞菌屬、腸桿菌、乳酸菌、梭狀芽孢桿菌、不動桿菌、熱殺環(huán)絲菌和希瓦氏菌等[30]。腐敗微生物分解肉類產(chǎn)品中的脂肪、碳水化合物和蛋白質(zhì),導(dǎo)致異味、變色和形成黏液,從而使其喪失可食用性[31]。殼聚糖主要通過4 個途徑產(chǎn)生抗菌活性:1)靜電作用。由于殼聚糖的氨基可以質(zhì)子化,從而使殼聚糖帶正電荷。當(dāng)pH值低于pKa值時,殼聚糖的—NH2基團(tuán)轉(zhuǎn)化為質(zhì)子化
形式—NH3+。革蘭氏陽性菌的細(xì)胞壁含有含磷壁酸的厚肽聚糖層,使得細(xì)胞表面帶有負(fù)電荷;革蘭氏陰性菌的細(xì)胞壁含有脂多糖,使得細(xì)胞表面的負(fù)電荷較多,從而使其對殼聚糖更加敏感。殼聚糖與微生物之間發(fā)生靜電作用,破壞細(xì)胞完整性,引起細(xì)胞內(nèi)容物泄漏,造成酶和核苷酸等成分損失,導(dǎo)致微生物死亡[32-33]。Hao Peiyan等[34]研究表明,姜黃環(huán)糊精接枝殼聚糖水凝膠可通過—NH3+與細(xì)菌表面負(fù)電荷的靜電作用抑制微生物的生長,姜黃環(huán)糊精接枝殼聚糖水凝膠對金黃色葡萄球菌的抑制作用強(qiáng)于大腸桿菌。殼聚糖也可抑制真菌的生長,對殼聚糖敏感的真菌細(xì)胞膜比殼聚糖抗性真菌含有更多的多不飽和脂肪酸,這表明殼聚糖的抑菌效果可能與細(xì)胞膜的流動性密切相關(guān)[35]。2)與微生物DNA的相互作用。低分子質(zhì)量的殼聚糖可以進(jìn)入微生物的細(xì)胞核,通過與微生物DNA分子相互作用抑制微生物增殖[36];Xing Ke等[37]研究油?;?殼聚糖納米顆粒對核酸電泳遷移率的影響,當(dāng)油?;?殼聚糖納米顆粒質(zhì)量濃度達(dá)到1 000 mg/L時,大腸桿菌DNA和RNA的遷移被完全抑制。3)抑制微生物細(xì)胞內(nèi)的代謝酶。利用殼聚糖的螯合作用阻斷微生物的活性中心,從而抑制其生長[38]。4)阻隔作用。高分子質(zhì)量的殼聚糖涂層或薄膜會在肉與肉制品表面形成阻隔層,減少氧氣的傳遞和營養(yǎng)物質(zhì)的吸收,同時阻止代謝產(chǎn)物的排泄,從而抑制微生物的代謝活動[19]。殼聚糖的抑菌機(jī)制如圖2所示。
2.2 殼聚糖的抗氧化活性
在肉類加工過程中,脂質(zhì)氧化和蛋白氧化是引起其品質(zhì)劣變的主要非微生物因素[39-40]。脂質(zhì)氧化和蛋白質(zhì)氧化可導(dǎo)致肉與肉制品營養(yǎng)成分顯著減少和顏色劣變[41-42]。殼聚糖的抗氧化活性主要歸因于其氨基清除自由基的能力,研究發(fā)現(xiàn),殼聚糖不但可以顯著減少蛋白質(zhì)氧化[43],還可以通過螯合作用延緩食品中的脂質(zhì)氧化[44]。除此之外,殼聚糖薄膜可以阻礙肉品與氧氣接觸,減少氧氣的轉(zhuǎn)移,從而使氧化作用減弱[45]。需要指出的是,殼聚糖雖然具有一定的抗氧化活性,但是單獨使用的殼聚糖薄膜或殼聚糖涂層的抗氧化活性較低,應(yīng)用效果較差,因此通常將殼聚糖與其他物質(zhì)混合制成殼聚糖復(fù)合薄膜或復(fù)合涂層來提高其抗氧化活性[46]。
3 強(qiáng)化殼聚糖在肉與肉制品中應(yīng)用效果的技術(shù)
殼聚糖涂層機(jī)械強(qiáng)度差,水蒸氣滲透性低,限制了其在肉與肉制品中的應(yīng)用。因此,其通常與其他保鮮技術(shù)相結(jié)合,從而保證肉的品質(zhì)并延長貨架期[47]。
3.1 與植物精油結(jié)合
精油是從植物中提取的揮發(fā)性芳香油狀液體,具有抗菌、抗氧化等多種生物活性;但植物精油有強(qiáng)烈的風(fēng)味,可能改變?nèi)庵破返母泄倨焚|(zhì)。此外,植物精油不穩(wěn)定,在受熱、光照條件下容易氧化分解[48]。殼聚糖具有一定的控釋能力和黏附性,有利于天然抗菌劑的靶向釋放,延長天然抗菌劑發(fā)揮活性的時間。例如,殼聚糖納米乳液可以將天然抗菌劑包埋在其內(nèi)部,增強(qiáng)天然抗菌劑的抑菌活性和穩(wěn)定性[49],同時可以起到屏障作用,阻止水分流失和氧氣遷移,從而維持肉制品品質(zhì)[50]。因此,利用植物精油和殼聚糖的協(xié)同作用來抑制肉類產(chǎn)品品質(zhì)劣變受到國內(nèi)外學(xué)者的廣泛關(guān)注(表2)。
