摘要: 在相繼增壓系統(tǒng)切換過(guò)程中增壓器軸向力的變化會(huì)嚴(yán)重影響其穩(wěn)定性,以Garrett TBP4增壓器的壓氣機(jī)端為研究對(duì)象,建立了壓氣機(jī)全流道計(jì)算域并劃分多面體網(wǎng)格,設(shè)計(jì)7個(gè)工況,利用CFD研究了相繼增壓系統(tǒng)切換過(guò)程中的切換時(shí)間、切換轉(zhuǎn)速、切換出口壓力變化對(duì)壓氣機(jī)軸向力的影響規(guī)律,同時(shí)結(jié)合內(nèi)部流場(chǎng)分析軸向力變化機(jī)理。結(jié)果表明:切換時(shí)間主要影響軸向力的突增時(shí)刻,切換轉(zhuǎn)速幅值主要影響最終軸向力的大小,切換出口壓力幅值主要影響軸向力突增與否;葉片軸向力受流場(chǎng)影響最大。
關(guān)鍵詞: 相繼增壓系統(tǒng);離心式壓氣機(jī);軸向力
DOI: 10.3969/j.issn.1001-2222.2024.04.006
中圖分類號(hào): U464.135.2文獻(xiàn)標(biāo)志碼: B文章編號(hào): 1001-2222(2024)04-0038-08
相繼渦輪增壓系統(tǒng)[1],由2臺(tái)或2臺(tái)以上不同大小渦輪增壓器[2]并聯(lián)組成,根據(jù)發(fā)動(dòng)機(jī)不同工況對(duì)增壓器的工作數(shù)量進(jìn)行控制。當(dāng)發(fā)動(dòng)機(jī)轉(zhuǎn)速或負(fù)荷高于設(shè)定值時(shí),由小增壓器切換為大增壓器,當(dāng)負(fù)荷進(jìn)一步提升時(shí)由大增壓器切換為雙增壓器模式;當(dāng)發(fā)動(dòng)機(jī)轉(zhuǎn)速或負(fù)荷降低時(shí)進(jìn)行反向切換[3]。切換過(guò)程對(duì)增壓器軸向力的影響因素包括切換時(shí)間、切換轉(zhuǎn)速幅值、切換出口壓力幅值、發(fā)動(dòng)機(jī)排氣背壓、發(fā)動(dòng)機(jī)負(fù)荷和轉(zhuǎn)速等。因此,在相繼增壓系統(tǒng)中增壓器常處于變工況運(yùn)行,導(dǎo)致其工作環(huán)境進(jìn)一步惡劣,增壓器易出現(xiàn)漏油、葉片與殼體摩擦、止推軸承損壞等情況[4]。增壓器的壓氣機(jī)端作為直接增壓的核心部件,內(nèi)部氣體壓力較大,增壓器輕量化設(shè)計(jì)導(dǎo)致增壓器動(dòng)載荷尤其是轉(zhuǎn)子不平衡力增大[5],可變結(jié)構(gòu)增壓器更進(jìn)一步增加了軸向不平衡力。王超等[6]探究了發(fā)動(dòng)機(jī)不同運(yùn)行工況和排氣制動(dòng)工況下渦輪增壓器的軸向力變化情況,發(fā)現(xiàn)瞬態(tài)工況下軸向力與發(fā)動(dòng)機(jī)負(fù)荷、扭矩等加載速率有關(guān)。張虹等[7]利用流固耦合方法對(duì)壓氣機(jī)近阻塞、最高效率以及近喘振3個(gè)典型工況點(diǎn)進(jìn)行研究,發(fā)現(xiàn)壓氣機(jī)葉輪應(yīng)力在軸孔底部最大,同時(shí)受離心載荷和氣動(dòng)載荷作用。