基金項目:廣州市科技計劃項目(202002030081)
通信作者:張少衡,E-mail:shaohengzh67@163.com
【摘要】心血管疾病是全球主要死因,而M2巨噬細胞在心血管疾病中起著主導作用。了解M2巨噬細胞的作用機制有助于制定相應的治療策略。M2巨噬細胞具有消除炎癥和修復心肌的能力,在心肌梗死后,減小梗死灶的大小,減少梗死后的纖維化,改善心肌重構。許多研究發(fā)現(xiàn),通過調節(jié)細胞間的通信、巨噬細胞相關基因和蛋白的表達,以及藥物靶向作用,M2巨噬細胞在心肌梗死中的炎癥調節(jié)作用可得到增強,從而進一步改善心肌修復,減少心肌梗死后并發(fā)癥的發(fā)生。現(xiàn)重點綜述M2巨噬細胞在缺血心肌治療中的進展。
【關鍵詞】心肌梗死;巨噬細胞;細胞治療
【DOI】10.16806/j.cnki.issn.1004-3934.2024.06.015
Macrophage Therapy for Ischemic Myocardium
HUANG Aibao,ZHANG Shaoheng
(Guangzhou Red Cross Hospital of Jinan University,Guangzhou 510000,Guangdong,China)
【Abstract】Cardiovascular disease is the leading cause of death worldwide,and M2 macrophages play a dominant role in cardiovascular diseases.Understanding the mechanisms of M2 macrophages are beneficial for developing corresponding treatment strategies.M2 macrophages have the ability to eliminate inflammation and repair the myocardium after myocardial infarction,reducing infarct size,fibrosis after infarction,and improving myocardial remodeling.Many studies have found that the inflammatory regulation role of M2 macrophages in myocardial infarction can be enhanced by regulating cell communication,the expression of macrophage-related genes and proteins,as well as drug targeting,which could further improve myocardial repair and reduce the occurrence of complications after myocardial infarction.This review focused on the progress of M2 macrophages in the treatment of ischemic myocardium.
【Keywords】Myocardial infarction;Macrophage;Cell therapy
在全球范圍內,心血管疾病是首要的疾病死亡原因,給社會造成巨大的負擔[1]。當心臟血液供應減少或停止時,心肌梗死(myocardial infarction,MI)就會發(fā)生,心肌細胞出現(xiàn)壞死[2]。隨之產生炎癥反應,引起心肌纖維化,形成瘢痕和不良重塑,引起心力衰竭和死亡的發(fā)生。盡管目前對MI的治療已有巨大突破,但其死亡率仍很高,使得有必要進一步探索其生理及分子機制,以開發(fā)新的治療方案[3]。
