亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        表沒食子兒茶素沒食子酸酯預(yù)防并改善非酒精性脂肪性肝病的作用機(jī)制及研究進(jìn)展

        2024-01-01 00:00:00陳佳欣張錦佳左會靈焦宇航石安華
        茶葉科學(xué) 2024年4期
        關(guān)鍵詞:氧化應(yīng)激小鼠研究

        摘要:非酒精性脂肪性肝?。∟onalcoholic fatty liver disease,NAFLD)發(fā)病率逐年升高,目前尚無特效藥物。綠茶的有效成分表沒食子兒茶素沒食子酸酯(Epigallocatechin gallate,EGCG)在低劑量范圍內(nèi)已被證明對NAFLD具有良好的改善作用。綜述總結(jié)了EGCG通過抗氧化應(yīng)激、抗炎、抑制鐵死亡、減少脂質(zhì)生成、調(diào)節(jié)自噬、調(diào)節(jié)腸道菌群以及降低膽汁酸代謝等方面延緩NAFLD發(fā)生發(fā)展的部分機(jī)制,以期為改善NAFLD的深入研究提供啟示。

        關(guān)鍵詞:非酒精性脂肪性肝?。槐頉]食子兒茶素沒食子酸酯;氧化應(yīng)激;炎癥

        中圖分類號:S571.1;R575.5"""""""""""""""文獻(xiàn)標(biāo)識碼:A"""""""""""""""文章編號:1000-369X(2024)04-543-11

        The Mechanism and Research Progress of"Epigallocatechin Gallate in Improving"Non-alcoholic Fatty Liver Disease

        CHEN Jiaxin1,2, ZHANG Jinjia1,2, ZUO Huiling1,2, JIAO Yuhang1,2, SHI Anhua1,2*

        1. Yunnan University of Chinese Medicine, Kunming 650500, China; 2. Key Laboratory of Microcosmic Syndrome Differentiation for TCM Syndromes in Universities of Yunnan Province, Kunming 650500, China

        Abstract: The incidence of nonalcoholic fatty liver disease (NAFLD) is increasing year by year and there is no specific drug available. The active ingredient of green tea, epigallocatechin gallate (EGCG), has been widely proven"to have a favorable ameliorative effect on NAFLD in the low dose range. Some of the mechanisms by which EGCG delays the development of NAFLD through anti-oxidative stress, anti-inflammation, inhibition of iron death, reduction of lipogenesis, up-regulation of autophagy, modulation of intestinal flora, and reduction of bile acid metabolism were"summarized in this paper,"so as"to provide insights for in-depth research on improving NAFLD.

        Keywords"nonalcoholic fatty liver disease, epigallocatechin gallate, oxidative stress, inflammation

        非酒精性脂肪性肝?。∟onalcoholic fatty liver disease,NAFLD)是指除酒精和其他明確的損肝因素外所導(dǎo)致的肝細(xì)胞內(nèi)脂肪過度沉積的一種慢性肝病[1]。NAFLD的全球患病率逐年增加[2],成為全球主要的健康問題[3-4]。目前NAFLD的病理生理因素涉及多個平行通路,這些通路動態(tài)串?dāng)_[5],將簡單脂肪變性進(jìn)一步發(fā)展為非酒精性脂肪性肝炎(Non-alcoholic"steatohepatitis,NASH)、肝纖維化、肝硬化,以及肝癌等一系列肝臟疾病[6]。然而,目前針對NAFLD尚無理想有效的治療藥物[7],飲食結(jié)構(gòu)及生活方式的改善可對肝脂肪變性的發(fā)展具有預(yù)防和改善作用。

        表沒食子兒茶素沒食子酸酯(Epigallocate-chin"gallate,EGCG)是從天然綠茶中提取的最主要的多酚成分,具有強(qiáng)抗氧化特性。研究表明,飲用綠茶可以改善NAFLD患者血液中轉(zhuǎn)氨酶和血脂水平[8-9],EGCG在降低肝臟的炎癥和血脂水平[10]、減輕胰島素抵抗[11]、減少肝脂肪變性、增加線粒體自噬、增加腺苷單磷酸活化蛋白激酶(AMP-activated protein kinase,AMPK)磷酸化[12]、抑制肝糖異生[13]等方面具有良好作用。此外,EGCG還可以調(diào)節(jié)葡萄糖、脂質(zhì)和蛋白質(zhì)的代謝[14-16],對不同因素造成的肝損傷均具有改善作用[17-18]。基于研究者對EGCG改善NAFLD作用機(jī)制的大量研究,本文總結(jié)了EGCG改善NAFLD的部分機(jī)制,以期為改善NAFLD的深入研究提供啟示。

        1 EGCG通過抗氧化應(yīng)激延緩NAFLD的發(fā)生

        氧化應(yīng)激(Oxidative stress,OS)是NAFLD發(fā)展的關(guān)鍵調(diào)節(jié)因子[19]?;钚匝酰≧eactive oxygen species,ROS)產(chǎn)生失調(diào)會導(dǎo)致細(xì)胞器(尤其是線粒體)的損害,這種氧化損傷和相關(guān)的線粒體功能障礙可能導(dǎo)致細(xì)胞能量耗竭、有害介質(zhì)積累,最終導(dǎo)致細(xì)胞死亡[20]。過氧化物酶體增殖物激活受體α(Peroxisome proliferator-activated receptor α,PPARα)是一種在組織中表達(dá)的核受體,在肝臟中表達(dá)特別豐富。PPARα可以調(diào)節(jié)脂肪酸攝取和激活,以及葡萄糖代謝和穩(wěn)態(tài),在糖脂代謝中起著核心作用[21]。Montagner等[22]研究發(fā)現(xiàn),小鼠敲除PPARα后會促進(jìn)NAFLD的發(fā)生發(fā)展。PPAR-γ主要在脂肪組織和巨噬細(xì)胞中表達(dá),能促進(jìn)脂肪生成和脂肪酸儲存,被認(rèn)為是脂肪生成和脂質(zhì)代謝的主要調(diào)節(jié)因子,在脂肪生成和調(diào)節(jié)胰島素敏感性中起著至關(guān)重要的作用[23-24]。研究表明,PPAR-γ在NAFLD患者的肝臟中上調(diào),并且肝臟PPAR-γ的表達(dá)與固醇調(diào)節(jié)元件結(jié)合蛋白-1c(Sterol regulatory element-binding protein 1c,SREBP-1c)mRNA水平呈正相關(guān),且PPAR-γ激動劑可減少NASH患者的肝臟/內(nèi)臟脂肪并改善炎癥[25]。PPAR-γ激動劑還可以改善NAFLD模型中的氧化應(yīng)激和NLRP3炎癥小體激活,并阻止M1巨噬細(xì)胞的極化[26]。