馬朝臣等[8]研究了葉輪與進(jìn)氣彎管和出口蝸殼發(fā)生動(dòng)靜干涉時(shí)的壓氣機(jī)葉輪氣動(dòng)激勵(lì)與振動(dòng),發(fā)現(xiàn)壓氣機(jī)長(zhǎng)葉片吸力面前緣動(dòng)應(yīng)力與離心應(yīng)力較大,容易造成疲勞失效和發(fā)生斷裂的風(fēng)險(xiǎn)。張健健等[9]對(duì)增壓器止推軸承承載能力進(jìn)行評(píng)估,為增壓器止推軸承前期選型提供參考。Mohand Younsi等[10]提出預(yù)測(cè)軸向力的半經(jīng)驗(yàn)公式。Thales Freitas Peixoto等[11]通過(guò)壓氣機(jī)出口和擴(kuò)壓板之間的壓力計(jì)算軸向力。M. Fontana等[12]用試驗(yàn)方法得到離心式壓氣機(jī)軸向力的結(jié)果。為深入了解壓氣機(jī)內(nèi)部氣體的流動(dòng)狀況,康達(dá)等[13]利用數(shù)值方法對(duì)高壓比離心壓氣機(jī)漩渦結(jié)構(gòu)和流動(dòng)損失的產(chǎn)生及機(jī)理進(jìn)行研究,總結(jié)出了受迫渦與自由渦的二次流識(shí)別方法。趙會(huì)晶等[14]利用試驗(yàn)方法研究了葉頂間隙對(duì)離心式壓氣機(jī)總體性能及流場(chǎng)的影響,結(jié)果表明:壓氣機(jī)在運(yùn)行過(guò)程中葉頂間隙會(huì)隨時(shí)間波動(dòng),且葉頂間隙增大會(huì)使得壓氣機(jī)效率和壓比下降,同時(shí)流量的變化會(huì)使泄漏二次流影響的區(qū)域發(fā)生變化。
目前對(duì)于相繼增壓系統(tǒng)切換過(guò)程中的壓氣機(jī)軸向力變化規(guī)律研究較少,所以本研究以Garrett TBP4增壓器的壓氣機(jī)為研究對(duì)象,選取了相繼增壓切換過(guò)程中3個(gè)主要影響因素即切換時(shí)間、切換轉(zhuǎn)速、切換出口壓力變化對(duì)壓氣機(jī)軸向力的影響規(guī)律進(jìn)行了研究。試驗(yàn)工況為發(fā)動(dòng)機(jī)轉(zhuǎn)速1 350 r/min,100%負(fù)荷。
1模型建立及驗(yàn)證
為獲得壓氣機(jī)流體域,采用solidworks軟件建立壓氣機(jī)葉輪、壓氣機(jī)殼等幾何模型,通過(guò)Ansys SCDM軟件對(duì)壓氣機(jī)從進(jìn)口到擴(kuò)壓器出口的轉(zhuǎn)動(dòng)區(qū)域和壓氣機(jī)殼體的靜止區(qū)域進(jìn)行提取、分割,設(shè)置動(dòng)靜域的交界面,使得兩個(gè)區(qū)域的數(shù)據(jù)進(jìn)行交換。
圖1示出增壓器軸向力示意圖,取渦輪端指向壓氣機(jī)端為負(fù)方向。利用fluent meshing軟件繪制壓氣機(jī)全流道多面體網(wǎng)格,由于軸向力主要來(lái)源為葉片、輪轂、輪背, 且葉片、輪轂區(qū)域結(jié)構(gòu)較為復(fù)雜、扭曲,故對(duì)其周圍的區(qū)域進(jìn)行加密處理。圖2示出壓氣機(jī)計(jì)算域網(wǎng)格模型。