3.2 與物理方法相結(jié)合
物理方法是肉與肉制品保鮮的常用手段。傳統(tǒng)的熱滅菌是指在不低于121 ℃的濕熱條件下滅活包括孢子在內(nèi)的腐敗微生物,從而延長食品的保質(zhì)期,但是傳統(tǒng)熱滅菌方式嚴(yán)重?fù)p害了食品質(zhì)量和感官品質(zhì)[55]。近年來,超高壓、等離子體技術(shù)和紫外線輻射等非熱滅菌技術(shù)受到國內(nèi)外食品科學(xué)家的共同關(guān)注[56]。將殼聚糖與物理方法相結(jié)合可有效提高肉與肉制品的感官品質(zhì),延長其貨架期(表3)。
3.3 與其他活性物質(zhì)復(fù)合
迄今為止,GB 2760—2014《食品安全國家標(biāo)準(zhǔn) 食品添加劑》已批準(zhǔn)殼聚糖、明膠、海藻酸鈉等物質(zhì)可直接添加在肉類制品中。將殼聚糖與這些物質(zhì)相結(jié)合不僅可以提高殼聚糖涂層的機(jī)械性能,而且可以有效抑制肉與肉制品中腐敗微生物的生長(表4)。
4 結(jié) 語
肉與肉制品營養(yǎng)豐富,在貯藏、加工、運輸和銷售等過程中極易發(fā)生腐敗變質(zhì)。因此,新型肉類保鮮技術(shù)的研發(fā)對于肉類產(chǎn)業(yè)的發(fā)展至關(guān)重要。殼聚糖作為一種生物大分子,具有良好的安全性和成膜性,并且滿足了消費者希望使用天然無毒物質(zhì)代替化學(xué)物質(zhì)的需求,在肉與肉制品的保鮮中有巨大的應(yīng)用潛力。
殼聚糖可以通過制備殼聚糖復(fù)合薄膜和殼聚糖復(fù)合涂層2 種方式來提高肉與肉制品的品質(zhì)并延長貨架期。其可以通過靜電作用影響微生物細(xì)胞膜、抑制DNA轉(zhuǎn)錄、抑制微生物細(xì)胞內(nèi)的代謝酶及改變細(xì)胞膜的通透性,從而抑制微生物增殖。殼聚糖的分子質(zhì)量越小、脫乙酰度越高,其在肉制品中的抑菌活性越高,可通過與植物精油相結(jié)合、與物理滅菌方法相結(jié)合、與其他活性物質(zhì)復(fù)合使用等方式強(qiáng)化殼聚糖在肉與肉制品中的應(yīng)用效果。
然而,殼聚糖在肉與肉制品保鮮中的應(yīng)用仍然存在一些問題,殼聚糖自身的抗菌活性和抗氧化活性較低,需要與其他物質(zhì)協(xié)同作用才能產(chǎn)生更好的保鮮效果,但添加物質(zhì)可能會影響肉與肉制品的風(fēng)味;添加物質(zhì)在殼聚糖涂層中分布不均也可能降低保鮮效果等??偟膩碚f,殼聚糖在肉與肉制品的保鮮中有較好的應(yīng)用前景,隨著上述問題的不斷解決,殼聚糖在肉與肉制品保鮮中的應(yīng)用將會更加廣泛。
參考文獻(xiàn):
[1] HARUGADE A, SHERJE A P, PETHE A. Chitosan: a review on properties, biological activities and recent progress in biomedical applications[J]. Reactive and Functional Polymers, 2023, 191: 105634. DOI:10.1016/j.reactfunctpolym.2023.105634.
[2] NEGM N A, HEFNI H H H, ABD-ELAAL A A A, et al. Advancement on modification of chitosan biopolymer and its potential applications[J]. International Journal of Biological Macromolecules, 2020, 152: 681-702. DOI:10.1016/j.ijbiomac.2020.02.196.
