[摘要] 目的
探究tRNA衍生的小RNA(tsRNA)對(duì)小鼠心肌細(xì)胞鐵死亡的調(diào)控作用及其機(jī)制。
方法 采用實(shí)時(shí)熒光定量PCR(RT-qPCR)檢測(cè)8周齡C57BL/6J小鼠心臟、肝臟、脾臟、腎臟、大腦、肌肉中5′tRF-LysCTT的相對(duì)表達(dá)水平。將原代心肌細(xì)胞分為A~D組,A組細(xì)胞使用完全培養(yǎng)基培養(yǎng)60 h,B組先使用完全培養(yǎng)基培養(yǎng)24 h,再依次進(jìn)行饑餓處理12 h,H/R處理24 h,C組和D組細(xì)胞分別轉(zhuǎn)染antagomir-NC和antagomir-5′tRF-LysCTT,并于轉(zhuǎn)染24 h后再依次進(jìn)行饑餓(12 h)和H/R處理(12 h);將原代心肌細(xì)胞分為E~G組,E組細(xì)胞使用完全培養(yǎng)基培養(yǎng)24 h,F(xiàn)組細(xì)胞轉(zhuǎn)染agomir-NC 24 h,G組心肌細(xì)胞轉(zhuǎn)染agomir-5′tRF-LysCTT 24 h。采用RT-qPCR檢測(cè)A~G組小鼠心肌細(xì)胞中5′tRF-LysCTT和Ptgs2、Gpx4、Slc7a11的相對(duì)表達(dá)水平,分別采用亞鐵離子比色法測(cè)試盒、脂質(zhì)活性氧(ROS)染色、CCK8試劑盒檢測(cè)A~G組小鼠心肌細(xì)胞內(nèi)亞鐵離子相對(duì)水平、ROS水平及心肌細(xì)胞的存活率,采用普魯士藍(lán)染色試劑盒觀察A~G組小鼠心肌細(xì)胞內(nèi)鐵離子沉積情況。
結(jié)果 RT-qPCR檢測(cè)結(jié)果顯示,與肝臟、脾臟、腎臟、大腦、肌肉中相比較,小鼠心臟中5′tRF-LysCTT表達(dá)水平最高(F=16.21,t=3.81~7.93,Plt;0.05)。D組與B組相比,心肌細(xì)胞內(nèi)5′tRF-LysCTT和Ptgs2相對(duì)表達(dá)水平降低、Gpx4以及Slc7a11相對(duì)表達(dá)水平升高、亞鐵離子相對(duì)水平和ROS水平降低,心肌細(xì)胞的細(xì)胞存活率升高(t=3.26~15.61,Plt;0.05),細(xì)胞內(nèi)鐵離子沉積明顯增多,而C組與B組相比,細(xì)胞內(nèi)的上述指標(biāo)的水平差異無顯著性(P>0.05)。G組與E組相比,心肌細(xì)胞內(nèi)5′tRF-LysCTT和Ptgs2相對(duì)表達(dá)水平升高、Gpx4和Slc7a11相對(duì)表達(dá)水平降低、亞鐵離子相對(duì)水平和ROS水平升高,心肌細(xì)胞的細(xì)胞存活率降低(t=3.57~91.84,Plt;0.05),細(xì)胞內(nèi)鐵離子沉積明顯減少,而F組與E組相比,細(xì)胞內(nèi)的上述指標(biāo)的水平比較差異無顯著性(P>0.05)。
結(jié)論 5′tRF-LysCTT對(duì)于小鼠心肌細(xì)胞鐵死亡具有調(diào)控作用,敲低細(xì)胞內(nèi)5′tRF-LysCTT可以抑制H/R誘導(dǎo)的心肌細(xì)胞鐵死亡,而過表達(dá)5′tRF-LysCTT可促進(jìn)心肌細(xì)胞鐵死亡的發(fā)生。
[關(guān)鍵詞] RNA,轉(zhuǎn)移;RNA,非翻譯小片段;低氧;心肌再灌注損傷;肌細(xì)胞,心臟;鐵死亡
[中圖分類號(hào)] R329.2;R542.2
[文獻(xiàn)標(biāo)志碼] A
Regulatory effect of 5′tRF-LysCTT on ferroptosis in mouse cardiomyocytes and its mechanism
ZHAO Yan, WANG Kai, CHENG Xueli, WANG Kun
(Institute of Translational Medicine, Qingdao University, Qingdao 266021, China)
; [ABSTRACT]\ Objective To investigate the regulatory effect of tRNA-derived small RNA (tsRNA) on ferroptosis in mouse cardiomyocytes and its mechanism.