1nbsp; 心肌巨噬細胞的類別
心肌含有常駐巨噬細胞(約占所有非心肌細胞的8%),主要來源于卵黃囊或胎兒肝臟,具有免疫監(jiān)測和調節(jié)心臟功能的作用[4]。同時這些巨噬細胞在穩(wěn)態(tài)下,可增殖而維持自身數(shù)量的穩(wěn)定,但出現(xiàn)心肌損傷后,它們會迅速被耗盡[5]。在心肌損傷中,心臟常駐巨噬細胞中C-C基序趨化因子受體2(C-C motif chemokine receptor 2,CCR2)陽性細胞(CCR2+)可促進炎癥反應,而CCR2陰性細胞(CCR2-)起保護作用,促進冠狀動脈新生和心肌再生[6]。MI后,心臟內皮細胞上調黏附分子和細胞因子,特別是C-C基序趨化因子配體2(C-C motif chemokine ligand 2,CCL2),后者可招募單核細胞到心肌中,隨后分化為巨噬細胞,介導炎癥的發(fā)生、發(fā)展和消退[7]。這種免疫反應在MI的發(fā)病機制中起著至關重要的作用[8]。在MI導致的炎癥反應過程中,分化而成的巨噬細胞參與MI后炎癥和纖維化。募集的巨噬細胞在脂多糖(lipopolysaccharide,LPS)或與輔助性T細胞1(helper T cell 1,Th1)細胞因子[如γ干擾素(interferon-γ,IFN-γ)、粒細胞-巨噬細胞集落刺激因子(granulocyte-macrophage colony-stimulating factor,GM-CSF)]聯(lián)合極化為M1巨噬細胞,產生促炎細胞因子,如白細胞介素(interleukin,IL)-1β、腫瘤壞死因子-α等。而募集的巨噬細胞在IL-4和IL-13刺激下可分化為M2巨噬細胞,產生IL-10和轉化生長因子-β(transforming growth factor-β,TGF-β)等抗炎細胞因子(圖1)[9]。在心肌修復過程中,巨噬細胞介導兩個不同階段的炎癥反應,第一階段在缺血性損傷期間開始,壞死心肌釋放趨化因子/細胞因子,促進中性粒細胞和促炎性M1巨噬細胞清除壞死組織;在第二階段,隨著組織修復的開始,梗死區(qū)的巨噬細胞從炎癥功能表型的M1巨噬細胞向具有抗炎和促修復功能表型M2巨噬細胞轉變,介導炎癥后恢復和組織修復[10]。適當調控巨噬細胞M1/M2表型轉化是MI后組織修復的一種有前景的治療策略。
2" 巨噬細胞主導修復缺血心肌的作用方式
巨噬細胞通過胞葬作用吞噬死亡細胞和碎片,實現(xiàn)炎癥的消退,此過程可分為三個主要步驟:第一步,由凋亡細胞釋放“fine-me”信號吸引巨噬細胞[11],通過死亡細胞上的細胞間黏附分子3與巨噬細胞上的CD14相互作用,以及血小板反應蛋白與CD36相互作用,促進巨噬細胞對死亡細胞的識別;第二步,是凋亡細胞表面的“eat-me”信號(如磷脂酰絲氨酸),可促進巨噬細胞對其特異性識別作用;第三步,可溶性配體與受體結合后,通過膜內陷,在質膜內裂解包含受體和配體的囊泡,降解凋亡細胞等物質[12]。
MI后,巨噬細胞不僅通過胞葬作用吞噬凋亡的心肌細胞,還可促進心肌細胞增殖和再生,CCR2-巨噬細胞通過黏著斑復合體標記物(如整合素β)與心肌細胞相互作用,增加左心室及心肌壁壓力。這些機械刺激激活瞬時受體電位香草酸受體亞型4(transient receptor potential vanilloid 4,TRPV4),激發(fā)巨噬細胞生長因子表達,促進缺血心肌修復[13]。在心肌愈合階段,巨噬細胞產生血管緊張素Ⅱ,后者可與肌成纖維細胞的血管緊張素Ⅱ1型受體結合,上調TGF-β1,促進缺血心肌修復[14]。在冠狀動脈發(fā)育方面,CCR2-巨噬細胞可被募集到冠狀動脈血管中,通過胰島素樣生長因子促進巨噬細胞發(fā)揮促血管生成特性,改善冠狀動脈重構,增加心肌供血[15]。在心臟淋巴管形成方面,巨噬細胞可分泌血管內皮生長因子C,促進淋巴管生成,改善缺血心肌功能[16]。綜上所述,越來越多研究表明,在急性MI后,巨噬細胞可調節(jié)炎癥反應,修復缺血心肌和重塑組織,降低心肌損傷程度和改善MI預后。