[3] RAHIMI M, MIR S M, BAGHBAN R, et al. Chitosan-based biomaterials for the treatment of bone disorders[J]. International Journal of Biological Macromolecules, 2022, 215: 346-367. DOI:10.1016/j.ijbiomac.2022.06.079.
[4] 封晴霞, 趙雄偉, 陳志周, 等. 殼聚糖及其應(yīng)用研究進(jìn)展[J]. 食品工業(yè)科技, 2018, 39(21): 333-336; 341. DOI:10.13386/j.issn1002-0306.2018.21.058.
[5] MONDéJAR-LóPEZ M, CASTILLO R, JIMéNEZ A J L, et al.
Polysaccharide film containing cinnamaldehyde-chitosan nanoparticles, a new eco-packaging material effective in meat preservation[J]. Food Chemistry, 2023, 4371(1): 137710. DOI:10.1016/j.foodchem.2023.137710.
[6] LI H H, QU S J, MA P, et al. Effects of chitosan coating combined with thermal treatment on physicochemical properties, bacterial diversity and volatile flavor of braised duck meat during refrigerated storage[J]. Food Research International, 2023, 167: 112627. DOI:10.1016/j.foodres.2023.112627.
[7] PARICHANON P, ASCRIZZI R, TANI C, et al. The protective combined effect of chitosan and essential oil coatings on cheese and cured meat against the oviposition of Piophila casei[J]. Food Bioscience, 2023, 56: 103132. DOI:10.1016/j.fbio.2023.103132.
[8] ZHAO Q L, FAN L P, LIU Y F, et al. Recent advances on formation mechanism and functionality of chitosan-based conjugates and their application in o/w emulsion systems: a review[J]. Food Chemistry, 2022, 380: 131838. DOI:10.1016/j.foodchem.2021.131838.
[9] AFROZ ALI S M, NIAZ T, MUNIR A, et al. Potential of pectin-chitosan based composite films embedded with quercetin-loaded nanofillers to control meat associated spoilage bacteria[J]. Food Bioscience, 2023, 53: 102547. DOI:10.1016/j.fbio.2023.102547.