Methods RT-qPCR was used to measure the relative expression level of 5′tRF-LysCTT in the heart, liver, spleen, kidney, brain, and muscle of C57BL/6J mice aged 8 weeks. Primary cultured cardiomyocytes were divi-
ded into groups A, B, C, and D: the cardiomyocytes in group A were cultured in a complete medium for 60 h; those in group B were cultured in a complete medium for 24 h, followed by starvation treatment for 12 h and H/R treatment for 24 h; those in groups C and D were transfected with antagomir-NC and antagomir-5′tRF-LysCTT, respectively, and were given starvation treatment (12 h) and H/R treatment (12 h) after 24 h of transfection. Primary cultured cardiomyocytes were divided into groups E, F, and G: the cardiomyocytes in group E were cultured in a complete medium for 24 h; those in group F were transfected with agomir-NC for 24 h; those in group G were transfected with agomir-5′tRF-LysCTT for 24 h. RT-qPCR was used to measure the relative expression levels of 5′tRF-LysCTT, Ptgs2, Gpx4, and Slc7a11 in mouse cardiomyocytes of groups A-G; ferrous ion colorimetric test kit, lipid reactive oxygen species (ROS) staining, and CCK8 assay kit were used to measure the relative content of ferrous ions, ROS level, and the survival rate of cardiomyocytes in groups A-G; Prussian blue staining was used to observe iron ion deposition in cardiomyocytes.
Results RT-qPCR showed that the expression level of 5′tRF-LysCTT in heart was significantly higher than that in the liver, spleen, kidney, brain, and muscle (F=16.21,t=3.81-7.93,Plt;0.05). Compared with group B, group D had significant reductions in the relative expression levels of 5′tRF-LysCTT and Ptgs2, significant increases in the relative expression levels of Gpx4 and Slc7a11, significant reductions in the relative content of ferrous ions and ROS level, and a significant increase in the survival rate of cardiomyocytes (t=3.26-15.61,Plt;0.05), as well as a significant increase in iron ion deposition in cardiomyocytes, while there were no significant differences in the above indicators between group C and group B (Pgt;0.05). Compared with group E, group G had significant increases in the relative expression levels of 