3" 不同因素介導巨噬細胞修復缺血心肌的作用方式
3.1" 干細胞修復缺血心肌的作用方式
目前已證實干細胞可修復梗死心肌,同時參與免疫調節(jié)作用。最近研究[17]表明,骨髓間充質干細胞和脂肪干細胞來源的趨化因子和外泌體可促進炎癥細胞和干細胞之間的交流,誘導干細胞分化為組織再生或修復所需的細胞類型。巨噬細胞在誘導性多能干細胞增殖和心肌再生中發(fā)揮關鍵作用,通過改善肌小節(jié)結構、增加心肌收縮和離子轉運相關基因的表達、增強線粒體呼吸,促進誘導性多能干細胞分化的心肌細胞成熟。M2巨噬細胞在此過程中起到關鍵作用[18]。不同類型的干細胞調節(jié)MI后巨噬細胞的免疫作用并不一致,比如相較于間充質干細胞外囊泡而言,心球樣細胞團-派生細胞外囊泡在調節(jié)免疫、保護宿主免受缺血心肌損傷和急性炎癥作用上更具有優(yōu)勢[19]。有研究[20]表明在進行心肌修復的過程中,脂肪組織來源的間充質干細胞(adipose-derived mesenchymal stem cell,Ad-MSC)治療可誘發(fā)單核巨噬細胞免疫反應。研究發(fā)現(xiàn)在第3天,Ad-MSC治療可上調血管生成相關基因的表達。第7天,與生理鹽水組相比,Ad-MSC治療組CCR2﹢和CD38+巨噬細胞數(shù)量增加,單核巨噬細胞相關基因的表達上調。人誘導多能干細胞來源的血管祖細胞通過細胞外囊泡降低促炎細胞因子IL-1α、IL-2和IL-6表達,增加抗炎細胞因子IL-10表達,減少促炎單核細胞和M1巨噬細胞的數(shù)量,同時增加了抗炎M2巨噬細胞的數(shù)量,調節(jié)單核巨噬細胞,抑制炎癥反應,為人血管內皮祖細胞來源的細胞外囊泡修復心臟的臨床應用提供治療靶點(圖2)[21]。骨皮質干細胞分泌的旁分泌因子處理巨噬細胞可增強其抗炎、吞噬能力,抑制成纖維細胞活化及增殖,減小瘢痕面積,改善缺血心肌功能[22]。不同類型的干細胞可通過細胞外囊泡或其他途徑調節(jié)巨噬細胞相關炎癥反應,促進心肌修復,這提示可通過調控巨噬細胞與干細胞的協(xié)同作用,增強心肌修復功能,改善心臟重構。
3.2" 核因子κB信號通路介導巨噬細胞修復缺血心肌的作用方式
核因子κB(nuclear factor-κB,NF-κB)信號通路可調節(jié)心臟MI和缺血再灌注損傷中巨噬細胞參與的炎癥反應[23]。最近研究[24]表明,IL-34缺陷抑制了經典和非經典NF-κB信號通路,顯著降低磷酸化核因子κB抑制蛋白激酶β和磷酸化核因子κB抑制蛋白激酶α水平,下調NF-κB p65、RelB、p52表達,下調CCL2表達,抑制了巨噬細胞募集和極化,減輕心肌再灌注損傷(圖3)。TGF-β1可誘導巨噬細胞產生神經肽Y,神經肽Y可通過神經肽Y1受體信號傳導抑制p38/NF-κB介導的M1巨噬細胞活化,促進M1巨噬細胞向M2巨噬細胞轉化,促進血管生成及緩解心臟功能惡化[25]。炎癥反應在MI過程中發(fā)揮重要作用,在此過程中,巨噬細胞被募集到缺血心肌組織中,參與炎癥反應與心肌修復[26]。NF-κB p65通路可啟動脾臟和心肌組織炎癥反應,加重心肌組織炎性損傷[27]。芪參顆??赏ㄟ^抑制TLR4-MyD88-NF-κB p65信號通路,減少MI小鼠脾臟單核細胞釋放,調節(jié)MI區(qū)M1/M2巨噬細胞比例,減輕心肌細胞炎癥損傷[28]。這提示調節(jié)抗炎和維持巨噬細胞極化的平衡是MI后修復的關鍵。NF-κB信號通路在調節(jié)抗炎作用中發(fā)揮極為重要的作用。諸多研究證明,藥物等物質可通過抑制NF-κB信號通路相關基因表達,調節(jié)MI區(qū)M1/M2巨噬細胞比例,促進心肌修復。在心肌炎癥反應中,除了NF-κB信號通路外,仍有許多其他信號通路參與,有待進一步探討。