為保證計(jì)算效率的同時(shí)獲得高質(zhì)量CFD計(jì)算結(jié)果,制定5種壓氣機(jī)網(wǎng)格方案:90萬(wàn)、120萬(wàn)、166萬(wàn)、254萬(wàn)、366萬(wàn)。按照邊界理論,若邊界層的厚度比物面特征尺寸小得多,在運(yùn)用N-S方程進(jìn)行逐項(xiàng)數(shù)量級(jí)分析時(shí),可近似認(rèn)為邊界層垂直方向上的壓力不變,并且壓氣機(jī)軸向力形成的主要原因是兩端氣動(dòng)載荷分布不均勻,因此,用靜壓作為網(wǎng)格無(wú)關(guān)性的評(píng)價(jià)指標(biāo)。在壓氣機(jī)相鄰兩葉片之間取10個(gè)點(diǎn)對(duì)壓力進(jìn)行監(jiān)測(cè),如圖3所示。圖4示出了壓力驗(yàn)證結(jié)果,圖中量綱為一的數(shù)值x表示所取的10個(gè)點(diǎn)。
如圖4所示,監(jiān)測(cè)點(diǎn)的壓力值隨著網(wǎng)格密度的增加而增大,且方案四與方案五的結(jié)果差值不超過(guò)1.5%,為了節(jié)約計(jì)算資源、加快計(jì)算時(shí)間,選擇方案四作為計(jì)算網(wǎng)格方案。
本研究選用的機(jī)型與文獻(xiàn)[15]中一致,所以利用壓氣機(jī)出口模擬壓力值與文獻(xiàn)[15]中試驗(yàn)壓力值對(duì)比進(jìn)行模型驗(yàn)證。不同轉(zhuǎn)速下壓氣機(jī)出口壓力對(duì)比結(jié)果如表1所示。由表1可知,試驗(yàn)值與模擬值的誤差在5%之內(nèi),相對(duì)誤差在工程允許范圍之內(nèi),所以該模型滿足要求。
2切換過(guò)程壓氣機(jī)軸向力仿真分析
進(jìn)行壓氣機(jī)瞬態(tài)軸向力仿真前,對(duì)其初始場(chǎng)進(jìn)行穩(wěn)態(tài)計(jì)算,以穩(wěn)態(tài)計(jì)算結(jié)果作為瞬態(tài)計(jì)算的初始條件。穩(wěn)態(tài)計(jì)算邊界條件為增壓器轉(zhuǎn)速80 768 r/min、壓氣機(jī)出口壓力194 496 Pa。穩(wěn)態(tài)計(jì)算壓氣機(jī)軸向力為-14.94 N。
2.1切換時(shí)間對(duì)壓端軸向力的影響規(guī)律
2.1.1切換邊界條件設(shè)置
壓氣機(jī)邊界條件根據(jù)試驗(yàn)數(shù)據(jù)給定:給定壓氣機(jī)轉(zhuǎn)速;進(jìn)口給定總溫、總壓;固體壁面設(shè)定為絕熱無(wú)滑移邊界條件[16]。依據(jù)Fluent中的udf功能,設(shè)置瞬態(tài)仿真過(guò)程中轉(zhuǎn)速和出口壓力變化曲線,模擬壓氣機(jī)切換過(guò)程。仿真工況設(shè)置如表2所示。
工況1邊界條件根據(jù)文獻(xiàn)[15]試驗(yàn)數(shù)據(jù)給定,工況1、工況2和工況3用于探究切換時(shí)間對(duì)軸向力的影響,工況1、工況4和工況5用于探究切換轉(zhuǎn)速幅值變化對(duì)軸向力的影響;工況2、工況6和工況7用于探究切換出口壓力幅值變化對(duì)軸向力的影響。
2.1.2仿真結(jié)果與分析