5′tRF-LysCTT and Ptgs2, significant reductions in the relative expression levels of Gpx4 and Slc7a11, significant increases in the relative content of ferrous ions and ROS level, and a significant reduction in the survival rate of cardiomyocytes (t=3.57-91.84,Plt;0.05), as well as a significant reduction in iron ion deposition in cardiomyocytes, while there were no significant differences in the above indicators between group F and group E (Pgt;0.05).
Conclusion 5′tRF-LysCTT can regulate ferroptosis in mouse cardiomyocytes, and knockdown of 5′tRF-LysCTT can inhibit cardiomyocyte ferroptosis induced by H/R, while overexpression of 5′tRF-LysCTT can promote cardiomyocyte ferroptosis.
[KEY WORDS] RNA, transfer; RNA, small untranslated; Hypoxia; Myocardial reperfusion injury; Myocytes, cardiac; Ferroptosis
缺血性心臟病是一種死亡率很高的心血管疾?。?],臨床常用的治療方式是再灌注治療,但可能會(huì)引起心肌細(xì)胞的缺血再灌注損傷,這也是目前臨床中亟待解決的難題。研究發(fā)現(xiàn),心肌細(xì)胞中tRNA衍生的小RNA(tsRNA)與心血管疾病息息相關(guān),通過調(diào)節(jié)RNA結(jié)合蛋白[2]、誘導(dǎo)表觀遺傳修飾[3]等方式參與各種心血管疾病的發(fā)生。作為一種新型tsRNA,研究發(fā)現(xiàn)5′tRF-LysCTT在心肌缺血大鼠心肌細(xì)胞中表達(dá)上調(diào),推測(cè)其參與心肌缺血性損傷的機(jī)制可能與大分子代謝有關(guān)[4],提示tsRNA也許可以成為心血管疾病的潛在診斷標(biāo)志物。
鐵死亡由DIXON等[5]于2012年首次提出,是一種鐵依賴性脂質(zhì)過氧化的細(xì)胞死亡過程。心肌細(xì)胞缺血再灌注損傷發(fā)生時(shí)與心肌細(xì)胞鐵死亡發(fā)生時(shí)的特征一致[6]。目前研究表明,心力衰竭時(shí)GPX4下調(diào)也會(huì)引起心肌細(xì)胞的鐵死亡[7],而tsRNA可能會(huì)影響GPX4、SLC7A11等與鐵死亡相關(guān)的蛋白合成[8],但目前有關(guān)tsRNA在心肌細(xì)胞鐵死亡過程中的調(diào)控作用及其具體機(jī)制尚不明確。本研究通過敲低和過表達(dá)原代心肌細(xì)胞中的5′tRF-LysCTT,探究5′tRF-LysCTT對(duì)缺氧/復(fù)氧(H/R)誘導(dǎo)的心肌細(xì)胞鐵死亡的調(diào)控作用,為心肌細(xì)胞缺血再灌注損傷的治療提供理論參考。
1 材料與方法
1.1 材料來源
1~3日齡乳鼠(青島大任富城畜牧有限公司),8周齡C57BL/6J小鼠(濟(jì)南朋悅實(shí)驗(yàn)動(dòng)物繁育有限公司),實(shí)時(shí)熒光定量PCR(RT-qPCR)試劑盒(上
海翌圣生物科技股份有限公司),特異性antagomir/
agomir以及其陰性對(duì)照(NC)(上海吉瑪制藥技術(shù)有限公司),亞鐵離子比色法試劑盒(武漢伊萊瑞特生物科技股份有限公司),C11 BODIPY 581/591脂質(zhì)過氧化熒光探針(武漢愛博泰克生物科技有限公司),普魯士藍(lán)染色試劑盒(北京索萊寶科技有限公司),CCK8試劑盒及其試劑(上海陶術(shù)生物科技有限公司)。
1.2 實(shí)驗(yàn)方法
1.2.1 原代心肌細(xì)胞和小鼠組織的獲取 乳鼠斷頸處死后,無菌條件下取出心臟,PBS洗滌3次。剪碎心臟組織置于錐形瓶中,用含膠原酶和胰液素的消化液(現(xiàn)用現(xiàn)配)37 ℃下消化至無明顯組織塊。收集含細(xì)胞的消化液以1 000 r/min離心5 min,用DMEM-F12完全培養(yǎng)基重懸細(xì)胞沉淀。過濾細(xì)胞混懸液至培養(yǎng)皿,在細(xì)胞培養(yǎng)箱內(nèi)靜置1.5 h后,以1 000 r/min離心5 min,用DMEM-F12完全培養(yǎng)基重懸細(xì)胞沉淀,接種至新的細(xì)胞培養(yǎng)皿培養(yǎng)。