注:p-IKK,磷酸化核因子κB抑制蛋白激酶;p-IκBα,磷酸化核因子κB抑制蛋白α;,磷酸基團。
3.3" 藥物介導巨噬細胞修復缺血心肌的作用方式
在巨噬細胞修復心肌的相關研究中,除了干細胞和相關信號通路介導的修復作用外,藥物在增強巨噬細胞調節(jié)MI后炎癥反應的作用方面有著廣泛應用前景。最近研究[29]表明,常用降血糖藥二甲雙胍可顯著減少小鼠MI后纖維化和CD68+細胞數(shù)量,同時可抑制衰竭心肌中促纖維化基因程序的激活,減輕MI后心肌纖維化。常用降血脂藥阿托伐他汀預處理的間充質干細胞來源的細胞外囊泡修復MI心臟效果顯著,其機制為通過上調miR-139-3p表達,抑制STAT1通路的表達和活化,促使巨噬細胞從M1向M2轉化,促進梗死后心臟修復[30]。在關注西藥通過調節(jié)巨噬細胞修復缺血心肌作用的同時,不應忘記中國博大精深的中藥寶庫,正如中藥提取物中的人參皂苷Rd可通過激活Akt/mTOR信號通路顯著降低CCL2/CCR2蛋白表達,抑制心肌炎性Ly6Chigh單核細胞/巨噬細胞浸潤,增強小鼠MI后Ly6Chigh單核細胞/巨噬細胞向Ly6Clow單核細胞/巨噬細胞轉化,促進梗死心臟修復[31]。姜黃素可通過巨噬細胞抑制IL18-p-SMAD2/3信號途徑通路,抑制心肌纖維化[32]。諸多實驗表明,通過藥物介導巨噬細胞在心肌修復過程中調控炎癥、抑制纖維化及改善心肌重構,為探索開發(fā)治療MI的藥物提供了一定的啟發(fā)。
3.4" 生物材料介導巨噬細胞修復缺血心肌的作用方式
MI由于對重要器官的血液灌注不足,可導致致命的不良預后,為此科學家們開展了一項新的治療方案——納米材料的研究,其廣泛應用于MI后的治療,包括高精度檢測、促血管生成、調節(jié)免疫穩(wěn)態(tài)以及miRNA和干細胞遞送載體,還存在一些有前景的其他研究熱點,如將促血管生成元素與納米顆粒結合構建藥物載體,開發(fā)靶向梗死心肌或免疫細胞的納米藥物等[33]。最近研究[34]顯示,α-gal納米顆粒通過激活補體和募集巨噬細胞,介導內源性干細胞歸巢,修復和再生損傷心肌,在缺血損傷后心室壁注射α-gal納米顆粒,幾乎完全再生損傷心肌。雙肽功能化的縮醛化葡聚糖基納米顆??赡技奘杉毎?,靶向作用于梗死的心臟組織,同時M2巨噬細胞可優(yōu)先攝取該顆粒,修復缺血心肌[35]。此外,天然生物材料也有應用于心臟修復過程中,天然黑色素/海藻酸鹽水凝膠通過清除活性氧基團保護心肌,免受氧化應激損傷,并通過激活PI3K/Akt1/mTOR信號通路誘導M2巨噬細胞極化,修復心臟[36]。樹突狀細胞來源的水凝膠負載外泌體通過延長樹突狀細胞源性外泌體在梗死區(qū)的存留時間并誘導調節(jié)性T細胞及巨噬細胞極化,改善心臟功能[37]。也有研究[38]通過將間充質干細胞來源的外泌體富集到彈性心肌包裹支架上,增強間充質干細胞的傷口愈合能力并正向調節(jié)M2巨噬細胞的抗炎作用。免疫補片也有應用于延長干細胞存活和增強細胞間通信。研究[39]表明,具有免疫代謝調節(jié)作用的2-脫氧葡萄糖補片通過激活M2巨噬細胞減輕炎癥反應,延長間充質干細胞的滯留時間,還可直接促進移植的間充質干細胞的旁分泌,增強其促血管生成和免疫調節(jié)作用。細胞膜片可促進人臍帶間充質干細胞的生物學功能,提供人臍帶間充質干細胞的局部滯留和存活,調節(jié)MI周邊區(qū)域巨噬細胞炎癥反應,抑制病理性重構[40]。
現(xiàn)階段,與巨噬細胞治療MI相關的新興研究主要集中在生物材料方面,包括可注射水凝膠、支架、明膠涂片及納米材料等。生物材料作為一種藥物載體或遞送載體,可通過富集干細胞來源的外泌體,將外泌體遞送到缺血心肌并延長外泌體存留時間,募集巨噬細胞,正向調節(jié)巨噬細胞炎癥反應與修復心肌。未來,合成生物學、基因編輯技術、細胞-細胞間通信、藥物靶向治療在正向調節(jié)巨噬細胞參與心肌修復和再生中將會是極具前景的聯(lián)合治療研究方向。