        EGCG作為多酚類物質(zhì),具有一定的抗氧化功效[27],能減少氧化應(yīng)激,延緩NAFLD的進(jìn)程。林勇等[28]研究表明,EGCG能顯著降低大鼠的體重、甘油三酯(Triglycerides,TG)、總膽固醇(Total cholesterol,TC)、低密度脂蛋白膽固醇(Low-density-lipoprotein cholesterol,LDL-C)含量,以及丙氨酸氨基轉(zhuǎn)移酶(Alanine transaminase,ALT)和天冬氨酸轉(zhuǎn)氨酶(Aspartatetransaminase,AST)活性,提高高密度脂蛋白膽固醇(High-density-lipoprotein cholesterol,HDL-C)的含量,有效改善大鼠肝臟的氧化應(yīng)激從而改善NAFLD。沈晶等[29]研究表明,EGCG可能通過調(diào)控AMPK/SIRT1/SREBP-1c/PPARγ信號通路相關(guān)基因的表達(dá)來改善NAFLD小鼠糖脂代謝、脂肪酸氧化和氧化應(yīng)激狀態(tài)(圖1)。Kuzu等[30]在SD大鼠飲水中添加EGCG(1 g·L-1)進(jìn)行處理6周后,NASH大鼠的脂肪變性程度減輕,血漿和肝臟丙二醛(Malondialdehyde,MDA)水平明顯降低,谷胱甘肽水平明顯升高,且CYP2E1和α平滑肌肌動蛋白表達(dá)顯著降低。嚴(yán)煜鈞等[31]研究也得到相似的結(jié)果。

        2"EGCG通過抗炎延緩NAFLD的發(fā)生發(fā)展

        氧化應(yīng)激可以激活多種轉(zhuǎn)錄因子,促進(jìn)炎癥因子的表達(dá),最終導(dǎo)致慢性炎癥[32]。嚴(yán)重

        且持續(xù)的炎癥可能誘發(fā)肝纖維化,纖維化持續(xù)進(jìn)展可能誘發(fā)肝硬化和肝癌,造成嚴(yán)重后果。氧化應(yīng)激機(jī)制和炎癥信號相互關(guān)聯(lián),可促進(jìn)慢性炎癥狀態(tài)持續(xù),損害脂肪細(xì)胞的成熟,導(dǎo)致胰島素作用和脂肪細(xì)胞因子信號傳導(dǎo)缺陷,使胰島素抵抗加劇[33-35],促進(jìn)NAFLD的發(fā)生發(fā)展。

        EGCG的抗氧化作用可降低ROS、減少炎癥指標(biāo)并預(yù)防肝炎。Hou等[36]研究顯示,EGCG可以降低大鼠肝臟中的TG濃度,并抑制炎癥信號通路基因TLR4、TRAF6IKKβ、p-IKKβ、p-NF-κBTNF-α的表達(dá)水平,提升胰島素信號轉(zhuǎn)導(dǎo)通路基因PI3K、AKT、IRS-1IRS-2的表達(dá)水平,表明EGCG可能從抑制炎癥和改善肝組織胰島素抵抗來改善NAFLD(圖1)。Xiao等[37]研究表明,EGCG干預(yù)可降低脂肪評分、減少壞死和炎癥灶的數(shù)量、降低ALT/AST比率、下調(diào)促炎標(biāo)志物(iNOS、COX-2和TNF-α)的表達(dá)。Ding等[38]研究發(fā)現(xiàn),EGCG干預(yù)組能夠顯著抑制炎癥因子及纖維化指標(biāo)因子表達(dá),降低肝臟MDA含量,增加肝臟超氧化物歧化酶含量,從而抑制脂肪性肝炎,并延緩其進(jìn)程。腎素-血管緊張素系統(tǒng)(Erenin-angiotensin system,RAS)的激活在血壓調(diào)節(jié)中起關(guān)鍵作用,并且可以促進(jìn)肝纖維化。Kochi等[39]研究發(fā)現(xiàn),EGCG可能通過改善SHRSP-ZF大鼠的肝纖維化、抑制RAS活化減輕炎癥和氧化應(yīng)激,從而抑制肝癌前病變的發(fā)展。

        成纖維細(xì)胞生長因子(Fibroblast growth factor,F(xiàn)GF)已被證明在肝臟發(fā)育、健康和疾病中作為旁分泌信號發(fā)揮作用[40]。成纖維細(xì)胞生長因子2(FGF2)可以通過結(jié)合和激活FGF受體調(diào)節(jié)多種細(xì)胞過程(圖1)。研究表明,F(xiàn)GF2能夠顯著減輕內(nèi)質(zhì)網(wǎng)應(yīng)激,抑制細(xì)胞凋亡,改善油酸和棕櫚酸誘導(dǎo)的體外NAFLD細(xì)胞模型[41]。AMPK能夠參與線粒體穩(wěn)態(tài)[42],抑制脂肪酸氧化、炎癥、內(nèi)質(zhì)網(wǎng)應(yīng)激和氧化應(yīng)激,并激活自噬[43]。FGF2通過增加AMPK磷酸化,啟動AMPK信號級聯(lián)[44],促進(jìn)NAFLD的發(fā)展。Zhang等[45]研究發(fā)現(xiàn),EGCG可以改善FGFR/AMPK通路,降低氧化應(yīng)激水平,從而減輕NAFLD的肝細(xì)胞損傷和功能障礙。

        綜上所述,EGCG可能通過改善氧化應(yīng)激、抑制炎癥、減少過氧化物酶的表達(dá)以及調(diào)控谷胱甘肽水平改善NAFLD。

        3"EGCG通過抑制鐵死亡改善NAFLD

        鐵死亡是一種由鐵依賴性脂質(zhì)過氧化物積累誘導(dǎo)的調(diào)節(jié)性細(xì)胞死亡,由于細(xì)胞內(nèi)鐵離子水平異常升高,誘導(dǎo)氧化還原失衡,細(xì)胞膜發(fā)生脂質(zhì)過氧化,最終細(xì)胞膜破裂,細(xì)胞死亡。其機(jī)制主要與鐵代謝紊亂、氨基酸抗氧化系統(tǒng)失衡和脂質(zhì)過氧化物積累有關(guān)[46-47]。鐵死亡在NAFLD的病理進(jìn)展中起著關(guān)鍵作用。且鐵過載的細(xì)胞通過釋放與炎癥相關(guān)的損傷相關(guān)分子來觸發(fā)先天免疫系統(tǒng),免疫細(xì)胞通過識別鐵死亡的操作機(jī)制刺激炎癥反應(yīng)。ROS誘導(dǎo)氧化應(yīng)激并消耗細(xì)胞內(nèi)抗氧化劑,進(jìn)一步加劇了脂質(zhì)過氧化的產(chǎn)生和炎癥反應(yīng),如此惡性循環(huán)加劇NAFLD的進(jìn)展[48-49]。