將3只8周齡C57BL/6J小鼠以乙醚氣霧麻醉后,斷頸處死,剝離出心臟、肝臟、脾臟、腎臟、大腦、肌肉等組織器官,于-80 ℃保存?zhèn)溆谩?/p>
1.2.2 細(xì)胞培養(yǎng)與分組處理 將原代心肌細(xì)胞接種于細(xì)胞6孔板、24孔板、96孔板、10 cm培養(yǎng)皿中,用DMEM-F12完全培養(yǎng)基(含5% FBS和1%雙抗)于37 ℃含體積分?jǐn)?shù)0.05 CO2細(xì)胞培養(yǎng)箱內(nèi)培養(yǎng)24 h。待細(xì)胞密度約達(dá)60%時(shí)分為A~D組,A組細(xì)胞使用DMEM-F12完全培養(yǎng)基培養(yǎng)60 h;B組細(xì)胞先使用DMEM-F12完全培養(yǎng)基培養(yǎng)24 h,C、D組參照Lipo8000說明書分別轉(zhuǎn)染antagomir-NC、antagomir-5′tRF-LysCTT 24 h,后B~D組更換為無糖無血清培養(yǎng)基繼續(xù)培養(yǎng)12 h,置于厭氧培養(yǎng)箱中缺氧處理18 h,再更換為DMEM-F12完全培養(yǎng)基復(fù)氧培養(yǎng)6 h。將細(xì)胞密度約達(dá)60%時(shí)的原代心肌細(xì)胞分為E~G組,E組用DMEM-F12完全培養(yǎng)基培養(yǎng)24 h,F(xiàn)組轉(zhuǎn)染agomir-NC 24 h,G組轉(zhuǎn)染agomir-5′tRF-LysCTT 24 h。
1.2.3 RT-qPCR檢測(cè)小鼠各器官組織中5′tRF-LysCTT的相對(duì)表達(dá)水平以及心肌細(xì)胞中5′tRF-LysCTT、Ptgs2、Gpx4、Slc7a11的相對(duì)表達(dá)水平
將接種于6孔板中處理結(jié)束后的A~G組細(xì)胞,使用Trizol試劑提取細(xì)胞中的RNA。將細(xì)胞中提取的RNA按照反轉(zhuǎn)錄試劑盒說明書的要求進(jìn)行反轉(zhuǎn)錄。以cDNA為模板,進(jìn)行RT-qPCR。每組設(shè)置3個(gè)復(fù)孔,實(shí)驗(yàn)重復(fù)3次,采用2-△△CT方法計(jì)算心肌細(xì)胞中5′tRF-LysCTT(U6作為內(nèi)參)及Ptgs2、Gpx4、Slc7a11(GAPDH為內(nèi)參)的相對(duì)表達(dá)水平。取各組小鼠的內(nèi)臟器官組織置于EP管中,加入組織研磨珠及Trizol試劑,研磨以后提取組織中的RNA,按照上面的方法,檢測(cè)各器官組織中5′tRF-LysCTT
的相對(duì)表達(dá)水平。引物名稱及序列見表1。
1.2.4 心肌細(xì)胞中亞鐵離子相對(duì)水平檢測(cè) 將接種于直徑10 cm培養(yǎng)皿中處理結(jié)束后的A~G組細(xì)胞收集于EP管中,加入裂解液冰浴裂解細(xì)胞,取上清液和顯色液混合,于37 ℃下水浴10 min后,以12 000 r/min離心10 min,取上清液按照說明書要求的步驟,檢測(cè)各組細(xì)胞中亞鐵離子相對(duì)水平。實(shí)驗(yàn)重復(fù)3次,結(jié)果取均值。
1.2.5 心肌細(xì)胞中ROS水平檢測(cè) 將接種于24孔板中處理結(jié)束后的A~G組細(xì)胞,用PBS洗滌3次后,每孔中加入C11 BODIPY 581/591探針染液100 μL,染色1 h,吸出染液,用PBS洗滌3次;加入100 μL DAPI染色5 min,用PBS洗滌3次后封片。使用普通熒光顯微鏡采集相關(guān)圖像,用Image J軟件測(cè)量計(jì)算相對(duì)熒光強(qiáng)度。以相對(duì)熒光強(qiáng)度表示細(xì)胞中ROS水平。實(shí)驗(yàn)重復(fù)3次,結(jié)果取均值。
1.2.6 CCK8檢測(cè)心肌細(xì)胞的細(xì)胞存活率 將接種于96孔板中處理結(jié)束后的A~G組細(xì)胞,吸除培養(yǎng)基,按照1∶9的比例配制CCK8試劑與DMEM-F12培養(yǎng)基的混合培養(yǎng)液,取100 μL混合培養(yǎng)液加入各孔中,37 ℃下培養(yǎng)2~4 h,用酶標(biāo)儀檢測(cè)波長450 nm處吸光度,計(jì)算細(xì)胞存活率。細(xì)胞存活率=(實(shí)驗(yàn)組吸光度均值-空白組吸光度均值)/(對(duì)照組吸光度均值-空白組吸光度均值)×100%。
1.2.7 普魯士藍(lán)染色觀察心肌細(xì)胞內(nèi)鐵離子的沉
積情況 將接種于10 cm培養(yǎng)皿中處理結(jié)束后的A~G組細(xì)胞,用PBS洗滌3次,以4%多聚甲醛固定10~20 min,普魯士藍(lán)染色液染色30 min,核固紅染色液染色5 min。在梯度乙醇和二甲苯中各浸泡10 s后,滴加中性樹脂封片,待樹脂凝固后于顯微鏡下觀察并拍照。