4" 總結與展望
巨噬細胞在MI的免疫調節(jié)中具有重要作用,可與干細胞及其分泌的外泌體協(xié)同,發(fā)揮抗炎、改善心肌纖維化和心肌修復作用。同時巨噬細胞在機體內可通過調控NF-κB等諸多信號通路相關基因、蛋白表達,促進其在梗死區(qū)聚集并向M2巨噬細胞轉化,改善心肌修復過程。此外,藥物在增強巨噬細胞調節(jié)MI后炎癥反應的作用上有著廣泛應用前景。但考慮藥物的半衰期及給藥方式對藥物療效的影響,納米技術與藥物構建的載體、生物材料與細胞分泌的外泌體結合等措施具有廣泛的應用前景。未來,合成生物學、基因編輯技術、細胞-細胞間通信、藥物靶向治療在巨噬細胞參與心肌修復和再生中極具前景。
然而,目前的研究仍處于早期階段,需進一步探索和研究,克服一些挑戰(zhàn)與困難,如巨噬細胞如何精準作用于MI區(qū)域,巨噬細胞的數(shù)量、存活,外泌體的遞送等。此外,安全性和有效性也需認真考慮。盡管如此,巨噬細胞在治療缺血心肌中仍存在巨大潛力,有待進一步展開研究。
參考文獻
[1]GBD 2019 Diseases and Injuries Collaborators.Global burden of 369 diseases and injuries in 204 countries and territories,1990—2019:a systematic analysis for the Global Burden of Disease Study 2019[J].Lancet,2020,396(10258):1204-1222.
[2]Weissman D,Maack C.Mitochondrial function in macrophages controls cardiac repair after myocardial infarction[J].J Clin Invest,2023,133(4):e167079.
[3]Zhang Z,Tang J,Cui X,et al.New insights and novel therapeutic potentials for macrophages in myocardial infarction[J].Inflammation,2021,44(5):1696-1712.
[4]Chen R,Zhang S,Liu F,et al.Renewal of embryonic and neonatal-derived cardiac-resident macrophages in response to environmental cues abrogated their potential to promote cardiomyocyte proliferation via Jagged-1-Notch1[J].Acta Pharm Sin B,2023,13(1):128-141.
[5]Kologrivova I,Shtatolkina M,Suslova T,et al.Cells of the immune system in cardiac remodeling:main players in resolution of inflammation and repair after myocardial infarction[J].Front Immunol,2021,12:664457.
[6]Li L,Cao J,Li S,et al.M2 macrophage-derived sEV regulate pro-inflammatory CCR2+ macrophage subpopulations to favor post-AMI cardiac repair[J].Adv Sci (Weinh),2023,10(14):2202964.
