摘要: 針對(duì)石墨相氮化碳(g|C3N4或CN)的可見光吸收和活性位點(diǎn)暴露能力有限且光生載流子極易復(fù)合, 進(jìn)而限制CN基光催化材料活性的問題," 采用尿素作為前驅(qū)體, 二苯氨基脲作為摻雜試劑, 通過(guò)一步熱聚合法制備一種新型二苯氨基脲摻雜CN(BCN)的光催化劑. 通過(guò)氮?dú)馕絴解吸測(cè)試、 Fourier變換紅外(FT|IR)光譜、 X射線衍射(XRD)、 紫外|可見漫反射(UV|Vis DRS)光譜、 光致發(fā)光(PL)光譜和電化學(xué)阻抗分析(EIS)對(duì)BCN光催化劑進(jìn)行表征. 結(jié)果表明," 與CN相比, BCN光催化劑可顯著提升可見光吸收能力和光生電子空穴對(duì)分離效率, 比表面積約為原來(lái)的2倍;" BCN光催化劑在可見光照射下的產(chǎn)氫速率為588.7 μmol/(h·g), 約為原CN的2.0倍, 對(duì)四環(huán)素的光降解率為74%, 對(duì)應(yīng)速率常數(shù)約為原CN的1.5倍. 研究結(jié)果可為開發(fā)新型氮化碳光催化劑、 氫能源生產(chǎn)和抗生素污染修復(fù)提供有益參考.
關(guān)鍵詞: 石墨相氮化碳; 光催化; 二苯氨基脲; 產(chǎn)氫; 四環(huán)素; 降解
中圖分類號(hào): O643" 文獻(xiàn)標(biāo)志碼: A" 文章編號(hào): 1671-5489(2024)04-0999-09
Preparation of Diphenylaminourea Doped g|C3N4 and Its Photocatalytic Performance
TAI Meng1,2," WANG Yifei1,2,3," WANG Ying4," CHE Guangbo1,2,3," ZHOU Tianyu1,3,4
(1. Key Laboratory of Preparation and Application of Environmental Friendly Materials,"" Ministry of Education," Jilin Normal University," Changchun 130103, China;" 2. College of Chemistry," Jilin Normal University," Siping 136000," Jilin Province," China;3. College of Engineering," Jilin Normal University," Siping 136000," Jilin Province," China;" 4. Jilin Province Product Quality Supervision and Inspection Institute," Changchun 130012," China)
Abstract:" Aiming at the problem that"" the visible light absorption and active site exposure capacity of graphitic phase carbon nitride (g|C3N4 or CN) were limited," and the photogenerated carriers were easy to recombine," which" limited the activity of CN|based photocatalytic materials. A new type of diphenylaminourea doped CN (BCN) photocatalyst was" prepared by a" one|step thermal polymerization method using urea as a precursor and diphenylaminourea as dopant. The BCN photocatalyst was characterized by using nitrogen adsorption|desorption test," Fourier|transform infrared spectroscopy (FT|IR), X|ray diffraction (XRD), ultraviolet|visible spectroscopy (UV|Vis DRS), photolumine|scence spectroscopy (PL)," electrochemical impedance spectroscopy (EIS). The results show that compared with CN, the BCN photocatalyst can significantly improve visible|light absorption capacity and separation efficiency of photogenerated electron|hole pair," and the specific surface area is about twice that of the original."" The hydrogen production rate of the BCN photocatalyst under visible light irradiation is 588.7 μmol/(h·g)," which is about" twice that of" the original CN," and the photodegradation rate is 74% for tetracycline," corresponding" to rate constant of about" 1.5 times that of the original CN. This research results can provide useful references" for the development of novel CN photocatalysts,"" hydrogen energy production and antibiotic pollution remediation.