[10] KUMAR S, MUKHERJEE A, DUTTA J. Chitosan based nanocomposite films and coatings: emerging antimicrobial food packaging alternatives[J]. Trends in Food Science and Technology, 2020, 97: 196-209. DOI:10.1016/j.tifs.2020.01.002.
[11] MATHEW S, BRAHMAKUMAR M, ABRAHAM T E. Microstructural imaging and characterization of the mechanical, chemical, thermal, and swelling properties of starch-chitosan blend films[J]. Biopolymers, 2006, 82(2): 176-187. DOI:10.1002/bip.20480.
[12] YUAN D D, HAO X, LIU G R, et al. A novel composite edible film fabricated by incorporating W/O/W emulsion into a chitosan film to improve the protection of fresh fish meat[J]. Food Chemistry, 2022, 385: 132647. DOI:10.1016/j.foodchem.2022.132647.
[13] SIRIPATRAWAN U, HARTE B R. Physical properties and antioxidant activity of an active film from chitosan incorporated with green tea extract[J]. Food Hydrocolloids, 2010, 24(8): 770-775. DOI:10.1016/j.foodhyd.2010.04.003.
[14] VARGAS M, ALBORS A, CHIRALT A. Application of chitosan-sunflower oil edible films to pork meat hamburgers[J]. Procedia Food Science, 2011, 1: 39-43. DOI:10.1016/j.profoo.2011.09.007.
[15] VASILATOS G C, SAVVAIDIS I N. Chitosan or rosemary oil treatments, singly or combined to increase turkey meat shelf-life[J]. International Journal of Food Microbiology, 2013, 166(1): 54-58. DOI:10.1016/j.ijfoodmicro.2013.06.018.
[16] CAO Y J, SONG Z Y, DONG C J, et al. Chitosan coating with grape peel extract: a promising coating to enhance the freeze-thaw stability of beef[J]. Meat Science, 2023, 204: 109262. DOI:10.1016/j.meatsci.2023.109262.
[17] JIN J, LUO B D, XUAN S M, et al. Degradable chitosan-based bioplastic packaging: design, preparation and applications[J]. International Journal of Biological Macromolecules, 2024, 266(1): 131253. DOI:10.1016/j.ijbiomac.2024.131253.
[18] ZHENG K X, LI B, LIU Y, et al. Effect of chitosan coating incorporated with oregano essential oil on microbial inactivation and quality properties of refrigerated chicken breasts[J]. LWT-Food Science and Technology, 2023, 176: 114547. DOI:10.1016/j.lwt.2023.114547.
[19] HOSSEINNEJAD M, JAFARI S M. Evaluation of different factors affecting antimicrobial properties of chitosan[J]. International Journal of Biological Macromolecules, 2016, 85: 467-475. DOI:10.1016/j.ijbiomac.2016.01.022.
[20] GONCALVES C, FERREIRA N, LOURENCO L. Production of low molecular weight chitosan and chitooligosaccharides (COS): a review[J]. Polymers, 2021, 13(15): 2466. DOI:10.3390/polym13152466.
[21] LI X F, FENG X Q, YANG S, et al. Chitosan kills Escherichia coli through damage to be of cell membrane mechanism[J]. Carbohydrate Polymers, 2010, 79(3): 493-499. DOI:10.1016/j.carbpol.2009.07.011.
[22] YE M, NEETOO H, CHEN H Q. Control of Listeria monocytogenes on ham steaks by antimicrobials incorporated into chitosan-coated plastic films[J]. Food Microbiology, 2008, 25(2): 260-268. DOI:10.1016/j.fm.2007.10.014.
[23] Lü S H. High-performance superplasticizer based on chitosan[M]//PACHECO-TORGAL F, IVANOV V, KARAK N, et al. Biopolymers and biotech admixtures for eco-efficient construction materials. Sawston Cambridge: Woodhead Publishing, 2016: 131-150. DOI:10.1016/b978-0-08-100214-8.00007-5.