[7]Li R,F(xiàn)rangogiannis NG.Chemokines in cardiac fibrosis[J].Curr Opin Physiol,2021,19:80-91.
[8]Ohayon L,Zhang X,Dutta P.The role of extracellular vesicles in regulating local and systemic inflammation in cardiovascular disease[J].Pharmacol Res,2021,170:105692.
[9]Kim Y,Nurakhayev S,Nurkesh A,et al.Macrophage polarization in cardiac tissue repair following myocardial infarction[J].Int J Mol Sci,2021,22(5):2715.
[10]Wagner MJ,Khan M,Mohsin S.Healing the broken heart;the immunomodulatory effects of stem cell therapy[J].Front Immunol,2020,11:639.
[11]Chen W,Li L,Wang J,et al.The ABCA1-efferocytosis axis:a new strategy to protect against atherosclerosis[J].Clin Chim Acta,2021,518:1-8.
[12]Jia D,Chen S,Bai P,et al.Cardiac resident macrophage-derived legumain improves cardiac repair by promoting clearance and degradation of apoptotic cardiomyocytes after myocardial infarction[J].Circulation,2022,145(20):1542-1556.
[13]Wong NR,Mohan J,Kopecky BJ,et al.Resident cardiac macrophages mediate adaptive myocardial remodeling[J].Immunity,2021,54(9):2072-2088.e7.
[14]Ma X,Meng Q,Gong S,et al.IL-27 promotes cardiac fibroblast activation and aggravates cardiac remodeling post myocardial infarction[J].Heliyon,2023,9(6):e17099.
[15]Zeng B,Liao X,Liu L,et al.Thyroid hormone mediates cardioprotection against postinfarction remodeling and dysfunction through the IGF-1/PI3K/AKT signaling pathway[J].Life Sci,2021,267:118977.
[16]Glinton KE,Ma W,Lantz C,et al.Macrophage-produced VEGFC is induced by efferocytosis to ameliorate cardiac injury and inflammation[J].J Clin Invest,2022,132(9):e140685.
[17]Kawaguchi N,Nakanishi T.Stem cell studies in cardiovascular biology and medicine:a possible key role of macrophages[J].Biology (Basel),2022,11(1):122.
[18]Long C,Guo R,Han R,et al.Effects of macrophages on the proliferation and cardiac differentiation of human induced pluripotent stem cells[J].Cell Commun Signal,2022,20(1):108.
[19]Walravens AS,Smolgovsky S,Li L,et al.Mechanistic and therapeutic distinctions between cardiosphere-derived cell and mesenchymal stem cell extracellular vesicle non-coding RNA[J].Sci Rep,2021,11(1):8666.
[20]Follin B,Hoeeg C,Hjgaard LD,et al.The initial cardiac tissue response to cryopreserved allogeneic adipose tissue-derived mesenchymal stromal cells in rats with chronic ischemic cardiomyopathy[J].Int J Mol Sci,2021,22(21):11758.
[21]Lima Correa B,El Harane N,Gomez I,et al.Extracellular vesicles from human cardiovascular progenitors trigger a reparative immune response in infarcted hearts[J].Cardiovasc Res,2021,117(1):292-307.
[22]Hobby ARH,Berretta RM,Eaton DM,et al.Cortical bone stem cells modify cardiac inflammation after myocardial infarction by inducing a novel macrophage phenotype[J].Am J Physiol Heart Circ Physiol,2021,321(4):H684-H701.
[23]Yao Y,Li F,Zhang M,et al.Targeting CaMKⅡ-δ9 ameliorates cardiac ischemia/reperfusion injury by inhibiting myocardial inflammation[J].Circ Res,2022,130(6):887-903.
[24]Zhuang L,Zong X,Yang Q,et al.Interleukin-34-NF-κB signaling aggravates myocardial ischemic/reperfusion injury by facilitating macrophage recruitment and polarization[J].EBioMedicine,2023,95:104744.