如圖5所示,切換時(shí)間改變會(huì)影響切換過(guò)程中壓氣機(jī)端總軸向力變化過(guò)程。切換時(shí)間長(zhǎng)短會(huì)影響切換過(guò)程中軸向力突然增大的時(shí)刻以及突增幅值,切換時(shí)間越短突增時(shí)刻出現(xiàn)越早,1 s切換時(shí)間突增幅值最大,為5.34 N,0.75 s切換時(shí)間突增幅值為4.09 N,相較于基準(zhǔn)下降了73.42%,0.5 s切換時(shí)間突增幅值為4.23 N。隨著切換時(shí)間縮短,壓氣機(jī)轉(zhuǎn)速和出口壓力的下降速率加快,可能導(dǎo)致流場(chǎng)更早遠(yuǎn)離穩(wěn)定狀態(tài),因而軸向力突增時(shí)刻提前。切換時(shí)間為1 s與0.5 s時(shí)軸向力均出現(xiàn)先增大后減小的兩次波動(dòng),但是0.75 s切換時(shí)間下只出現(xiàn)一次大的波動(dòng)。隨著切換時(shí)間縮短,切換初期壓端軸向力增加速率會(huì)減緩??梢?jiàn)切換時(shí)間幾乎不會(huì)影響壓端最終軸向力。
由圖6可知,隨著切換時(shí)間縮短,輪背軸向力更早進(jìn)入下降階段;時(shí)間越短,切換過(guò)程中出現(xiàn)的最大輪背軸向力越小,0.5 s時(shí)最大軸向力為-451.78 N,0.75 s時(shí)最大軸向力為-456.52 N,1 s時(shí)最大軸向力為-458.23 N。切換時(shí)間縮短25%,最大軸向力相較參考值減少0.37%;切換時(shí)間縮短50%,最大軸向力相較參考值減少1.4%。
如圖7所示,切換時(shí)間縮短,輪轂軸向力下降速率加快;切換時(shí)間縮短幾乎沒(méi)有影響切換結(jié)束時(shí)的輪轂軸向力,切換時(shí)間為0.5 s時(shí),最終軸向力相較于其他兩種工況增大了0.77 N。
由圖8可知,切換時(shí)間縮短會(huì)影響葉片軸向力的增大速率。切換時(shí)間越短,葉片軸向力增大速度越快;當(dāng)切換時(shí)間縮短50%,葉片軸向力在0.1 s之后顯示出與其他兩種工況截然不同的變化規(guī)律,0.1 s后葉片軸向力呈現(xiàn)周期為0.01 s、幅值為0.03~0.31 N的振蕩。但是3種切換時(shí)間下最終葉片軸向力相差在0.05 N以內(nèi),其中0.75 s切換工況下為82.05 N,其他兩種工況為82 N。由于葉片與氣流直接接觸,所以流場(chǎng)的變化對(duì)葉片軸向力的影響較大。
2.2切換轉(zhuǎn)速對(duì)壓端軸向力的影響規(guī)律
如圖9所示,隨切換轉(zhuǎn)速下降幅值縮短,最大軸向力增大。轉(zhuǎn)速下降幅度的縮短使得相同時(shí)間內(nèi)工況5的轉(zhuǎn)速平均值偏大,可能造成切換過(guò)程中出現(xiàn)的最大軸向力大于其余兩個(gè)工況。切換完成時(shí),轉(zhuǎn)速下降幅值越小,最終的軸向力越大。工況1最終軸向力為-24.22 N,工況4最終軸向力為-27.58 N,相較于工況1增大了13.87%,工況5最終軸向力為-31.09 N,相較于工況1增大了28.36%。
如圖10所示,輪背軸向力的變化趨勢(shì)與壓端總軸向力的變化趨勢(shì)相似。總體來(lái)看,隨著轉(zhuǎn)速下降幅值縮短,輪背軸向力在切換過(guò)程中增大。從切換完成時(shí)輪背最終軸向力值分析,工況4相較于工況1增大了2.55%,工況5相較工況1增大了5.51%;從切換細(xì)節(jié)來(lái)看,工況1和工況4均在0.22 s發(fā)生了軸向力突增,工況1的突增幅值為2.98 N,工況4的突增幅值為1.08 N;而工況5在0.1 s時(shí)發(fā)生了軸向力突增,幅值為4.08 N??梢?jiàn),當(dāng)轉(zhuǎn)速下降幅值為25%時(shí),輪背軸向力的變化過(guò)程相對(duì)于其他兩種切換工況更加平穩(wěn)。