        研究表明,EGCG的強(qiáng)抗氧化作用可通過平衡脂質(zhì)過氧化物的累積、改善鐵代謝紊亂發(fā)揮改善NAFLD的作用[50-51]。Ding等[50]研究發(fā)現(xiàn),EGCG可通過靶向線粒體ROS介導(dǎo)的鐵死亡顯著緩解NAFLD小鼠的肝損傷、脂質(zhì)積累、氧化應(yīng)激和肝脂肪變性,降低鐵過載并抑制鐵死亡。Yang等[51]研究表明,EGCG干預(yù)可以增加鐵過載小鼠核因子紅系2相關(guān)因子2(Nuclear factor erythroid 2-related factor 2,Nrf2)和谷胱甘肽過氧化物酶4(Glutathione peroxidase,GPX4)的表達(dá),提高抗氧化能力,并通過上調(diào)FTH/L表達(dá)減輕鐵代謝紊亂,有效抑制鐵過載引起的鐵死亡。

        以上研究結(jié)果表明,氧化應(yīng)激、炎癥與鐵死亡之間的串?dāng)_交互促進(jìn)NAFLD的發(fā)生發(fā)展,EGCG可能通過其抗氧化、抗炎、改善胰島素抵抗等活性減少炎癥因子的浸潤,抑制鐵死亡,從而改善NAFLD。

        4"EGCG通過減少脂肪生成和促進(jìn)脂肪酸氧化延緩NAFLD的發(fā)生發(fā)展

        EGCG能夠減少脂肪生成并促進(jìn)脂肪酸氧化,可以延緩NAFLD的發(fā)生發(fā)展[52-56]。Gan等[52]研究發(fā)現(xiàn),EGCG能夠改善NAFLD小鼠的肝臟形態(tài)和功能,降低體重,以劑量依賴的方式減輕NAFLD小鼠的高脂血癥、高血糖癥、高胰島素血癥和胰島素抵抗。Alavinejad等[53]從臨床上招募了33名NAFLD患者,囑患者每日服用EGCG膠囊(390 mg),持續(xù)3個月,發(fā)現(xiàn)EGCG能顯著降低患者ALT和AST水平。Liu等[54]試驗(yàn)表明,EGCG可恢復(fù)AKT活性、促進(jìn)GLUT4表達(dá),刺激骨骼肌中AMPKα的激活來下調(diào)mTOR和脂質(zhì)生成基因(如SREBP-1c),從而減輕肝臟脂質(zhì)積累。黃超群等[55]研究發(fā)現(xiàn),EGCG可以增加肥胖小鼠皮下與附睪白色脂肪組織和肌肉組織中的AMPK活性,推測EGCG抗肥胖的作用可能與激活A(yù)MPK有關(guān)。宋瑩瑩等[56]研究結(jié)果顯示,與模型組比較,EGCG干預(yù)組小鼠血清AST、ALT活力以及血清、肝組織中TG的含量明顯降低,肝臟脂肪樣變性和脂質(zhì)蓄積程度明顯減輕,且肝臟SIRT6和p-AMPKα蛋白表達(dá)水平明顯升高,SREBP-1c、FASN、ACC的mRNA和蛋白表達(dá)水平明顯降低,進(jìn)一步驗(yàn)證了EGCG可能通過AMPK信號通路延緩NAFLD這一推測。

        SIRT6屬于Sir2組蛋白NAD+依賴性脫?;讣易宓牟溉閯游锿次?,是一種高度特異性的組蛋白3型脫乙酰酶,在DNA修復(fù)、維持基因組穩(wěn)定性和細(xì)胞抗衰老中發(fā)揮重要作用[57-58]。此外,SIRT6還通過維持糖酵解基因啟動子中H3K9的脫乙?;?,并作為HIF-1α的共阻遏因子調(diào)節(jié)葡萄糖代謝[59]。

        研究表明,EGCG能夠通過激活SIRT6/AMPK信號通路抑制脂肪酸從頭合成從而改善果糖飲食誘導(dǎo)的NAFLD(圖2)[56]。此外,Lu等[60]研究表明,EGCG可通過AMPK/PKA通路降低由1,3-DCP誘導(dǎo)的蛋白質(zhì)損傷,并將肝臟脂質(zhì)恢復(fù)至正常水平。Ueno等[61]通過對1cnSREBP-57c轉(zhuǎn)基因的C57BL6小鼠進(jìn)行EGCG干預(yù)試驗(yàn),發(fā)現(xiàn)0.1% EGCG干預(yù)組小鼠的肝指數(shù)顯著降低,脂肪變性、炎癥、肝細(xì)胞膨脹和Mallory-Denk小體顯著改善,胰島素抵抗和氧化應(yīng)激明顯減輕,肝損傷得到改善。

        5"EGCG通過上調(diào)自噬改善NAFLD

        自噬或細(xì)胞自我消化是一種溶酶體途徑,可降解細(xì)胞內(nèi)細(xì)胞器,在營養(yǎng)剝奪期間能維持能量穩(wěn)態(tài)并去除受損的細(xì)胞成分[62]。研究表明,自噬在NAFLD及其并發(fā)癥的發(fā)病機(jī)制中起到核心作用,不僅能調(diào)節(jié)脂質(zhì)代謝和胰島素抵抗,還可以促進(jìn)自噬體的形成,封閉脂滴并靶向溶酶體,將脂滴降解為游離脂肪酸,達(dá)到改善肝損傷的作用,是治療NAFLD新的潛在靶點(diǎn)[63-64]

        EGCG治療可減少肝脂肪病變并同時增加自噬[65-66]。Wu等[67]采用油酸(Oleic acid,OA)處理的肝細(xì)胞和高脂飲食誘導(dǎo)的NAFLD小鼠模型,發(fā)現(xiàn)EGCG能降低OA處理組肝細(xì)胞的凋亡水平,上調(diào)自噬;還可以通過抑制ROS/MAPK通路、減少細(xì)胞凋亡和增加自噬緩解高脂飲食誘導(dǎo)小鼠的NAFLD。mTOR和AMPK都可以直接調(diào)節(jié)絲氨酸/蘇氨酸激酶(Ulk1)并協(xié)調(diào)哺乳動物自噬的起始[68]。mTOR-AMPK通路可以在ER應(yīng)激時上調(diào)自噬延緩凋亡細(xì)胞死亡,低劑量(20 μmol·L-1,24 h)的EGCG足以激活A(yù)MPK并抑制mTOR,這表明EGCG在AMPK-mTOR誘導(dǎo)的自噬通路失衡中起關(guān)鍵作用[69]。