Keywords: graphite phase carbon nitride;" photocatalysis;" diphenylaminourea;" hydrogen production; tetracycline;" degradation
0 引 言
目前, 能源短缺和環(huán)境危機(jī)問題長(zhǎng)期阻礙現(xiàn)代社會(huì)的可持續(xù)發(fā)展, 也與碳達(dá)峰和碳中和的實(shí)現(xiàn)背道而馳. 因此, 亟待開發(fā)可持續(xù)的清潔能源生產(chǎn)和環(huán)境修復(fù)技術(shù). 光催化太陽(yáng)能轉(zhuǎn)換技術(shù)具有高效、 綠色、 經(jīng)濟(jì)等優(yōu)勢(shì), 被認(rèn)為是解決全球能源短缺和環(huán)境危機(jī)最有效的策略之一, 該技術(shù)實(shí)際應(yīng)用的關(guān)鍵取決于獲得高效、 耐用、 經(jīng)濟(jì)、 環(huán)保、 穩(wěn)定的光催化劑. 在光催化材料中, 石墨相氮化碳(g|C3N4或CN)作為一種無(wú)金屬半導(dǎo)體光催化材料受到人們廣泛關(guān)注, 它具有原料價(jià)格低廉、 制備簡(jiǎn)單、 化學(xué)和熱穩(wěn)定性良好、 禁帶寬度(Eg≈2.7 eV)較窄且能帶結(jié)構(gòu)可調(diào)節(jié)等優(yōu)點(diǎn), 因此在光降解、 光催化產(chǎn)H2和H2O2、 光催化固氮以及CO2還原等領(lǐng)域應(yīng)用廣泛. 但純CN存在一些缺點(diǎn), 如比表面積小、 活性位點(diǎn)暴露少、 對(duì)太陽(yáng)光利用率低以及光生電子和空穴易復(fù)合等, 從而極大限制了它在光催化領(lǐng)域的應(yīng)用.
為克服這些缺點(diǎn), 可通過(guò)摻雜、 構(gòu)建異質(zhì)結(jié)、 調(diào)控形貌和構(gòu)建缺陷等策略改善單一CN的性能. 摻雜可有效調(diào)節(jié)材料的形貌、 光吸收范圍和光生載流子復(fù)合程度: 摻雜可調(diào)控CN形貌, 增大比表面積以增加反應(yīng)活性位點(diǎn); 種類豐富的摻雜劑能參與CN結(jié)構(gòu), 有利于電子空穴的分離和轉(zhuǎn)移, 有效抑制光生載流子復(fù)合;" 摻雜還能調(diào)節(jié)CN能級(jí)結(jié)構(gòu), 從而調(diào)節(jié)禁帶寬度, 提升光吸收能力和范圍. 研究表明, 將不同結(jié)構(gòu)的小分子與尿素共融, 所構(gòu)筑的摻雜型CN可顯著提高光催化性能. 如人們利用喹唑啉|2,4|二胺和水楊酸等小分子與尿素聚合制備了性能顯著提升的CN光催化劑." 如圖1所示的二苯氨基脲是一種含有2個(gè)苯環(huán)的富氮類物質(zhì), 其上的氨基可通過(guò)胺醛縮合與尿素反應(yīng), 目前, 采用該物質(zhì)改性CN的研究尚未見文獻(xiàn)報(bào)道.
基于此," 本文以二苯氨基脲為小分子摻雜劑, 尿素為前驅(qū)體, 通過(guò)一步熱聚合構(gòu)筑光催化性能降解顯著提升的新型CN光催化劑. 通過(guò)對(duì)該光催化劑進(jìn)行結(jié)構(gòu)、 形貌、 光電性質(zhì)和活性物質(zhì)捕獲實(shí)驗(yàn)等表征測(cè)試分析, 研究該光催化劑的產(chǎn)氫和降解性能及其提升機(jī)制.
1 實(shí) 驗(yàn)
1.1 試 劑
尿素(CH4N2O)、 四環(huán)素(C22H24N2O8)和二苯氨基脲(C13H14N4O)購(gòu)自美國(guó)阿拉丁試劑有限公司, 抗壞血酸(C6H8O6)、 異丙醇(C3H8O)和EDTA|2Na(C10H14N2Na2O8)購(gòu)自國(guó)藥集團(tuán)化學(xué)試劑有限公司, 其他試劑均為國(guó)產(chǎn)分析純?cè)噭?
1.2 儀 器
UV|2700型紫外可見分光光度儀(日本島津公司); JSM|7800F型掃描電子顯微鏡(日本JEOL公司); F|7100型熒光光譜儀(日本日立公司); ESCALAB250XI型X射線光電子能譜儀(美國(guó)Thermo Fisher公司); KSL|1100X|S型馬弗爐(合肥科晶有限公司); 3H|2000PS1型全自動(dòng)氣體吸附儀(美國(guó)康塔公司); CHI660C型電化學(xué)工作站(上海辰華儀器公司); GC|2014型氣相色譜(日本島津公司);" IBH|TemPro型熒光壽命測(cè)試系統(tǒng)(美國(guó)IBH|TemPro JV公司).