[24] TOLAIMATE A, DESBRIERES J, RHAZI M, et al. Contribution to the preparation of chitins and chitosans with controlled physico-chemical properties[J]. Polymer, 2003, 44(26): 7939-7952. DOI:10.1016/j.polymer.2003.10.025.
[25] BYUN S M, NO H K, HONG J H, et al. Comparison of physicochemical, binding, antioxidant and antibacterial properties of chitosans prepared from ground and entire crab leg shells[J]. International Journal of Food Science and Technology, 2013, 48(1): 136-142. DOI:10.1111/j.1365-2621.2012.03169.x.
[26] SONG Z Y, MA T C, ZHI X J, et al. Cellulosic films reinforced by chitosan-citric complex for meat preservation: influence of nonenzymatic browning[J]. Carbohydrate Polymers, 2021, 272: 118476. DOI:10.1016/j.carbpol.2021.118476.
[27] ABDEL-NAEEM H H S, ZAYED N E R, MANSOUR H A. Effect of chitosan and lauric arginate edible coating on bacteriological quality, deterioration criteria, and sensory attributes of frozen stored chicken meat[J]. LWT-Food Science and Technology, 2021, 150: 111928. DOI:10.1016/j.lwt.2021.111928.
[28] ABDALLAH M R S, MOHAMED M A, MOHAMED H M H, et al. Improving the sensory, physicochemical and microbiological quality of pastirma (a traditional dry cured meat product) using chitosan coating[J]. LWT-Food Science and Technology, 2017, 86: 247-253. DOI:10.1016/j.lwt.2017.08.006.
[29] KANATT S R, RAO M S, CHAWLA S P, et al. Effects of chitosan coating on shelf-life of ready-to-cook meat products during chilled storage[J]. LWT-Food Science and Technology, 2013, 53(1): 321-326. DOI:10.1016/j.lwt.2013.01.019.
[30] PENNACCHIA C, ERCOLINI D, VILLANI F. Spoilage-related microbiota associated with chilled beef stored in air or vacuum pack[J]. Food Microbiology, 2011, 28(1): 84-93. DOI:10.1016/j.fm.2010.08.010.
[31] PELLISSERY A J, VINAYAMOHAN P G, AMALARADJOU M A R, et al.
Spoilage bacteria and meat quality[M]//BISWAS A K, MANDAL P K.
Meat quality analysis. Salt Lake City: Academic Press, 2020: 307-334. DOI:10.1016/B978-0-12-819233-7.00017-3.
[32] YU J T, WANG D P, GEETHA N, et al. Current trends and challenges in the synthesis and applications of chitosan-based nanocomposites for plants: a review[J]. Carbohydrate Polymers, 2021, 261: 117904. DOI:10.1016/j.carbpol.2021.117904.
[33] WANG Q Z, CHEN X G, LIU N, et al. Protonation constants of chitosan with different molecular weight and degree of deacetylation[J]. Carbohydrate Polymers, 2006, 65(2): 194-201. DOI:10.1016/j.carbpol.2006.01.001.
[34] HAO P Y, ZHOU H Y, REN L J, et al. Preparation and antibacterial properties of curcumin-loaded cyclodextrin-grafted chitosan hydrogel[J]. Journal of Sol-Gel Science and Technology, 2023, 106(3): 877-894. DOI:10.1007/s10971-023-06097-8.
[35] MATICA M A, AACHMANN F L, TONDERVIK A et al. Chitosan as a wound dressing starting material: antimicrobial properties and mode of action[J]. International Journal of Molecular Sciences, 2019, 20(23): 5899. DOI:10.3390/ijms20235889.
[36] YOUSSEF A M, ABOU-YOUSEF H, EL-SAYED S M, et al.
Mechanical and antibacterial properties of novel high performance chitosan/nanocomposite films[J]. International Journal Biological Macromolecules, 2015, 76: 25-32. DOI:10.1016/j.ijbiomac.2015.02.016.