由圖11可見(jiàn),3個(gè)切換轉(zhuǎn)速下壓端輪轂軸向力的變化趨勢(shì)相似,隨著時(shí)間軸向力先增大后減小再增大,最后逐漸減小,并且在0.002 s前3個(gè)工況的軸向力變化情況幾乎一樣。0.002 s之后工況5的軸向力逐漸大于其他兩種工況。切換轉(zhuǎn)速幅值縮短導(dǎo)致壓端輪轂軸向力變化幅值縮小,從最終輪轂軸向力值來(lái)看,工況4比工況1大3.44%,工況5比工況1大7.43%。
圖12示出不同切換轉(zhuǎn)速下壓端葉片軸向力變化過(guò)程。由圖可見(jiàn),3種工況下壓端葉片軸向力的變化過(guò)程相似,均為先降低后增大。葉片軸向力的變化過(guò)程與壓端輪背和輪轂軸向力的變化過(guò)程相反,隨時(shí)間呈增大趨勢(shì),并且轉(zhuǎn)速變化幅值越大葉片軸向力增大幅值越大。
2.3切換出口壓力對(duì)壓端軸向力的影響規(guī)律
如圖13所示,總體來(lái)看工況2與工況6壓端總軸向力變化過(guò)程相似。從細(xì)節(jié)看,切換過(guò)程中0.1 s前,3個(gè)工況的變化情況幾乎一樣,在0.1 s后工況2與工況6出現(xiàn)了軸向力突增現(xiàn)象,而工況7在整個(gè)切換過(guò)程中軸向力較其他兩個(gè)工況表現(xiàn)平穩(wěn)。說(shuō)明出口壓力變化幅度越小切換過(guò)程中壓端總軸向力變化越平穩(wěn)。但是從最終壓端總軸向力值來(lái)看,工況7與工況2幾乎相等,工況6較工況2增大了2.16 N。說(shuō)明出口壓力的大小對(duì)總軸向力值影響不大,但是出口壓力變化幅值會(huì)影響切換過(guò)程的平穩(wěn)性,變化越小切換過(guò)程越平穩(wěn)。
如圖14所示,由于輪背的軸向力數(shù)值相對(duì)較大,所以很大程度上壓端輪背軸向力會(huì)影響壓端總軸向力變化趨勢(shì)。由圖可見(jiàn),0.35 s前3個(gè)工況的壓端輪背軸向力相差不大,但在0.35 s后工況7的輪背軸向力趨于平穩(wěn),而其他兩個(gè)工況輪背軸向力還一直在減小。由于工況7的最終出口壓力值大于工況2和工況6,所以輪背軸向力最終值大于其他兩種工況。
從圖15可見(jiàn),在0.5 s之前,3個(gè)工況輪轂軸向力的變化過(guò)程基本相似,工況7在0.5 s之后壓端輪轂軸向力趨于平穩(wěn),而其他兩個(gè)工況下輪轂軸向力依舊呈下降趨勢(shì),直至切換完成。在0.5 s之前的下降過(guò)程中工況7的下降速率最高,工況2其次,工況6最慢。從結(jié)果來(lái)看,同輪背軸向力相似,工況7的輪轂軸向力最終值最大,比工況6大4.44 N,比工況2大7.92 N。
如圖16所示,3個(gè)工況下壓端葉片軸向力變化趨勢(shì)相似,但工況7的葉片軸向力在增大過(guò)程中斜率相對(duì)于其他兩個(gè)工況更大。從結(jié)果來(lái)看,工況7最終葉片軸向力值較工況2大11.749 N,較工況6大8.919 N。
3壓氣機(jī)軸向力變化機(jī)理分析
3.1靜止件壓力分布