        6"EGCG通過調(diào)節(jié)腸-肝軸恢復(fù)腸道平衡延緩NAFLD的發(fā)生發(fā)展

        腸道菌群能通過影響能量代謝、誘導(dǎo)內(nèi)毒素血癥、產(chǎn)生內(nèi)源性乙醇、調(diào)節(jié)膽汁酸和膽堿代謝來影響腸道生態(tài),腸道生態(tài)失調(diào)會增加腸道對細(xì)菌產(chǎn)物的通透性,使肝臟暴露于有害物質(zhì),從而增加肝臟炎癥和纖維化,增加NAFLD的發(fā)病風(fēng)險[70]。EGCG主要在腸道中被吸收,腸道菌群在EGCG的吸收和代謝中起著關(guān)鍵作用[71]。EGCG可通過調(diào)節(jié)腸道菌群、維持腸道屏障和抑制腸道氧化應(yīng)激及炎癥通路等起到改善NAFLD的作用。

        研究發(fā)現(xiàn),EGCG不僅可以改變NAFLD大鼠腸道微生物的組成,增加腸道微生物的多樣性,降低腸道中促炎細(xì)胞因子的表達(dá),減少腸道上皮間細(xì)胞數(shù)量,保護(hù)腸道黏膜屏障的完整性;還可以抑制結(jié)腸TLR4/MYD88/NF-κB炎癥信號通路蛋白的表達(dá),調(diào)節(jié)結(jié)腸氧化應(yīng)激相關(guān)基因的表達(dá),緩解腸道氧化損傷[72]。Shi等[73]研究發(fā)現(xiàn),給大鼠飲食中補(bǔ)充0.6% EGCG 4周可刺激大鼠腸道中有益菌(乳酸桿菌-腸球菌組、雙歧桿菌屬)的生長,增加副擬桿菌屬的豐度,從而延緩NAFLD的發(fā)展。為了探討EGCG對高脂飲食誘導(dǎo)的肥胖小鼠腸道微生物的調(diào)控作用,Liu等[74]灌胃給予C57BL/6J小鼠EGCG(10 mg·kg-1·d-1)14周,通過轉(zhuǎn)錄組學(xué)分析、基因富集分析和回腸免疫球蛋白測試發(fā)現(xiàn),EGCG主要通過調(diào)節(jié)腸道微生物組分和回腸免疫球蛋白的產(chǎn)生改善高脂飲食誘導(dǎo)的代謝紊亂。Huang等[75]通過測量小鼠小腸、血清和糞便中分泌型免疫球蛋白A的變化,進(jìn)一步表明EGCG干預(yù)后的C57BL/6小鼠腸黏膜免疫力得到改善,延緩了NAFLD的發(fā)展。Ning等[76]也得到類似的結(jié)果,發(fā)現(xiàn)EGCG能明顯改善甲硫氨酸-膽堿缺乏飲食誘導(dǎo)的小鼠腸道菌群失調(diào)。此外,EGCG還可以通過降低結(jié)腸炎因子的表達(dá)緩解屏障損傷[77]。綜上,EGCG可能通過改善腸道菌群代謝異常從而改善NAFLD。

        7"EGCG通過降低膽汁酸水平改善NAFLD

        膽汁酸(Bile acid,BA)是膽汁的主要成分,由肝臟中的膽固醇合成,是脂質(zhì)和葡萄糖代謝的調(diào)節(jié)劑,可調(diào)節(jié)肝臟和其他組織的炎癥。初級膽汁酸,如膽酸和鵝去氧膽酸(Chenodeoxycholic acid,CDCA)在肝臟中產(chǎn)生,并通過腸道菌群轉(zhuǎn)化為次級膽汁酸,如脫氧膽酸(Deoxycholic acid,DCA)和石膽酸。法尼醇X受體(Farnesoid X receptor,F(xiàn)XR)是膽汁酸受體,在脂質(zhì)、葡萄糖和能量穩(wěn)態(tài)中發(fā)揮作用,肝臟FXR表達(dá)的降低與肝臟甘油三酯合成的增加有關(guān),是肝臟疾病的新型治療靶點(diǎn)[78-80]。NAFLD患者的血清初級和次級膽汁酸濃度升高,F(xiàn)XR拮抗性的DCA增加,而FXR激動性的CDCA會降低。因此,合成FXR激動劑(CDCA)已被開發(fā)用于特異性靶向這些受體,在NAFLD的治療中具有潛在作用[81-83]。

        在腸道中,EGCG降低了FXR激動劑并且減少了FXR調(diào)節(jié)途徑,誘導(dǎo)腸道FXR失活。然而,在肝臟中EGCG可以增加FXR及其特異性膜受體跨膜G蛋白偶聯(lián)受體-5(TGR-5)激動劑的濃度并上調(diào)其信號傳導(dǎo),從而產(chǎn)生有益作用[84]。Huang等[85]研究結(jié)果顯示,與高脂飲食小鼠相比,0.32% EGCG干預(yù)17周后小鼠的體重、腸系膜脂肪量、空腹血糖、胰島素抵抗、血清膽固醇和脂肪肝的嚴(yán)重程度顯著降低,腸道膽汁酸含量顯著降低,膽汁酸和膽固醇的排泄增加。

        研究結(jié)果表明,EGCG能夠降低膽汁酸重吸收,促進(jìn)膽固醇的排泄和脂質(zhì)的吸收轉(zhuǎn)化,緩解由高脂飲食引起的代謝異常和脂肪肝疾病。

        8"總結(jié)與展望

        綜上所述,EGCG通過抗氧化應(yīng)激、抗炎、抑制鐵死亡、減少脂質(zhì)生成、上調(diào)自噬、調(diào)節(jié)腸道菌群,以及降低膽汁酸代謝等方面延緩NAFLD的發(fā)生發(fā)展。