1.3 統(tǒng)計(jì)學(xué)分析
使用Graphpad Prism軟件進(jìn)行統(tǒng)計(jì)學(xué)分析,計(jì)量結(jié)果以x-±s表示,多組間差異比較采用單因素方差分析,組間兩兩比較采用LSD-t檢驗(yàn)。以Plt;0.05為差異有統(tǒng)計(jì)學(xué)意義。
2 結(jié)" 果
2.1 小鼠各器官組織中5′tRF-LysCTT表達(dá)情況
RT-qPCR檢測(cè)結(jié)果顯示,小鼠心臟、肝臟、脾臟、腎臟、大腦、肌肉組織當(dāng)中的5′tRF-LysCTT相對(duì)表達(dá)水平分別為1.01±0.18、0.28±0.13、0.18±0.03、0.19±0.05、0.01±0.01、0.53±0.29,5′tRF-LysCTT在心臟組織中的表達(dá)最高(F=16.21,t=3.81~7.93,Plt;0.05)。
2.2 敲低5′tRF-LysCTT對(duì)H/R誘導(dǎo)的心肌細(xì)胞鐵死亡的影響
A~D組原代心肌細(xì)胞中5′tRF-LysCTT、Ptgs2、Gpx4、Slc7a11的相對(duì)表達(dá)水平,亞鐵離子相對(duì)水平,ROS水平及細(xì)胞存活率比較,均有顯著性差異(F=15.50~368.70,Plt;0.05)。與B、C組相比,D組細(xì)胞中5′tRF-LysCTT、Ptgs2相對(duì)表達(dá)水平明顯下調(diào),Gpx4、Slc7a11相對(duì)表達(dá)水平明顯上調(diào),亞鐵離子相對(duì)水平、ROS水平顯著下降,細(xì)胞存活率顯著升高(t=2.73~15.61,Plt;0.05);與B組相比,A組細(xì)胞的上述指標(biāo)差異顯著(t=5.30~28.96,Plt;0.05),而C組細(xì)胞上述指標(biāo)差異無顯著性(P>0.05)。見表2。與B組相比較,D組細(xì)胞內(nèi)鐵離子沉積明顯減少(圖1),圖中箭頭所指的藍(lán)點(diǎn)即為染色的鐵離子。
2.3 過表達(dá)5′tRF-LysCTT對(duì)心肌細(xì)胞鐵死亡的影響
E~G組原代心肌細(xì)胞當(dāng)中5′tRF-LysCTT、Ptgs2、Gpx4、Slc7a11的相對(duì)表達(dá)水平,亞鐵離子相對(duì)水平,ROS水平及細(xì)胞存活率比較,有顯著性差異(F=9.99~5 329.00,Plt;0.05)。與E、F組相比,G組細(xì)胞中5′tRF-LysCTT、Ptgs2相對(duì)表達(dá)水平明顯上調(diào),Gpx4、Slc7a11相對(duì)表達(dá)水平明顯下調(diào),亞鐵離子相對(duì)水平、ROS水平顯著上升,細(xì)胞存活率明顯降低(t=3.57~91.84,Plt;0.05);與E組相比,F(xiàn)組細(xì)胞上述指標(biāo)差異無顯著性(P>0.05)。見表3。與E組相比,G組細(xì)胞內(nèi)鐵離子沉積明顯增多(圖2),圖中箭頭所指藍(lán)點(diǎn)即為染色的鐵離子。
3 討" 論
在我國缺血性心臟病患病率較高,并呈逐年上升和年輕化趨勢(shì),及時(shí)預(yù)防和治療,對(duì)患者生活質(zhì)量的保障及壽命的延長至關(guān)重要[9],建立有效的預(yù)防和治療機(jī)制是降低心血管疾病發(fā)生的重要措施[10]。血液供應(yīng)不足的心肌組織,再灌注恢復(fù)血液后[11],會(huì)引發(fā)心肌細(xì)胞壞死[1]、凋亡[12]、鐵死亡[13],導(dǎo)致大量心肌細(xì)胞死亡。
tsRNA作為新型非編碼小RNA,分為tiRNA和tRF兩類[14],對(duì)細(xì)胞增殖[15]、凋亡[16]及細(xì)胞內(nèi)蛋白質(zhì)翻譯[17]等均有影響,參與腫瘤[18]、神經(jīng)疾?。?9]等多種疾病的發(fā)生和發(fā)展。機(jī)體的衰老、代謝紊亂等都可能誘導(dǎo)tsRNA的產(chǎn)生[20]。tsRNA在心肌肥大[21]、動(dòng)脈粥樣硬化[22]、主動(dòng)脈夾層[23]等疾病發(fā)生過程中發(fā)揮調(diào)控作用。SHEN等[21]研究發(fā)現(xiàn),在異丙腎上腺素誘導(dǎo)的大鼠心臟肥大模型中,心臟組織中tRF會(huì)發(fā)生特異性分裂,促進(jìn)心肌細(xì)胞的心鈉素、腦鈉肽、β-肌球蛋白重鏈的表達(dá)。在皮下注射異丙腎上腺素致心肌肥大模型大鼠中,心肌細(xì)胞內(nèi)的tRF表達(dá)顯著增高,其子代小鼠的心臟組織中也同樣高表達(dá)tRF,同時(shí)子代大鼠還伴有心肌細(xì)胞凋亡、心肌纖維斷裂、心臟組織內(nèi)肥大基因表達(dá)水平升高等情況[21]。以上研究表明,tsRNA在心肌細(xì)胞鐵死亡過程中發(fā)揮著關(guān)鍵性作用,但具體機(jī)制尚不明確。本研究通過預(yù)實(shí)驗(yàn)發(fā)現(xiàn),在小鼠心臟缺血再灌注損傷模型中,有多個(gè)顯著差異表達(dá)的tsRNA,但是5′tRF-LysCTT異常表達(dá)程度較高。以此為基礎(chǔ),本研究通過檢測(cè)5′tRF-LysCTT在正常小鼠不同組織中的表達(dá)水平,發(fā)現(xiàn)與肝臟、脾臟、腎臟、大腦、肌肉組織相比,5′tRF-LysCTT在心臟組織中表達(dá)峰度最高,進(jìn)一步表明5′tRF-LysCTT可能與心肌細(xì)胞存在一定的關(guān)聯(lián)。