主要分析切換時(shí)間不同時(shí)壓氣機(jī)輪轂與輪背以及其他流面的流場(chǎng)結(jié)構(gòu)。選取了壓端總軸向力突變前后時(shí)間點(diǎn)的輪背壓力云圖來(lái)分析軸向力突然增大的原因。圖17示出工況1輪背壓力云圖。從總體看,輪背壓力呈現(xiàn)出規(guī)律性,由內(nèi)向外呈梯次遞增。隨著切換進(jìn)行,壓氣機(jī)轉(zhuǎn)速降低,出口壓力變小,輪背最外層壓力逐漸變小。但是在0.242 s也就是輪背最后一次突增結(jié)束時(shí)刻之后,輪背最外層壓力變化趨向于小幅度穩(wěn)定下降趨勢(shì)。輪背軸向力突然增大伴隨著輪背中心低壓區(qū)較大變化。由圖可見(jiàn),在t=0.002 s時(shí),輪背存在壓力值約為84 381 Pa的大面積低壓區(qū),中心壓力與最外層壓力差值可達(dá)85 192 Pa,巨大的內(nèi)外層壓力差值可能導(dǎo)致輪背軸向力突然變化。隨時(shí)間進(jìn)行,最內(nèi)層的壓力逐漸增大,低壓區(qū)變小,同時(shí)外層的壓力逐漸變小,縮小了輪背內(nèi)外層之間的壓力差,由輪背軸向力變化曲線可知,在軸向力不再突然增大之后,呈現(xiàn)出穩(wěn)定下降趨勢(shì),這可能與輪背內(nèi)外層壓差不斷減小有關(guān)。
由圖18和圖19可知,不同切換時(shí)間下輪背軸向力在切換初期都發(fā)生先減小后增大再降低等一系列振蕩,都伴隨著輪背低壓區(qū)變小、變大、再變小等過(guò)程。所以,輪背軸向力的變化可能與輪背低壓區(qū)的移動(dòng)以及輪背壓力梯度的大小有關(guān)系。
圖20至圖22示出不同切換時(shí)間下輪轂壓力分布云圖。由圖可知,在輪轂軸向力振蕩過(guò)程中,輪轂低壓區(qū)稍有變化,體現(xiàn)在低壓區(qū)壓力增大以及范圍變小。在整體切換過(guò)程中輪轂壓力變化均勻,尤其工況1可以明顯看出。對(duì)于工況2,隨著切換進(jìn)行,輪轂出口方向壓力不斷降低。由此可見(jiàn),輪轂壓力變化對(duì)于輪轂軸向力的影響較弱。由于輪轂直接與氣流接觸,所以輪轂軸向力變化可能與氣流流動(dòng)狀態(tài)關(guān)系較大。
圖23示出工況1輪轂馬赫數(shù)云圖。由圖可知,在葉輪進(jìn)口靠近主流葉片葉根位置出現(xiàn)低馬赫數(shù)區(qū)域,并且隨著切換時(shí)間進(jìn)行,低馬赫數(shù)位置有向分流葉片移動(dòng)的趨勢(shì)。低馬赫代表著氣流在此位置發(fā)展不流暢,可能發(fā)生了堵塞,形成漩渦,渦的存在會(huì)阻礙氣流的發(fā)展,渦的位置隨氣流發(fā)生位置的變化過(guò)渡到分流葉片區(qū)域,進(jìn)一步阻礙氣流的順利發(fā)展,這可能是造成輪轂軸向力變化的主要原因。
3.2葉輪截面流線分布
在離心壓氣機(jī)內(nèi)部,由于離心力和哥式力的強(qiáng)烈作用,導(dǎo)致其內(nèi)部流動(dòng)為三維非定常流動(dòng),并伴有強(qiáng)烈的二次流。在葉輪機(jī)械中通常定義二次流為真實(shí)流動(dòng)與主流的差值,并且與主流方向垂直。主要表現(xiàn)為葉輪內(nèi)部間隙泄漏渦、通道渦、刮削渦和各種分離流動(dòng)。圖24示出葉輪截面的定義,圖25示出截面1馬赫數(shù)云圖與流線圖。由圖可知,存在明顯的葉頂間隙泄漏和葉輪通道渦。
3.3兩葉片通道截面流線分布