1.3 光催化劑的合成
采用一步熱誘導(dǎo)共聚法制備光催化劑:" 將20 g尿素和20 mg二苯氨基脲置于坩堝中, 混合物加熱至150" ℃獲得澄清溶液. 冷卻至室溫后, 將混合物置于馬弗爐中, 以5 ℃/min加熱至600 ℃并保持3 h. 冷卻至室溫后, 將固體研磨成粉末即制得二苯氨基脲摻雜的CN, 記為BCN. 采用相同方法制備CN, 但在制備過(guò)程中不加入二苯氨基脲. 反應(yīng)過(guò)程如圖2所示.
1.4 光催化實(shí)驗(yàn)
為考察制備的光催化劑對(duì)四環(huán)素(TC)的光降解效果, 選擇300 W Xe燈(截止濾光片濾除紫外光)為可見光光源, 并在反應(yīng)過(guò)程中通過(guò)循環(huán)水以避免Xe燈產(chǎn)熱而影響光降解. 將10 mg的BCN或CN分別分散于TC(10 mg/L, 50 mL)溶液中, 混合后在避光條件下攪拌30 min, 達(dá)到吸附|解吸平衡后開燈, 每隔一定時(shí)間取1.5 mL混合液用濾頭(0.22 μm)過(guò)濾, 濾液用紫外|可見分光光度計(jì)在358 nm波長(zhǎng)下分析TC吸光度變化.
利用光催化析氫實(shí)驗(yàn)研究光催化劑在常壓下的活性. 將30 mg樣品均勻加入到含有體積分?jǐn)?shù)為10%三乙醇胺(TEOA, 犧牲劑)和質(zhì)量分?jǐn)?shù)為3%Pt(共催化劑)的100 mL水溶液中. 采用300 W、 波長(zhǎng)大于420 nm的Xe燈作為可見光源, 循環(huán)水條件下保持系統(tǒng)溫度為20 ℃. 產(chǎn)生的H2通過(guò)氣相色譜法檢測(cè).
1.5 活性物種捕獲實(shí)驗(yàn)
通過(guò)在TC溶液中加入不同猝滅劑以檢測(cè)光催化降解過(guò)程中產(chǎn)生的活性物質(zhì). 捕獲實(shí)驗(yàn)過(guò)程與光催化降解實(shí)驗(yàn)相似, 分別加入1 mmol/L的異丙醇(IPA)、 抗壞血酸(L|AA)和EDTA|2Na作為猝滅劑, 分別捕獲·OH,O·-2和h+.
2 結(jié)果與討論
2.1 結(jié)構(gòu)與成分
通過(guò)X射線衍射(XRD)測(cè)試分析樣品的晶相, 結(jié)果如圖3所示. 由圖3可見, 2個(gè)樣品在13.2°和27.6°處均出現(xiàn)2個(gè)典型特征峰, 分別對(duì)應(yīng)CN基材料的100和002晶面.
這2個(gè)特征峰來(lái)源于三氮平面上的重復(fù)單元和層間堆疊, 表明加入二苯氨基脲未破壞CN的主骨架, 但002晶面的峰值強(qiáng)度降低, 寬度變寬, 表明摻雜二苯氨基脲改變了CN平面的層間堆疊.
CN和BCN的掃描電子顯微鏡(SEM)照片和X射線能譜(EDS)分別如圖4和圖5所示. 由圖4和圖5可見:" CN呈塊狀堆疊結(jié)構(gòu)(圖4(A)), BCN呈更細(xì)碎的塊狀堆疊結(jié)構(gòu)(圖5(A));" 2個(gè)樣品均含C,N,O 3種元素(圖 4(B)~(D), 圖5(B)~(D)).