        目前,有關(guān)EGCG在預(yù)防慢性病方面的研究已廣泛開展,已存在部分EGCG產(chǎn)品,但高劑量的EGCG會引起肝毒性和腎毒性等副作用[86]。濃縮富含兒茶素的綠茶制劑在大劑量推注攝入時,會以劑量依賴性方式導(dǎo)致肝臟的不良反應(yīng)[87],甚至對小鼠產(chǎn)生致死[88]。Lambert等[89]研究發(fā)現(xiàn),使用單劑量EGCG(1 500 mg·kg-1)可使雄性CF-1小鼠血漿ALT增加138倍,生存率降低85%;使用兩次劑量為184 mg·kg-1·d-1后,小鼠血漿ALT水平增加了750倍,并發(fā)現(xiàn)中度至重度肝壞死。Hirsch等[90]研究發(fā)現(xiàn),長期補(bǔ)充綠茶提取物會顯著增加肝臟氧化應(yīng)激和炎癥,且能改變膽汁酸合成途徑,加劇肝損傷。在臨床干預(yù)研究中,每人每天攝入低于600 mg的EGCG并未觀察到對肝臟有副作用[91]

        EGCG對NAFLD具有多方面的預(yù)防作用,但臨床試驗(yàn)不足??紤]到EGCG的穩(wěn)定性差、生物利用度低,其有效劑量在實(shí)際應(yīng)用中可能接近或高于毒性劑量[92]。因此除了改良劑型以克服吸收過程中的代謝損失外,還可以通過與其他藥物聯(lián)合使用增強(qiáng)其化學(xué)敏感性。EGCG對NAFLD發(fā)揮改善作用的分子機(jī)制有待進(jìn)一步深入探索。

        參考文獻(xiàn)

        [1]"Boccatonda A, Andreetto L, D’Ardes D, et al. From NAFLD to MAFLD: definition, pathophysiological basis and cardiovascular implications"[J]. Biomedicines, 2023, 11(3): 883."doi: 10.3390/biomedicines11030883.

        [2]"Younossi Z M, Golabi P, Paik J M, et al. The global epidemiology of nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH): a systematic review"[J]. Hepatology, 2023, 77(4): 1335-1347.

        [3]"Williams C D, Stengel J, Asike M I, et al. Prevalence of nonalcoholic fatty liver disease and nonalcoholic steatohepatitis among a largely middle-aged population utilizing ultrasound and liver biopsy: a prospective study"[J]. Gastroenterology, 2011, 140(1): 124-131.

        [4]"Rajak S, Raza S, Tewari A, et al. Environmental toxicants and NAFLD: a neglected yet significant relationship"[J]. Digestive Diseases and Sciences, 2022, 67(8): 3497-3507.

        [5]"Van De Wier B, Koek G H, Bast A, et al. The potential of flavonoids in the treatment of non-alcoholic fatty liver disease"[J]. Critical Reviews in Food Science and Nutrition, 2017, 57(4): 834-855.

        [6]"陳紅霞, 孟忠吉. 綠茶在非酒精性脂肪肝病治療中的作用研究進(jìn)展[J]. 江蘇預(yù)防醫(yī)學(xué), 2014, 25(4): 44-47.Chen H X, Meng Z J. Progress in the study of the role of green tea in the treatment of nonalcoholic fatty liver disease"[J]. Jiangsu Journal of Preventive Medicine, 2014, 25(4): 44-47.

        [7]"蔣華軍. EGCG干預(yù)非酒精性脂肪肝大鼠代謝組學(xué)研究[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2013.Jiang H J. The"metabonomics study on nonalcoholic fat liver disease in rat interfered by EGCG [D]."Changsha:"Hunan Agricultural University, 2013.

        [8]"Pezeshki A, Safi S, Feizi A, et al. The effect of green tea extract supplementation on liver enzymes in patients with nonalcoholic fatty liver disease"[J]. International Journal of Preventive Medicine, 2016, 7(1): 28."doi: 10.4103/2008-7802.173051.

        [9]"Almatroodi S A,"Alsahli M"A, Alharbi H M, et al. Epigallocatechin-3-gallate (EGCG), an active constituent of green tea: implications in the prevention of liver injury induced by diethylnitrosamine (DEN) in rats"[J]. Applied Sciences, 2019, 9(22): 4821."doi: 10.3390/app9224821.

        [10]"Du Y, Paglicawan L, Soomro S, et al. Epigallocatechin-3-gallate dampens non-alcoholic fatty liver by modulating liver function, lipid profile and macrophage polarization"[J]. Nutrients, 2021, 13(2): 599."doi: 10.3390/nu13020599.

        [11]"Gan L, Meng Z"J, Xiong R"B, et al. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice"[J]. Acta Pharmacologica Sinica, 2015, 36(5): 597-605.

        [12]"Wu W K K, Zhang L, Chan M T V. Autophagy, NAFLD and NAFLD-related HCC"[G]//Yu J. Obesity, fatty liver and liver cancer. Singapore: Springer Singapore, 2018: 127-138.

        [13]"Collins Q F, Liu H"Y, Pi J, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, suppresses hepatic gluconeogenesis through 5′-AMP-activated protein kinase [J]. Journal of Biological Chemistry, 2007, 282(41): 30143-30149.

        [14]"Lin L, Zeng L, Liu A, et al. Role of epigallocatechin gallate in glucose, lipid, and protein metabolism and L-theanine in the metabolism-regulatory effects of epigallocatechin gallate"[J]. Nutrients, 2021, 13(11): 4120."doi: 10.3390/nu13114120.

        [15]"Luo P, Wang F, Wong N"K, et al. Divergent roles of Kupffer cell TLR2/3 signaling in alcoholic liver disease and the protective role of EGCG"[J]. Cellular and Molecular Gastroenterology and Hepatology, 2020, 9(1): 145-160.

        [16]"侯慧敏. 表沒食子兒茶素沒食子酸酯對非酒精性脂肪性肝病中二肽基肽酶-4活性及表達(dá)的影響[D]. 沈陽: 中國醫(yī)科大學(xué), 2020.Hou H M. Effect of epigallocatechin gallate on the activity and expression of dipeptidyl peptidase-4 in non-alcoholic fatty liver disease [D]. Shenyang: China Medical University, 2020.

        [17]"Chen C, Liu Q, Liu L, et al. Potential biological effects of (-)-epigallocatechin-3-gallate on the treatment of nonalcoholic fatty liver disease"[J]. Molecular Nutrition amp; Food Research, 2018, 62(1): 1700483."doi: 10.1002/mnfr.201700483.

        [18]"Steinmann J, Buer J, Pietschmann T, et al. Anti-infective properties of epigallocatechin-3-gallate (EGCG), a component of green tea"[J]. British Journal of Pharmacology, 2013, 168(5): 1059-1073.

        [19]"Ma Y, Lee G, Heo S"Y, et al. Oxidative stress is a key modulator in the development of nonalcoholic fatty liver disease"[J]. Antioxidants, 2022, 11(1): 91."doi: 10.3390/antiox11010091.