鐵死亡是一種程序性細(xì)胞死亡,主要特點(diǎn)為細(xì)胞內(nèi)鐵離子穩(wěn)態(tài)失衡,細(xì)胞內(nèi)的ROS和脂質(zhì)過氧化物顯著增多[24]。心肌細(xì)胞鐵死亡時(shí)會(huì)產(chǎn)生過量的游離鐵離子,這些鐵離子能通過芬頓反應(yīng)增加羥基自由基的產(chǎn)生,引起心肌細(xì)胞內(nèi)ROS水平升高,對(duì)心肌細(xì)胞造成氧化損傷[25]。正常情況下,胱氨酸可通過胱氨酸/谷氨酸逆向轉(zhuǎn)運(yùn)系統(tǒng)(由SLC7A11和SLC3A2兩種亞基組成)轉(zhuǎn)移至細(xì)胞內(nèi)合成谷胱甘肽,GPX-4(谷胱甘肽依賴酶)可將谷胱甘肽轉(zhuǎn)化為氧化型谷胱甘肽,進(jìn)而清除細(xì)胞呼吸和代謝過程中產(chǎn)生的過量過氧化物和羥自由基[26]。在心肌細(xì)胞內(nèi),谷胱甘肽的耗竭和GPX4活性降低,使脂質(zhì)過氧化物不能通過GPX4轉(zhuǎn)化為脂醇,致心肌細(xì)胞內(nèi)產(chǎn)生過多的鐵蛋白和ROS,從而導(dǎo)致心肌細(xì)胞發(fā)生鐵死亡[27]。心肌細(xì)胞缺血再灌注損傷發(fā)生時(shí)與心肌細(xì)胞鐵死亡發(fā)生時(shí)的特征一致,即均存在ROS水平升高及游離鐵離子增多[28],由此可以推測(cè)心肌細(xì)胞缺血再灌注損傷時(shí)也發(fā)生了鐵死亡。為了驗(yàn)證心肌缺血再灌注損傷會(huì)誘導(dǎo)鐵死亡的發(fā)生,本研究通過H/R處理原代心肌細(xì)胞以模擬心肌缺血再灌注損傷,結(jié)果顯示,與A組細(xì)胞相比,B組心肌細(xì)胞中亞鐵離子含量明顯上調(diào),ROS水平明顯增強(qiáng),鐵離子沉積明顯增多,細(xì)胞存活率下降,表明H/R處理后原代心肌細(xì)胞發(fā)生鐵死亡。同時(shí)本研究還發(fā)現(xiàn),經(jīng)H/R處理后的心肌細(xì)胞中Ptgs2相對(duì)表達(dá)水平明顯上調(diào),Gpx4和Slc7a11相對(duì)表達(dá)水平明顯下調(diào)。研究顯示,對(duì)心臟缺血再灌注小鼠采用利普洛司他汀-1(鐵死亡抑制劑)處理,發(fā)現(xiàn)小鼠心臟組織中的GPX4蛋白水平較處理前顯著升高,心肌細(xì)胞線粒體中ROS也較處理前顯著降低[29],說明利普洛司他汀-1通過抑制心肌細(xì)胞鐵死亡,提升了心肌細(xì)胞中GPX4蛋白水平,保護(hù)心肌細(xì)胞免受缺血再灌注損傷。有研究對(duì)C75BL/6小鼠的心臟進(jìn)行缺血再灌注(30 min/24 h)手術(shù)后,提取小鼠心臟組織中的RNA,發(fā)現(xiàn)與假手術(shù)組相比,手術(shù)組小鼠心臟組織中Ptgs2表達(dá)水平明顯升高;如果小鼠術(shù)前24 h或2 h分別給予鐵蛋白抑制劑或鐵螯合劑預(yù)處理后再進(jìn)行缺血再灌注手術(shù),結(jié)果顯示與手術(shù)組小鼠相比,術(shù)前預(yù)處理組小鼠的心肌梗死面積顯著減少[30]。本研究的結(jié)果與上述文獻(xiàn)報(bào)道結(jié)果一致,說明心肌細(xì)胞鐵在死亡發(fā)生時(shí),其細(xì)胞內(nèi)的Ptgs2表達(dá)水平會(huì)出現(xiàn)明顯上調(diào),Gpx4和Slc7a11表達(dá)水平明顯下調(diào)。
為進(jìn)一步探討5′tRF-LysCTT在H/R誘導(dǎo)心肌細(xì)胞發(fā)生鐵死亡過程中的生物學(xué)功能,本研究通過轉(zhuǎn)染antagomir-5′tRF-LysCTT,以敲低心肌細(xì)胞中5′tRF-LysCTT的水平,結(jié)果顯示,敲低心肌細(xì)胞中的5′tRF-LysCTT后,與B、C組相比,D組心肌細(xì)胞中亞鐵離子含量下調(diào),ROS水平降低,鐵離子沉積明顯減少,Ptgs2相對(duì)表達(dá)水平下調(diào),Gpx4和Slc7a11相對(duì)表達(dá)水平上調(diào),細(xì)胞存活率升高。然后本研究又通過轉(zhuǎn)染agomir-5′tRF-LysCTT,以過表達(dá)心肌細(xì)胞中的5′tRF-LysCTT水平,結(jié)果顯示,與E、F組相比,G組心肌細(xì)胞中亞鐵離子含量明顯上調(diào),ROS水平明顯升高,鐵離子沉積增多,Ptgs2相對(duì)表達(dá)水平明顯上調(diào),Gpx4和Slc7a11相對(duì)表達(dá)水平明顯下調(diào),細(xì)胞存活率降低。提示5′tRF-LysCTT可能對(duì)心肌細(xì)胞的鐵死亡具有調(diào)控作用。