用氮?dú)馕絴解吸實(shí)驗(yàn)研究2種材料的比表面積和孔徑情況, 結(jié)果如圖6所示. 由圖6可見, 與純CN (45.0 m2/g)相比, BCN (96.8 m2/g)具有更大的比表面積和孔體積, 顯著增加的比表面積和細(xì)碎的邊緣結(jié)構(gòu)非常有利于吸附和催化位點(diǎn)接觸污染物, 從而提升光催化性能. ""CN和BCN的Fourier變換紅外(FT|IR)光譜如圖7所示. 由圖7可見:" 2個(gè)樣品在3 000~3 700 cm-1內(nèi)存在明顯吸收, 對(duì)應(yīng)—OH和—NH2的伸縮振動(dòng); 在1 250~1 750 cm-1和810 cm-1處的特征峰分別對(duì)應(yīng)芳香CN雜環(huán)單元和三嗪?jiǎn)卧纳炜s振動(dòng). 這些相似的FT|IR光譜表明, 引入二苯氨基脲未對(duì)CN的官能團(tuán)產(chǎn)生明顯影響.
2.2 光電性質(zhì)
采用紫外|可見漫反射(UV|Vis DRS)光譜儀測(cè)試材料的光吸收性能, 結(jié)果如圖8(A)所示. 由圖8(A)可見, 與CN相比, BCN在可見光范圍內(nèi)的吸收明顯增強(qiáng), 且整體吸收峰出現(xiàn)紅移, 進(jìn)一步表明加入二苯氨基脲有助于提高催化劑對(duì)可見光的吸收能力. 根據(jù)公式
A(hν-Eg)n/2=αhν
計(jì)算得到CN和BCN的帶隙(Eg)如圖8(B)所示, 其值分別為2.67,2.17 eV. 由圖8(B)可見, 加入二苯氨基脲縮小了Eg, 有利于電子從價(jià)帶VB向?qū)B躍遷, 促進(jìn)了光催化反應(yīng). 由Mott|Schottky曲線(圖8(C))可見, CN和BCN均為典型的n型半導(dǎo)體, 平帶電位Ef分別為-0.89,-0.77 eV(相對(duì)于Ag/AgCl), 因此, CN和BCN的ECB分別為-0.79,-0.67 eV(相對(duì)于NHE). 根據(jù)
Eg = EVB-ECB
計(jì)算CN和BCN的EVB分別為1.88,1.50 eV," CN和BCN的能帶如圖8(D)所示.
通過(guò)光致發(fā)光光譜(PL)技術(shù)研究摻入二苯氨基脲對(duì)CN材料中載流子分離和遷移行為的影響. CN和BCN的PL光譜如圖9所示. 由圖9可見, 摻雜二苯氨基脲后, BCN樣品的PL峰被明顯猝滅, 同時(shí)在520 nm附近出現(xiàn)另一個(gè)明顯的PL猝滅信號(hào), 根據(jù)UV|Vis DRS結(jié)果和文獻(xiàn)分析, 這可能是n|π*躍遷結(jié)果. 表明摻雜二苯氨基脲可有效抑制載流子復(fù)合, 同時(shí)產(chǎn)生新的電子躍遷模式. 為進(jìn)一步證明上述觀點(diǎn), 將CN和BCN粉末和懸浮液在紫外|可見光下照射, 結(jié)果如圖10所示." 由圖10可見, 其結(jié)果與PL光譜結(jié)果一致, 說(shuō)明與CN相比, BCN粉末和懸浮液的PL明顯較弱, 從而證實(shí)了其載體重組效率明顯受到抑制.
CN和BCN催化劑的電化學(xué)阻抗(ELS)光譜如圖11所示, 其中CN和BCN的內(nèi)阻分別為36,38 Ω, 電阻分別為358,20 Ω. 由圖11可見, 與光降解的趨勢(shì)一致, BCN顯著小于CN的電化學(xué)阻抗半徑, 表明BCN具有更小的電化學(xué)阻抗, 進(jìn)一步說(shuō)明摻雜二苯氨基脲可有效降低電荷遷移阻抗, 促進(jìn)電荷遷移.
2.3 光催化性能
2.3.1 光降解TC
為考察光催化劑對(duì)污染物的去除行為, 在可見光照射下, 測(cè)定CN和BCN對(duì)TC的降解性能, 結(jié)果如圖12所示.