        [20]"Li Y"Y, Yu Y, Yang L, et al. Insights into the role of oxidative stress in hepatocellular carcinoma development"[J]. Frontiers in Bioscience-Landmark, 2023, 28(11): 286."doi: 10.31083/j.fbl2811286.

        [21]"Todisco S, Santarsiero A, Convertini P, et al. PPARα"as a metabolic modulator of the liver: role in the pathogenesis of nonalcoholic steatohepatitis (NASH)"[J]. Biology, 2022, 11(5): 792."doi: 10.3390/biology11050792.

        [22]"Montagner A, Polizzi A, Fouché E, et al. Liver PPARα"is crucial for whole-body fatty acid homeostasis and is protective against NAFLD"[J]. Gut, 2016, 65(7): 1202-1214.

        [23]"Wang S, Lin Y"K, Gao L, et al. PPAR-γ"integrates obesity and adipocyte clock through epigenetic regulation of Bmal1"[J]. Theranostics, 2022, 12(4): 1589-1606.

        [24]"Gawrieh S, Noureddin M, Loo N, et al. Saroglitazar, a PPAR-α/γ"agonist, for treatment of NAFLD: a randomized controlled double-blind phase 2 trial"[J]. Hepatology, 2021, 74(4): 1809-1824.

        [25]"Gastaldelli A, Sabatini S, Carli F, et al. PPAR-γ-induced changes in visceral fat and adiponectin levels are associated with improvement of steatohepatitis in patients with NASH"[J]. Liver International, 2021, 41(11): 2659-2670.

        [26]"Li X"Y, Ji P"X, Ni X"X, et al. Regulation of PPAR-γ"activity in lipid-laden hepatocytes affects macrophage polarization and inflammation in nonalcoholic fatty liver disease"[J]. World Journal of Hepatology, 2022, 14(7): 1365-1381.

        [27]"Saffari Y, Sadrzadeh S M H. Green tea metabolite EGCG protects membranes against oxidative damage in vitro"[J]. Life Sciences, 2004, 74(12): 1513-1518.

        [28]"林勇, 劉仲華, 嚴(yán)煜鈞. 茶葉中EGCG干預(yù)大鼠非酒精性脂肪肝的作用及機(jī)理研究[C]//中國科學(xué)技術(shù)協(xié)會, 云南省人民政府. 第十六屆中國科協(xié)年會——分12茶學(xué)青年科學(xué)家論壇. 昆明: [出版者不詳], 2014: 163-169.Lin"Y, Liu"Z"H, Yan"Y"J. Study on the effect and mechanism of EGCG in tea in intervening non-alcoholic fatty liver in rats [C]//China Association for Science and Technology, Yunnan Provincial People's Government. The 16th Annual Conference of the Chinese Association for Science and Technology:"12 Tea Science Youth Scientists Forum. Kunming: [s.n.],"2014: 163-169.

        [29]"沈晶, 舒恒, 石孟瓊, 等. 表沒食子兒茶素沒食子酸酯對小鼠非酒精性脂肪肝的干預(yù)作用[J]. 現(xiàn)代食品科技, 2021, 37(4): 33-43, 71.Shen"J, Shu"H, Shi"M"Q, et al."Effects of epigallocatechin-3-gallate on nonalcoholic fatty liver disease in mice [J]."Modern Food Science and Technology, 2021, 37(4): 33-43, 71.

        [30]"Kuzu N, Bahcecioglu I H, Dagli A F, et al. Epigallocatechin gallate attenuates experimental non-alcoholic steatohepatitis induced by high fat diet"[J]. Journal of Gastroenterology and Hepatology, 2008, 23(8pt2): e465-e470.

        [31]"嚴(yán)煜鈞, 劉仲華, 林勇, 等. 茶葉中EGCG對非酒精性脂肪肝大鼠的調(diào)脂保肝作用研究[J]. 茶葉科學(xué), 2014, 34(3): 221-229.Yan"Y"J, Liu"Z"H, Lin"Y, et al."Effects of EGCG from tea on regulating lipid metabolism and alleviating liver injury in rats with non-alcoholic fatty liver disease"[J]. Journal of Tea Science, 2014, 34(3): 221-229.

        [32]"Hussain T, Tan B, Yin Y, et al. Oxidative stress and inflammation: what polyphenols can do for us?"[J]. Oxidative Medicine and Cellular Longevity, 2016, 2016: 7432797."doi: 10.1155/2016/7432797.

        [33]"Bondia-Pons I, Ryan L, Martinez J A. Oxidative stress and inflammation interactions in human obesity"[J]. Journal of Physiology and Biochemistry, 2012, 68(4): 701-711.

        [34]"Hulsmans M, Holvoet P. The vicious circle between oxidative stress and inflammation in atherosclerosis"[J]. Journal of Cellular and Molecular Medicine, 2010, 14(1/2): 70-78.

        [35]"Mancini A, Di Segni C, Raimondo S, et al. Thyroid hormones, oxidative stress, and inflammation"[J]. Mediators of Inflammation, 2016, 2016: 6757154."doi: 10.1155/2016/6757154.

        [36]"Hou H"M, Yang W"L, Bao S"Q, et al. Epigallocatechin gallate suppresses inflammatory responses by inhibiting toll-like receptor 4 signaling and alleviates insulin resistance in the livers of high-fat-diet rats"[J]. Journal of Oleo Science, 2020, 69(5): 479-486.

        [37]"Xiao J, Ho C T, Liong E C, et al. Epigallocatechin gallate attenuates fibrosis, oxidative stress, and inflammation in non-alcoholic fatty liver disease rat model through TGF/SMAD, PI3 K/Akt/FoxO1, and NF-κB pathways"[J]. European Journal of Nutrition, 2014, 53(1): 187-199.

        [38]"Ding Y, Sun X, Chen Y, et al. Epigallocatechin gallate attenuated non-alcoholic steatohepatitis induced by methionine- and choline-deficient diet"[J]. European Journal of Pharmacology, 2015, 761: 405-412.

        [39]"Kochi T, Shimizu M, Terakura D, et al. Non-alcoholic steatohepatitis and preneoplastic lesions develop in the liver of obese and hypertensive rats: suppressing effects of EGCG on the development of liver lesions"[J]. Cancer Letters, 2014, 342(1): 60-69.

        [40]"Itoh N, Nakayama Y, Konishi M. Roles of FGFs as paracrine or endocrine signals in liver development, health, and disease"[J]. Frontiers in Cell and Developmental Biology, 2016, 4: 30."doi: 10.3389/fcell.2016.00030.