[37] XING K, CHEN X G, LIU C S, et al. Oleoyl-chitosan nanoparticles inhibits Escherichia coli and Staphylococcus aureus by damaging the cell membrane and putative binding to extracellular or intracellular targets[J]. International Journal of Food Microbiology, 2009, 132(2/3): 127-133. DOI:10.1016/j.ijfoodmicro.2009.04.013.
[38] QIN C, LI H R, XIAO Q, et al. Water-solubility of chitosan and its antimicrobial activity[J]. Carbohydrate Polymers, 2006, 63(3): 367-374. DOI:10.1016/j.carbpol.2005.09.023.
[39]" WANG J, XIA L L, LIU H, et al. Colorimetric microneedle sensor using deep learning algorithm for meat freshness monitoring[J]. Chemical Engineering Journal, 2024, 481: 148474. DOI:10.1016/j.cej.2023.148474.
[40] 類紅梅, 羅欣, 毛衍偉, 等. 天然抗氧化劑的功能及其在肉與肉制品中的應(yīng)用研究進(jìn)展[J]. 食品科學(xué), 2020, 41(21): 267-277. DOI:10.7506/spkx1002-6630-20191025-286.
[41] BORDIGNON J C S, BADARO A T, BARBIN D F, et al. Oxidation of whey protein isolate after thermal convection and microwave heating and freeze-drying: correlation among physicochemical and NIR spectroscopy analyses[J]. Heliyon, 2023, 9(7): e17981. DOI:10.1016/j.heliyon.2023.e17981.
[42] MOHAN A, ROY A, DUGGIRALA K, et al. Oxidative reactions of 4-oxo-2-nonenal in meat and meat products[J]. LWT-Food Science and Technology, 2022, 165: 113747. DOI:10.1016/j.lwt.2022.113747.
[43] ANRAKU M, FUJII T, FURUTANI N, et al. Antioxidant effects of a dietary supplement: reduction of indices of oxidative stress in normal subjects by water-soluble chitosan[J]. Food and Chemical Toxicology, 2009, 47(1): 104-109. DOI:10.1016/j.fct.2008.10.015.
[44] HERAS M, HUANG C C, CHANG C W, et al. Trends in chitosan-based films and coatings: a systematic review of the incorporated biopreservatives, biological properties, and nanotechnology applications in meat preservation[J]. Food Packaging and Shelf Life, 2024, 42: 101259. DOI:10.1016/j.fpsl.2024.101259.
[45] ZHAO Y H, ZHANG Y L, DONG H, et al. Functional biopolymers for food packaging: formation mechanism and performance improvement of chitosan-based composites[J]. Food Bioscience, 2023, 54: 102927. DOI:10.1016/j.fbio.2023.102927.
[46] YU H Y, GE Y, DING H Q, et al. Vanillin cross-linked chitosan/gelatin bio-polymer film with antioxidant, water resistance and ultraviolet-proof properties[J]. International Journal of Biological Macromolecules, 2023, 253: 126726. DOI:10.1016/j.ijbiomac.2023.126726.
[47] BEIGZADEH GHELEJLU S, ESMAIILI M, ALMASI H. Characterization of chitosan-nanoclay bionanocomposite active films containing milk thistle extract[J]. International Journal of Biological Macromolecules, 2016, 86: 613-621. DOI:10.1016/j.ijbiomac.2016.02.012.
[48] LOTFY T M R, SHAWIR S M S, BADAWY M E I. The impacts of chitosan-essential oil nanoemulsions on the microbial diversity and chemical composition of refrigerated minced meat[J]. International Journal of Biological Macromolecules, 2023, 239: 124237. DOI:10.1016/j.ijbiomac.2023.124237.
[49] 趙思琪, 張浪, 劉騫, 等. 天然抗菌劑納米乳液的制備、抑菌機(jī)理及在肉類保鮮中的應(yīng)用研究進(jìn)展[J]. 肉類研究, 2022, 36(4): 48-56. DOI:10.7506/rlyj1001-8123-20220117-00.