綜上所述,H/R會(huì)誘導(dǎo)心肌細(xì)胞發(fā)生鐵死亡,敲低5′tRF-LysCTT會(huì)抑制H/R誘導(dǎo)的心肌細(xì)胞鐵死亡,過表達(dá)5′tRF-LysCTT能促進(jìn)心肌細(xì)胞發(fā)生鐵死亡,5′tRF-LysCTT可能對(duì)心肌細(xì)胞的鐵死亡具有調(diào)控作用,由此可以推測(cè),5′tRF-LysCTT或許可以成為治療心肌缺血再灌注損傷的新靶點(diǎn)。后續(xù)將通過質(zhì)譜分析尋找5′tRF-LysCTT的下游靶點(diǎn),探索5′tRF-LysCTT與下游靶分子共同調(diào)控心肌細(xì)胞鐵死亡的作用及其機(jī)制,為臨床研究提供參考依據(jù)。
倫理批準(zhǔn)和動(dòng)物權(quán)利聲明:本研究涉及的所有實(shí)驗(yàn)均已通過青島大學(xué)實(shí)驗(yàn)動(dòng)物福利倫理委員會(huì)的審核批準(zhǔn)(文件號(hào)20220305C5790-20240601003)。所有實(shí)驗(yàn)過程均遵照《實(shí)驗(yàn)動(dòng)物福利倫理原則》的條例進(jìn)行。
作者聲明:趙炎、王凱、程雪麗參與了研究設(shè)計(jì);趙炎、王昆參與了論文的寫作和修改。所有作者均閱讀并同意發(fā)表該論文,且均聲明不存在利益沖突。
[參考文獻(xiàn)]
[1]ADAMEOVA A, HORVATH C, ABDUL-GHANI S, et al. Interplay of oxidative stress and necrosis-like cell death in cardiac ischemia/reperfusion injury: A focus on necroptosis[J]. Biomedicines, 2022,10(1):127.
[2]KIM H K, FUCHS G, WANG S C, et al. A transfer-RNA-derived small RNA regulates ribosome biogenesis[J]. Nature, 2017,552(7683):57-62.
[3]CHEN Q, YAN M H, CAO Z H, et al. Sperm tsRNAs contribute to intergenerational inheritance of an acquired metabo-
lic disorder[J]. Science, 2016,351(6271):397-400.
[4]LIU W J, LIU Y, PAN Z H, et al. Systematic analysis of tRNA-derived small RNAs discloses new therapeutic targets of caloric restriction in myocardial ischemic rats[J]. Front Cell Dev Biol, 2020,8:568116.
[5]DIXON S J, LEMBERG K M, LAMPRECHT M R, et al. Ferroptosis: An iron-dependent form of nonapoptotic cell death[J]. Cell, 2012,149(5):1060-1072.
[6]PAN Y H, WANG X K, LIU X W, et al. Targeting ferroptosis as a promising therapeutic strategy for ischemia-reperfusion injury[J]. Antioxidants (Basel), 2022,11(11):2196.
[7]PARK T J, PARK J H, LEE G S, et al. Quantitative proteomic analyses reveal that GPX4 downregulation during myocardial infarction contributes to ferroptosis in cardiomyocytes[J]. Cell Death Dis, 2019,10(11):835.
[8]ZHANG X F, WANG L L, LI H X, et al. Crosstalk between noncoding RNAs and ferroptosis: New dawn for overcoming cancer progression[J]. Cell Death Dis, 2020,11(7):580.