        [41]"Hosseini S P, Farivar S, Rezaei R, et al. Fibroblast growth factor 2 reduces endoplasmic reticulum stress and apoptosis in in-vitro"non-alcoholic fatty liver disease model"[J]. DARU Journal of Pharmaceutical Sciences, 2023, 31(1): 29-37.

        [42]"Herzig S, Shaw R J. AMPK: guardian of metabolism and mitochondrial homeostasis"[J]. Nature Reviews Molecular Cell Biology, 2018, 19(2): 121-135.

        [43]"Ruderman N B, Carling D, Prentki M, et al. AMPK, insulin resistance, and the metabolic syndrome"[J]. The Journal of Clinical Investigation, 2013, 123(7): 2764-2772.

        [44]"Chen F"F, Zhan J"Y, Liu M, et al. FGF2 alleviates microvascular ischemia-reperfusion injury by KLF2-mediated ferroptosis inhibition and antioxidant responses"[J]. International Journal of Biological Sciences, 2023, 19(13): 4340-4359.

        [45]"Zhang Y"Y, Yin R"L, Lang J"N, et al. Epigallocatechin-3-gallate ameliorates hepatic damages by relieve FGF21 resistance and promotion of FGF21-AMPK pathway in mice fed a high fat diet"[J]. Diabetology amp; Metabolic Syndrome, 2022, 14(1): 53."doi: 10.1186/s13098-022-00823-y.

        [46]"Zhang H, Zhang E"X, Hu H"B. Role of ferroptosis in non-alcoholic fatty liver disease and its implications for therapeutic strategies"[J]. Biomedicines, 2021, 9(11): 1660."doi: 10.3390/biomedicines9111660.

        [47]"Wu J, Wang Y, Jiang R"T, et al. Ferroptosis in liver disease: new insights into disease mechanisms"[J]. Cell Death Discovery, 2021, 7(1): 276."doi: 10.1038/s41420-021-00660-4.

        [48]"Yu Y, Yan Y, Niu F"L, et al. Ferroptosis: a cell death connecting oxidative stress, inflammation and cardiovascular diseases"[J]. Cell Death Discovery, 2021, 7(1): 193."doi: 10.1038/s41420-021-00579-w.

        [49]"Chen Y, Fang Z"M, Yi X, et al. The interaction between ferroptosis and inflammatory signaling pathways"[J]. Cell Death amp; Disease, 2023, 14(3): 205."doi: 10.1038/s41419-023-05716-0.

        [50]"Ding S"B, Chu X"L, Jin Y"X, et al. Epigallocatechin gallate alleviates high-fat diet-induced hepatic lipotoxicity by targeting mitochondrial ROS-mediated ferroptosis"[J]. Frontiers in Pharmacology, 2023, 14: 1148814."doi: 10.3389/fphar.2023.1148814.

        [51]"Yang C"J, Wu A"M, Tan L"Q, et al. Epigallocatechin-3-gallate alleviates liver oxidative damage caused by iron overload in mice through inhibiting ferroptosis"[J]. Nutrients, 2023, 15(8): 1993."doi: 10.3390/nu15081993.

        [52]"Gan L, Meng Z"J, Xiong R"B, et al. Green tea polyphenol epigallocatechin-3-gallate ameliorates insulin resistance in non-alcoholic fatty liver disease mice"[J]. Acta Pharmacologica Sinica, 2015, 36(5): 597-605.

        [53]"Alavinejad S P, Eshkiki Z S, Pourmousa Z, et al. A pilot study of epigallocatechin gallate treatment in patients with non-alcoholic fatty liver"[J]. Govaresh,"2020, 25(2): 141-148.

        [54]"Liu H"W, Chan Y"C, Wang M"F, et al. Dietary (-)-epigallocatechin-3-gallate supplementation counteracts aging-associated skeletal muscle insulin resistance and fatty liver in senescence-accelerated mouse"[J]. Journal of Agricultural and Food Chemistry, 2015, 63(38): 8407-8417.

        [55]"黃超群, 駱曜駿, 王新霞. 表沒食子兒茶素沒食子酸酯對脂質(zhì)代謝的調(diào)控機(jī)制及其在畜禽生產(chǎn)中的應(yīng)用[J]. 動物營養(yǎng)學(xué)報, 2023, 35(1): 86-98.Huang"C"Q, Luo"Y"J, Wang"X"X. Regulation mechanism of epigallocatechin gallate on lipid metabolism and its application in livestock and poultry production [J]."Chinese Journal of Animal Nutrition, 2023, 35(1): 86-98.

        [56]"宋瑩瑩, 張聰, 屈雅琴, 等. 表沒食子兒茶素沒食子酸酯激活SIRT6/AMPK信號通路改善果糖飲食誘導(dǎo)小鼠非酒精性脂肪性肝病的作用研究[J]. 中藥新藥與臨床藥理, 2023, 34(2): 184-191.Song"Y"Y, Zhang"C, Qu"Y"Q, et al. EGCG attenuates fructose-fed induced NAFLD in mice via"activating SIRT6/AMPK signaling [J]. Traditional Chinese Drug Research and Clinical Pharmacology, 2023, 34(2): 184-191.

        [57]"Lerrer B, Gertler A A, Cohen H Y. The complex role of SIRT6 in carcinogenesis"[J]. Carcinogenesis, 2016, 37(2): 108-118.

        [58]"Tasselli L, Zheng W, Chua K F. SIRT6: novel mechanisms and links to aging and disease"[J]. Trends in Endocrinology amp; Metabolism, 2017, 28(3): 168-185.

        [59]"Pan H"Z, Guan D, Liu X"M, et al. SIRT6 safeguards human mesenchymal stem cells from oxidative stress by coactivating NRF2"[J]. Cell Research, 2016, 26(2): 190-205.

        [60]"Lu J, Fang B"C, Huang Y"X, et al. Epigallocatechin-3-gallate protects against 1,3-dichloro-2-propanol-induced lipid accumulation in C57BL/6J mice"[J]. Life Sciences, 2018, 209: 324-331.

        [61]"Ueno"T, Torimura"T, Nakamura"T, et al. Epigallocatechin-3-gallate improves nonalcoholic steatohepatitis model mice expressing nuclear sterol regulatory element binding protein-1c in adipose tissue"[J]. International Journal of Molecular Medicine, 2009, 24(1): 17-22.

        [62]"González-Rodríguez á, Mayoral R, Agra N, et al. Impaired autophagic flux is associated with increased endoplasmic reticulum stress during the development of NAFLD"[J]. Cell Death amp; Disease, 2014, 5(4): e1179."doi: 10.1038/cddis.2014.162.