由圖12(A)可見, TC的自降解作用可忽略不計(jì), 在100 min內(nèi), CN和BCN對(duì)TC的降解率分別為53%和74%. 可見, 加入二苯氨基脲可顯著提升CN對(duì)TC的光催化降解性能. 這可能歸因于BCN具有更大的比表面積、 更有效的電子空穴分離效率和更低的光生電子|空穴復(fù)合率. 由圖12(B)可見, BCN約為CN降解速率常數(shù)k的1.5倍. 由圖12(D)可見," 經(jīng)4次循環(huán)后, BCN對(duì)TC的降解率略降低, 這可能是循環(huán)回收過(guò)程中, 細(xì)小尺寸的催化劑損失所致, 表明BCN樣品具有良好的穩(wěn)定性和實(shí)用性.
2.3.2 活性物種
通過(guò)在反應(yīng)過(guò)程中加入不同猝滅劑, 研究不同自由基對(duì)BCN光降解TC的影響, 結(jié)果如圖13所示." 與空白體系對(duì)比, 分別添加L|AA,EDTA|2Na和IPA用于猝滅O·-2,h+和·OH. 由圖13可見, 添加猝滅劑后, BCN光催化降解TC效果均明顯受到抑制作用, 因此O·-2,·OH和h+在BCN降解TC過(guò)程中均是主要活性物質(zhì), 其貢獻(xiàn)順序?yàn)閔+ gt;O·-2gt;·OH.
2.3.3 光催化產(chǎn)氫
BCN光催化劑的產(chǎn)氫速率和產(chǎn)氫量如圖14所示. 由圖14(A)可見, BCN比純CN有更高的光催化產(chǎn)氫性能, BCN的光催化產(chǎn)氫速率為588.7 μmol/(h·g), 約為原CN(292.3 μmol/(h·g))的2.0倍. 由圖14(B)可見, 在相同時(shí)間內(nèi), BCN均明顯高于CN的析氫量. 上述實(shí)驗(yàn)結(jié)果表明, 摻雜二苯氨基脲可顯著提高CN的光催化性能.
2.4 光催化機(jī)理
光催化劑的產(chǎn)氫降解機(jī)理如圖15所示.
由圖15可見, 摻雜二苯氨基脲后的BCN有更細(xì)碎的結(jié)構(gòu)以及更小的帶隙結(jié)構(gòu), 較窄的帶隙和較大的比表面積共同促進(jìn)了光生激子的分離和光生載流子的遷移, 在可見光照射下, 帶負(fù)電的電子躍遷到導(dǎo)帶(CB), 還原水中的氫離子產(chǎn)生氧氣, 同時(shí)與大氣中的氧氣發(fā)生還原反應(yīng)產(chǎn)生超氧自由基. 帶正電的空穴留在價(jià)帶(VB)與活性氧共同促進(jìn)了污染物TC的降解.
綜上所述, 本文以尿素為前驅(qū)體, 制備了二苯氨基脲摻雜的新型BCN光催化劑. 該BCN光催化劑具有較大的比表面積," 提升了可見光吸收強(qiáng)度和吸收范圍, 明顯改善了電荷行為. 使得改性后的CN提供了更暴露的活性位點(diǎn)、 更窄的帶隙、 更低的電化學(xué)遷移阻抗、 更高的電子空穴分離效率和更低的載流子復(fù)合率." BCN約為CN的光催化降解速率常數(shù)的1.5倍, 產(chǎn)氫速率約為2.0倍. 該研究為改性CN基光催化應(yīng)用于氫能源生產(chǎn)和抗生素污染修復(fù)提供了新思路.
參考文獻(xiàn)
[1] LIN J K," TIAN W J," GUAN Z Y," et al. Functional Carbon Nitride Materials in Photo|Fenton|Like Catalysis for Environmental Remediation" . Advanced Functional Materials," 2022," 32: 2201743|1|2201743|31.
[2] CHEN J B," KANG N X," FAN J J," et al. Carbon Nitride for Photocatalytic Water Splitting to Produce Hydrogen and Hydrogen Peroxide" . Materials Today Chemistry," 2022," 26: 101028|1|101028|16.
[3] CHENG L," ZHANG H W," LI X," et al. Carbon|Graphitic Carbon Nitride Hybrids for Heterogeneous Photocatalysis" . Small," 2021," 17: 2005231|1|2005231|22.
[4] 胡長(zhǎng)朝, 蔡露, 李鈺, 等. NH2|UiO|66/BiOBr/Bi2S3光催化劑的合成及其光催化性能" . 西華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2022, 41(4): 1|10. (HU C C, CAI L, LI Y, et al. Study on Synthesis and Photocatalytic Performance of NH2|UiO|66/BiOBr/Bi2S3 Photocatalyst" . Journal of Xihua University (Natural Science Edition), 2022, 41(4): 1|10.)