[25]Qin YY,Huang XR,Zhang J,et al.Neuropeptide Y attenuates cardiac remodeling and deterioration of function following myocardial infarction[J].Mol Ther,2022,30(2):881-897.
[26]Jian Y,Zhou X,Shan W,et al.Crosstalk between macrophages and cardiac cells after myocardial infarction[J].Cell Commun Signal,2023,21(1):109.
[27]Wang X,Guo D,Li W,et al.Danshen (Salvia miltiorrhiza) restricts MD2/TLR4-MyD88 complex formation and signalling in acute myocardial infarction-induced heart failure[J].J Cell Mol Med,2020,24(18):10677-10692.
[28]Li Y,Li X,Chen X,et al.Qishen granule (QSG) inhibits monocytes released from the spleen and protect myocardial function via the TLR4-MyD88-NF-κB p65 pathway in heart failure mice[J].Front Pharmacol,2022,13:850187.
[29]Loi H,Kramar S,Laborde C,et al.Metformin attenuates postinfarction myocardial fibrosis and inflammation in mice[J].Int J Mol Sci,2021,22(17):9393.
[30]Ning Y,Huang P,Chen G,et al.Atorvastatin-pretreated mesenchymal stem cell-derived extracellular vesicles promote cardiac repair after myocardial infarction via shifting macrophage polarization by targeting microRNA-139-3p/Stat1 pathway[J].BMC Med,2023,21(1):96.
[31]Zhao T,Wang X,Liu Q,et al.Ginsenoside Rd promotes cardiac repair after myocardial infarction by modulating monocytes/macrophages subsets conversion[J].Drug Des Devel Ther,2022,16:2767-2782.
[32]Zhao J,Chen Y,Chen Q,et al.Curcumin ameliorates cardiac fibrosis by regulating macrophage-fibroblast crosstalk via IL18-p-SMAD2/3 signaling pathway inhibition[J].Front Pharmacol,2022,12:784041.
[33]Shi HT,Huang ZH,Xu TZ,et al.New diagnostic and therapeutic strategies for myocardial infarction via nanomaterials[J].EBioMedicine,2022,78:103968.
[34]Galili U,Goldufsky JW,Schaer GL.α-Gal nanoparticles mediated homing of endogenous stem cells for repair and regeneration of external and internal injuries by localized complement activation and macrophage recruitment[J].Int J Mol Sci,2022,23(19):11490.
[35]Torrieri G,F(xiàn)ontana F,F(xiàn)igueiredo P,et al.Dual-peptide functionalized acetalated dextran-based nanoparticles for sequential targeting of macrophages during myocardial infarction[J].Nanoscale,2020,12(4):2350-2358.
[36]Zhou J,Liu W,Zhao X,et al.Natural melanin/alginate hydrogels achieve cardiac repair through ROS scavenging and macrophage polarization[J].Adv Sci (Weinh),2021,8(20):2100505.
[37]Zhang Y,Cai Z,Shen Y,et al.Hydrogel-load exosomes derived from dendritic cells improve cardiac function via Treg cells and the polarization of macrophages following myocardial infarction[J].J Nanobiotechnology,2021,19(1):271.
[38]Chachques JC,Gardin C,Lila N,et al.Elastomeric cardiowrap scaffolds functionalized with mesenchymal stem cells-derived exosomes induce a positive modulation in the inflammatory and wound healing response of mesenchymal stem cell and macrophage[J].Biomedicines,2021,9(7):824.
[39]Xiao W,Chen M,Zhou W,et al.An immunometabolic patch facilitates mesenchymal stromal/stem cell therapy for myocardial infarction through a macrophage-dependent mechanism[J].Bioeng Transl Med,2023,8(3):e10471.
[40]Guo R,Wan F,Morimatsu M,et al.Cell sheet formation enhances the therapeutic effects of human umbilical cord mesenchymal stem cells on myocardial infarction as a bioactive material[J].Bioact Mater,2021,6(9):2999-3012.
收稿日期:2023-11-16