圖26示出兩葉片流道中間截面馬赫數(shù)云圖與流線分布。由圖可知,主葉片與分流葉片通道截面出現(xiàn)通道渦,并且通道渦隨著切換時(shí)間的進(jìn)行會(huì)發(fā)生位置的變化,同時(shí)可以看到渦發(fā)生了渦核的破碎,伴隨通道下方小渦核的逐漸壯大并與第一個(gè)渦逐漸合并的趨勢(shì)。通道渦會(huì)阻礙主流道氣流的向下發(fā)展,同時(shí)又不斷有新的氣流被卷吸到渦區(qū),不斷往復(fù)生成、破碎,使得氣流發(fā)展不穩(wěn)定,從而造成輪轂軸向力的變化。
3.4Q準(zhǔn)則識(shí)別渦
基于Q準(zhǔn)則的渦識(shí)別方法,選擇Q=5×108 s-2時(shí)重構(gòu)工況1壓氣機(jī)內(nèi)部三維渦(見(jiàn)圖27)。
Q準(zhǔn)則的閾值范圍較大,呈現(xiàn)的渦結(jié)構(gòu)很大程度上依賴于Q值的選擇。通過(guò)不斷嘗試,最終選擇Q=5×108 s-2,可以將流道內(nèi)的大部分細(xì)小渦過(guò)濾,更多地留下葉輪周圍的渦結(jié)構(gòu),可以更好觀察葉輪流道內(nèi)渦的發(fā)展與葉片軸向力的關(guān)系。切換開(kāi)始時(shí),大尺度的渦集中在主流葉片與分流葉片之間、葉片的葉尖位置以及葉片吸力面上部。Q準(zhǔn)則重構(gòu)的通道渦整體性較強(qiáng),但是不同尺度渦系關(guān)聯(lián)性刻畫較差。隨著切換進(jìn)行,Q值不變,葉輪通道以及葉尖的渦逐漸減少,壓氣機(jī)軸向力也逐漸趨于穩(wěn)定。因此,壓氣機(jī)軸向力與內(nèi)部三維氣體流通情況有著很大關(guān)系,尤其葉尖部分渦系的不斷脫落、重組很容易導(dǎo)致葉尖發(fā)生振動(dòng),產(chǎn)生疲勞損壞。
4結(jié)論
a) 切換時(shí)間變化對(duì)壓端總軸向力最終值幾乎沒(méi)有影響,主要影響軸向力突增時(shí)刻以及切換過(guò)程中軸向力振蕩情況,且切換時(shí)間越長(zhǎng)越容易發(fā)生多次波動(dòng);
b) 切換轉(zhuǎn)速幅值變化主要影響壓端總軸向力的最終值以及切換過(guò)程中軸向力突增的時(shí)刻和突增幅度;
c) 切換出口壓力變化影響切換過(guò)程平穩(wěn)性,對(duì)壓端總軸向力值影響很小,但會(huì)影響切換過(guò)程中軸向力的突增情況的發(fā)生與否,出口壓力幅值變化越大越容易發(fā)生總軸向力突增;
d) 切換過(guò)程中渦結(jié)構(gòu)的產(chǎn)生、破碎、重組等過(guò)程伴隨著軸向力的變化,葉尖部分渦結(jié)構(gòu)變化較豐富,容易造成葉尖振動(dòng),發(fā)生金屬疲勞失效。
參考文獻(xiàn):
[1]錢躍華.雙渦輪增壓系統(tǒng)匹配方法和優(yōu)化控制的研究[D].上海:上海交通大學(xué),2017.
[2]朱大鑫.渦輪增壓與渦輪增壓器[M].北京:機(jī)械工業(yè)出版社,1992:63-76.
[3]王延生,黃佑生.車輛發(fā)動(dòng)機(jī)廢氣渦輪增壓器[M].北京:國(guó)防工業(yè)出版社,1984:142-143.
[4]Conley B,Sadeghi F.Experimental and Analytical Investigation of Turbocharger Whirl and Dynamics[J].Tribology Transactions,2021,64(2):239-252.