[5] 許汐龍, 方嘉, 衣程程, 等. 金屬有機(jī)骨架材料吸附CO2的研究進(jìn)展" . 西華大學(xué)學(xué)報(bào)(自然科學(xué)版), 2024, 43(2): 39|49. (XU X L, FANG J, YI C C, et al. Research Progress of CO2 Adsorption Technology of Metal|Organic Frameworks Materials" . Journal of Xihua University (Natural Science Edition), 2024, 43(2): 39|49.)
[6] 宋志強(qiáng), 王玉高, 張宇姝, 等." 活性炭/金屬有機(jī)骨架復(fù)合吸附材料的制備及其CH4/N2吸附分離性能研究" . 低碳化學(xué)與化工, 2023, 48(5): 163|175. (SONG Z Q, WANG Y G, ZHANG Y S, et al. Study on Preparation of Activated Carbon/Metal|Organic Frameworks Composite Adsorbent Materials and Their CH4/N2 Adsorption and Separation Performance" . Low|Carbon Chemistry and Chemical Engineering, 2023, 48(5): 163|175.)
[7] 董雙石, 付紹珠, 于洋, 等. 還原氧化石墨烯復(fù)合方式對(duì)Ag|TiO2基光電極電子傳輸性能的影響" . 吉林大學(xué)學(xué)報(bào)(地球科學(xué)版), 2020, 50(1): 234|242. (DONG S S, FU S Z, YU Y, et al. Effect of Reduced Graphene Oxide Composite Method on Electron Transport Performance of Ag|TiO2 Based Photoelectrodes" . Journal of Jilin University (Earth Science Edition), 2020, 50(1): 234|242.)
[8] XING Y," WANG X," HAO S," et al. Recent Advances in the Improvement of g|C3N4 Based Photocatalytic Materials" . Chinese Chemical Letters," 2021," 32: 13|20.
[9] ZHAO S," LIU Y P," WANG Y Y," et al. A Self|assembly Strategy to Synthesize Carbon Doped Carbon Nitride Microtubes with a Large π|Electron Conjugated System for Efficient H2 Evolution . Chemical Engineering Journal," 2022," 447: 137436|1|137436|9.
[10] TONG C," JING L Q," XIE M," et al. C—O Band Structure Modified Broad Spectral Response Carbon Nitride with Enhanced Electron Density in Photocatalytic Peroxymonosulfate Activation for Bisphenol Pollutants Removal" . Journal of Hazardous Materials," 2022," 432: 128663|1|128663|17.
[11] LI X B," KANG B B," DONG F," et al. Enhanced Photocatalytic Degradation and H2/H2O2 Production Performance of S|PCN/WO2.72 S|Scheme Heterojunction with Appropriate Surface Oxygen Vacancies" . Nano Energy," 2021," 81:" 105671|1|105671|11.
[12] BAO H," WANG L," LI G," et al. Carrier Engineering of Carbon Nitride Boosts Visible|Light Photocatalytic Hydrogen Evolution" . Carbon," 2021," 179: 80|88.
[13] HUO T T," BA G," DENG Q H," et al. A Dual Strategy for Synthesizing Carbon/Defect Comodified Polymeric Carbon Nitride Porous Nanotubes with Boosted Photocatalytic Hydrogen Evolution and Synchronous Contaminant Degradation" . Applied Catalysis B:" Environmental," 2021," 287: 119995|1|119995|12.
[14] LUO L," WANG K R," GONG Z Y," et al. Bridging|Nitrogen Defects Modified Graphitic Carbon Nitride Nanosheet for Boosted Photocatalytic Hydrogen Production" . International Journal of Hydrogen Energy," 2021," 46: 27014|27025.
[15] LI C M," ZHOU T X," YAN M," et al. Intramolecular π|Conjugated Channel Expansion Achieved by Doping Cross|Linked Dopants into Carbon Nitride Frameworks for Propelling Photocatalytic Hydrogen Evolution and Mechanism Insight . Inorganic Chemistry Frontiers," 2022," 9: 60|69.
[16] YU Y," YAN W," GAO W Y," et al. Aromatic Ring Substituted g|C3N4 for Enhanced Photocatalytic Hydrogen Evolution . Journal of Materials Chemistry A," 2017," 5: 17199|17203.