[9]MA L Y, CHEN W W, GAO R L, et al. China cardiovascular diseases report 2018:An updated summary[J]. J Geriatr Cardiol, 2020,17(1):1-8.
[10]ZHAO D, LIU J, WANG M, et al. Epidemiology of cardiovascular disease in China: Current features and implications[J]. Nat Rev Cardiol, 2019,16(4):203-212.
[11]CHEN Y Q, FAN H Y, WANG S J, et al. Ferroptosis: A novel therapeutic target for ischemia-reperfusion injury[J]. Front Cell Dev Biol, 2021,9:688605.
[12]DING H S, HUANG Y, QU J F, et al. Panaxynol ameliorates cardiac ischemia/reperfusion injury by suppressing NLRP3-induced pyroptosis and apoptosis via HMGB1/TLR4/NF-κB axis[J]. Int Immunopharmacol, 2023,121:110222.
[13]MA S X, SUN L Y, WU W H, et al. USP22 protects against myocardial ischemia-reperfusion injury via the SIRT1-p53/SLC7A11-dependent inhibition of ferroptosis-induced cardiomyocyte death[J]. Front Physiol, 2020,11:551318.
[14]ANDERSON P, IVANOV P. tRNA fragments in human health and disease[J]. FEBS Lett, 2014,588(23):4297-4304.
[15]KRISHNA S, YIM D G, LAKSHMANAN V, et al. Dynamic expression of tRNA-derived small RNAs define cellular states[J]. EMBO Rep, 2019,20(7):e47789.
[16]SAIKIA M, JOBAVA R, PARISIEN M, et al. Angiogenin-cleaved tRNA halves interact with cytochrome c, protecting cells from apoptosis during osmotic stress[J]. Mol Cell Biol, 2014,34(13):2450-2463.
[17]IVANOV P, EMARA M M, VILLEN J, et al. Angiogenin-induced tRNA fragments inhibit translation initiation[J]. Mol Cell, 2011,43(4):613-623.
[18]YU M Q, LU B J, ZHANG J S, et al. tRNA-derived RNA fragments in cancer: Current status and future perspectives[J]. J Hematol Oncol, 2020,13(1):121.
[19]BURGESS R W, STORKEBAUM E. tRNA dysregulation in neurodevelopmental and neurodegenerative diseases[J]. Annu Rev Cell Dev Biol, 2023,39:223-252.
[20]CAO J, COWAN D B, WANG D Z. tRNA-derived small RNAs and their potential roles in cardiac hypertrophy[J]. Front Pharmacol, 2020,11:572941.
[21]SHEN L Y, GAN M L, TAN Z D, et al. A novel class of tRNA-derived small non-coding RNAs respond to myocardial hypertrophy and contribute to intergenerational inheritance[J]. Biomolecules, 2018,8(3):54.
[22]HE X Q, YANG Y Y, WANG Q, et al. Expression profiles and potential roles of transfer RNA-derived small RNAs in atherosclerosis[J]. J Cell Mol Med, 2021,25(14):7052-7065.
[23]FU X X, HE X Q, YANG Y Y, et al. Identification of transfer RNA-derived fragments and their potential roles in aortic dissection[J]. Genomics, 2021,113(5):3039-3049.
[24]TANG D L, CHEN X, KANG R, et al. Ferroptosis: Molecular mechanisms and health implications[J]. Cell Res, 2021,31(2):107-125.
[25]VALKO M, JOMOVA K, RHODES C J, et al. Redox- and non-redox-metal-induced formation of free radicals and their role in human disease[J]. Arch Toxicol, 2016,90(1):1-37.
[26]ZHAO W K, ZHOU Y, XU T T, et al. Ferroptosis: Opportunities and challenges in myocardial ischemia-reperfusion injury[J]. Oxid Med Cell Longev, 2021,2021:9929687.
[27]ZHANG Y, XIN L Y, XIANG M, et al. The molecular me-
chanisms of ferroptosis and its role in cardiovascular disease[J]. Biomed Pharmacother, 2022,145:112423.
[28]ZHOU L X, HAN S T, GUO J Y, et al. Ferroptosis——a new dawn in the treatment of organ ischemia-reperfusion injury[J]. Cells, 2022,11(22):3653.
[29]FENG Y S, MADUNGWE N B, IMAM ALIAGAN A D, et al. Liproxstatin-1 protects the mouse myocardium against ischemia/reperfusion injury by decreasing VDAC1 levels and restoring GPX4 levels[J]. Biochem Biophys Res Commun, 2019,520(3):606-611.
[30]FANG X X, WANG H, HAN D, et al. Ferroptosis as a target for protection against cardiomyopathy[J]. Proc Natl Acad Sci USA, 2019,116(7):2672-2680.
(本文編輯 耿波)