[50] ZHANG Hv Y, LIANG Y, LI X L, et al. Effect of chitosan-gelatin coating containing nano-encapsulated tarragon essential oil on the preservation of pork slices[J]. Meat Science, 2020, 166: 108137. DOI:10.1016/j.meatsci.2020.108137.
[51] SUN Y A, ZHANG M, BHANDARI B, et al. Nanoemulsion-based edible coatings loaded with fennel essential oil/cinnamaldehyde: characterization, antimicrobial property and advantages in pork meat patties application[J]. Food Control, 2021, 127: 108151. DOI:10.1016/j.foodcont.2021.108151.
[52] WANG L, LIU T, LIU L, et al. Impacts of chitosan nanoemulsions with thymol or thyme essential oil on volatile compounds and microbial diversity of refrigerated pork meat[J]. Meat Science, 2022, 185: 108706. DOI:10.1016/j.meatsci.2021.108706.
[53] SONG X Y, WANG L, LIU T, et al. Mandarin (Citrus reticulata L.) essential oil incorporated into chitosan nanoparticles: characterization, anti-biofilm properties and application in pork preservation[J]. International Journal of Biological Macromolecules, 2021, 185: 620-628. DOI:10.1016/j.ijbiomac.2021.06.195.
[54] QIU L Q, ZHANG M, CHITRAKAR B, et al. Effects of nanoemulsion-based chicken bone gelatin-chitosan coatings with cinnamon essential oil and rosemary extract on the storage quality of ready-to-eat chicken patties[J]. Food Packaging and Shelf Life, 2022, 34: 100933. DOI:10.1016/j.fpsl.2022.100933.
[55] HUANG M S, ZHANG M, BHANDARI B. Recent development in the application of alternative sterilization technologies to prepared dishes: a review[J]. Critical Reviews in Food Science and Nutrition, 2018, 59(7): 1188-1196. DOI:10.1080/10408398.2017.1421140.
[56] SONI A, SMITH J, THOMPSON A, et al. Microwave-induced thermal sterilization-a review on history, technical progress, advantages and challenges as compared to the conventional methods[J]. Trends in Food Science and Technology, 2020, 97: 433-442. DOI:10.1016/j.tifs.2020.01.030.
[57] HASSANZADEH P, TAJIK H, ROHANI S M R, et al. Effect of functional chitosan coating and gamma irradiation on the shelf-life of chicken meat during refrigerated storage[J]. Radiation Physics and Chemistry, 2017, 141: 103-109. DOI:10.1016/j.radphyschem.2017.06.014.
[58] FANG Z X, LIN D, WARNER R D, et al. Effect of gallic acid/chitosan coating on fresh pork quality in modified atmosphere packaging[J]. Food Chemistry, 2018, 260: 90-96. DOI:10.1016/j.foodchem.2018.04.005.
[59] LIU W L, KANG S, XUE J, et al. Self-assembled carboxymethyl chitosan/zinc alginate composite film with excellent water resistant and antimicrobial properties for chilled meat preservation[J]. International Journal of Biological Macromolecules, 2023, 247: 125752. DOI:10.1016/j.ijbiomac.2023.125752.
[60] ZENG Z, YANG Y J, TU Q, et al. Preparation and characterization of carboxymethyl chitosan/pullulan composite film incorporated with eugenol and its application in the preservation of chilled meat[J]. Meat Science, 2023, 198: 109085. DOI:10.1016/j.meatsci.2022.109085.
[61] ZHAO R N, GUO H C, YAN T Y, et al. Fabrication of multifunctional materials based on chitosan/gelatin incorporating curcumin-clove oil emulsion for meat freshness monitoring and shelf-life extension[J]. International Journal of Biological Macromolecules, 2022, 223: 837-850. DOI:10.1016/j.ijbiomac.2022.10.271.