[5]Gjika K,LaRue G D.Axial Load Control on High-Speed Turbochargers:Test and Prediction[C].Berlin:ASMEDC,2008:705-712.
[6]王超,張廣西,徐止聽(tīng),等.探究不同工況下渦輪增壓器軸向載荷的變化[J].內(nèi)燃機(jī)與配件,2022(19):37-39.
[7]張虹,周怡,張航.車用渦輪增壓器壓氣機(jī)葉輪多載荷應(yīng)力分析[J].車輛與動(dòng)力技術(shù),2016(4):1-6.
[8]馬朝臣,洪舟振森,張虹,等.動(dòng)靜干涉下壓氣機(jī)葉輪氣動(dòng)激勵(lì)與振動(dòng)分析[J].北京理工大學(xué)學(xué)報(bào),2021,41(9):935-942.
[9]張健健,馬敏,李偉,等.渦輪增壓器軸向力分析與止推軸承承載力評(píng)估[J].內(nèi)燃機(jī)與動(dòng)力裝置,2021,38(2):29-34.
[10]Younsi M,Hypolite E.Investigation and prediction models of the axial thrust in centrifugal compressors[C]//Turbo Expo:Power for Land,Sea,and Air.[S.l.]:American Society of Mechanical Engineers,2019.
[11]Peixoto T F,Nordmann R,Cavalca K L.Dynamic analysis of turbochargers with thermo-hydrodynamic lubrication bearings[J].Journal of Sound and Vibration,2021,505:116140.
[12]Fontana M,Baldassarre L,Bernocchi A,et al.Axial thrust in high pressure centrifugal compressors: Description of a calculation model validated by experimental data from full load test[C]//Proceedings of the 44th Turbomachinery Symposium.Houston:Turbomachinery Laboratories,Texas Aamp;M Engineering Experiment Station,2015.
[13]康達(dá),鐘兢軍,徐毅,等.高壓比離心壓氣機(jī)二次流旋渦結(jié)構(gòu)研究[J].推進(jìn)技術(shù),2019,40(10):2243-2251.
[14]趙會(huì)晶,席光,段亞飛,等.葉頂間隙對(duì)離心壓氣機(jī)性能和流動(dòng)影響的實(shí)驗(yàn)研究 [J].工程熱物理學(xué)報(bào),2018,39(7):1453-1460.
[15]張哲.柴油機(jī)大小渦輪三階段相繼增壓系統(tǒng)穩(wěn)態(tài)與瞬態(tài)性能研究[D].上海:上海交通大學(xué),2010.
[16]王福軍.流體機(jī)械旋轉(zhuǎn)湍流計(jì)算模型研究進(jìn)展 [J].農(nóng)業(yè)機(jī)械學(xué)報(bào),2016,47(2):1-14.
Simulation of Variable Working Conditions and" Analysis of Axial"Force Change Mechanism for Centrifugal Compressor
LI Xiaojie1,WANG Yaming1,DONG Xiaorui1,WANG Jun1,MEN Rixiu2,HAN Shaojian1
(1.School of Energy and Power Engineering,North China University,Taiyuan030051,China;2.China North Engine Research Institute(Tianjin),Tianjin300406,China)
Abstract: The change of axial force for supercharger during the switching of successive supercharging systems will seriously affect its stability. Taking the compressor end of Garrett TBP4 supercharger as the research object, the full-flow path calculation domain of compressor was established and the polyhedral mesh was divided, seven working conditions were designed, and the effects of the switching time, the switching speed and the switching outlet pressure change during the switching process on the axial force of compressor were researched with CFD software. Meanwhile, the axial force change mechanism was analyzed based on the internal flow field. The results show that the switching time mainly affects the moment of sudden increase of axial force, the switching speed amplitude mainly affects the final axial force, and the switching outlet pressure amplitude mainly affects whether the axial force suddenly increases. The blade axial force is affected the most by the flow field.
Key" words: sequential supercharging system;centrifugal compressor;axial force
[編輯: 潘麗麗]