[17] KIM H," GIM S," JEON T H," et al. Distorted Carbon Nitride Structure with Substituted Benzene Moieties for Enhanced Visible Light Photocatalytic Activities . ACS Applied Materials amp; Interfaces," 2017," 9: 40360|40368.
[18] CHEN Z H," LI S S," PENG Y N," et al. Tailoring Aromatic Ring|Terminated Edges of g|C3N4 Nanosheets for Efficient Photocatalytic Hydrogen Evolution with Simultaneous Antibiotic Removal . Catalysis Science amp; Technology," 2020," 10: 5470|5479.
[19] ZHOU C Y," HUANG D L," XU P," et al. Efficient Visible Light Driven Degradation of Sulfamethazine and Tetracycline by Salicylic Acid Modified Polymeric Carbon Nitride via Charge Transfer . Chemical Engineering Journal," 2019," 370: 1077|1086.
[20] ZHOU T Y," SHI J M, "LI G J," et al. Advancing n|π* Electron Transition of Carbon Nitride via Distorted Structure and Nitrogen Heterocycle for Efficient Photodegradation:" Performance," Mechanism and Toxicity Insight . Journal of Colloid and Interface Science," 2023," 632: 285|298.
[21] ZHOU T Y," LI T T," HOU J Y," et al. Tailoring Boron Doped Intramolecular Donor|Acceptor Integrated Carbon Nitride Skeleton with Propelling Photocatalytic Activity and Mechanism Insight . Chemical Engineering Journal," 2022," 445: 136643|1|136643|13.
[22] SHI J M," TAI M," HOU J Y," et al. Intramolecular D|A Structure and n|π* Transition Co|promoted Photodegradation Activity of Carbon Nitride:" Performance," Mechanism and Toxicity Insight . Chemical Engineering Journal," 2023, "456: 141029|1|141029|14.
[23] GAO X M," SHU C," ZHANG C," et al. Substituent Effect of Conjugated Microporous Polymers on the Photocatalytic Hydrogen Evolution Activity . Journal of Materials Chemistry A," 2020," 8: 2404|2411.
[24] CHEN L," WANG Y X," CHENG S," et al. Nitrogen Defects/Boron Dopants Engineered Tubular Carbon Nitride for Efficient Tetracycline Hydrochloride Photodegradation and Hydrogen Evolution . Applied Catalysis B:" Environmental," 2022," 303: 120932|1|120932|9.
[25] DONG H J," ZUO Y," XIAO M Y," et al. Limbic Inducted and Delocalized Effects of Diazole in Carbon Nitride Skeleton for Propelling Photocatalytic Hydrogen Evolution . ACS Applied Materials amp; Interfaces," 2021," 13: 56273|56284.
[26] DU J," LI S Y," DU Z," et al. Boron/Oxygen|Codoped Graphitic Carbon Nitride Nanomesh for Efficient Photocatalytic Hydrogen Evolution . Chemical Engineering Journal," 2021," 407: 127114|1|127114|9.
[27] WANG X," ZHAO Y N," TAN H Q," et al. Foamer|Derived Bulk Nitrogen Defects and Oxygen|Doped Porous Carbon Nitride with Greatly Extended Visible|Light Response and Efficient Photocatalytic Activity . ACS Applied Materials amp; Interfaces," 2021," 13: 23866|23876.
[28] FEI T," QIN C C," ZHANG Y W," et al. A 3D Peony|Like Sulfur|Doped Carbon Nitride Synthesized by Self|assembly for Efficient Photocatalytic Hydrogen Production . International Journal of Hydrogen Energy," 2021," 46: 20481|20491.
[29] ZHAO G G," LI B W," YANG X N," et al. Two Birds with One Stone:" Engineering Polymeric Carbon Nitride with n|π*Electronic Transition for Extending Light Absorption and Reducing Charge Recombination . Advanced Powder Materials," 2023," 2: 100077|1|100077|8.
[30] CHE H N," GAO X," CHEN J," et al. Iodide|Induced Fragmentation of Polymerized Hydrophilic Carbon Nitride for High|Performance Quasi|homogeneous Photocatalytic H2O2 Production . Angewandte Chemie International Edition," 2021," 60: 25546|25550.
(責(zé)任編輯: 單 凝)