        [63]"Mao Y"Q, Yu F"J, Wang J"B, et al. Autophagy: a new target for nonalcoholic fatty liver disease therapy"[J]. Hepatic Medicine: Evidence and Research, 2016, 8: 27-37.

        [64]"Chu Q, Zhang S, Chen M, et al. Cherry anthocyanins regulate NAFLD by promoting autophagy pathway"[J]. Oxidative Medicine and Cellular Longevity, 2019, 2019: 4825949."doi: 10.1155/2019/4825949.

        [65]"Zhou J, Farah B L, Sinha R A, et al. Epigallocatechin-3-gallate (EGCG), a green tea polyphenol, stimulates hepatic autophagy and lipid clearance"[J]. Plos One, 2014, 9(1): e87161."doi: 10.1371/journal.pone.0087161.

        [66]"Jia Q, Yang R, Mehmood S, et al. Epigallocatechin-3-gallate attenuates myocardial fibrosis in diabetic rats by activating autophagy"[J]. Experimental Biology and Medicine, 2022, 247(17): 1591-1600.

        [67]"Wu D"D, Liu Z"G, Wang Y"Z, et al. Epigallocatechin-3-gallate alleviates high-fat diet-induced nonalcoholic fatty liver disease via"inhibition of apoptosis and promotion of autophagy through the ROS/MAPK signaling pathway"[J]. Oxidative Medicine and Cellular Longevity, 2021, 2021: 5599997."doi: 10.1155/2021/5599997.

        [68]"Shang L"B, Wang X"D. AMPK and mTOR coordinate the regulation of Ulk1 and mammalian autophagy initiation"[J]. Autophagy, 2011, 7(8): 924-926.

        [69]"Holczer M, Besze B, Zámbó V, et al. Epigallocatechin-3-gallate (EGCG) promotes autophagy-dependent survival via"influencing the balance of mTOR-AMPK pathways upon endoplasmic reticulum stress"[J]. Oxidative Medicine and Cellular Longevity, 2018, 2018: 6721530."doi: 10.1155/2018/6721530.

        [70]"Leung C, Rivera L, Furness J B, et al. The role of the gut microbiota in NAFLD"[J]. Nature Reviews Gastroenterology amp; Hepatology, 2016, 13(7): 412-425.

        [71]"Gan R"Y, Li H"B, Sui Z"Q, et al. Absorption, metabolism, anti-cancer effect and molecular targets of epigallocatechin gallate (EGCG): an updated review"[J]. Critical Reviews in Food Science and Nutrition, 2018, 58(6): 924-941.

        [72]"左高隆. 茶葉EGCG通過腸-肝軸途徑改善非酒精性脂肪肝的作用及機(jī)制[D]. 長沙: 湖南農(nóng)業(yè)大學(xué), 2020.Zuo G L. Effects and mechanisms of EGCG from tea on alleivating nonalcoholic fatty liver through gut liver axis pathway [D]. Changsha: Hunan Agricultural University, 2020

        [73]"Shi M, Watson E, Conlon M, et al. Impact of co-delivery of EGCG and tuna oil within a broccoli matrix on human gut microbiota, phenolic metabolites and short chain fatty acids in vitro"[J]. Molecules, 2022, 27(3): 656."doi: 10.3390/molecules27030656.

        [74]"Liu X"X, Zhao K, Jing N"N, et al. Epigallocatechin gallate (EGCG) promotes the immune function of ileum in high fat diet fed mice by regulating gut microbiome profiling and immunoglobulin production"[J]. Frontiers in Nutrition, 2021, 8: 720439."doi: 10.3389/fnut.2021.720439.

        [75]"Huang J"B, Li W"J, Liao W"J, et al. Green tea polyphenol epigallocatechin-3-gallate alleviates nonalcoholic fatty liver disease and ameliorates intestinal immunity in mice fed a high-fat diet"[J]. Food amp; Function, 2020, 11(11): 9924-9935.

        [76]"Ning K"T, Lu K"K, Chen Q, et al. Epigallocatechin gallate protects mice against methionine-choline-deficient-diet-induced nonalcoholic steatohepatitis by improving gut microbiota to attenuate hepatic injury and regulate metabolism"[J]. ACS Omega, 2020, 5(33): 20800-20809.

        [77]"Zhou J"H, Ding L"J, Chen W, et al. Green tea catechin epigallocatechin gallate alleviates high-fat diet-induced obesity in mice by regulating the gut-brain axis"[J]. Food Frontiers, 2023, 4(3): 1413-1425.

        [78]"Lin C"Z, Yu B"Q, Chen L"X, et al. Obeticholic acid induces hepatoxicity via"fxr in the NAFLD mice"[J]. Frontiers in Pharmacology, 2022, 13: 880508."doi: 10.3389/fphar.2022.880508.

        [79]"Gottlieb A, Canbay A. Why bile acids are so important in non-alcoholic fatty liver disease (NAFLD) progression"[J]. Cells, 2019, 8(11): 1358."doi: 10.3390/cells8111358.

        [80]"Guo J"Y, Huang S"Y, Yi Q"C, et al. Hepatic Clstn3 ameliorates lipid metabolism disorders in high fat diet-induced NAFLD through activation of FXR"[J]. ACS Omega, 2023, 8(29): 26158-26169.

        [81]"Carr R M, Reid A E. FXR agonists as therapeutic agents for non-alcoholic fatty liver disease"[J]. Current Atherosclerosis Reports, 2015, 17(4): 16."doi: 10.1007/s11883-015-0500-2.

        [82]"Yang Z"X, Shen W, Sun H. Effects of nuclear receptor FXR on the regulation of liver lipid metabolism in patients with non-alcoholic fatty liver disease"[J]. Hepatology International, 2010, 4(4): 741-748.

        [83]"Jiao N, Baker S S, Chapa-Rodriguez A, et al. Suppressed hepatic bile acid signalling despite elevated production of primary and secondary bile acids in NAFLD"[J]. Gut, 2018, 67(10): 1881-1891.

        [84]"Sheng L, Jena P K, Liu H"X, et al. Obesity treatment by epigallocatechin-3-gallate-regulated bile acid signaling and its enriched Akkermansia muciniphila"[J]. The FASEB Journal, 2018, 32(12): 6371-6384.

        [85]"Huang J"B, Feng S"M, Liu A"N, et al. Green tea polyphenol EGCG alleviates metabolic abnormality and fatty liver by decreasing bile acid and lipid absorption in mice"[J]. Molecular Nutrition amp; Food Research, 2018, 62(4): 1700696."doi: 10.1002/mnfr.201700696.

        [86]"Rasheed N O A, Ahmed L A, Abdallah D M, et al. Nephro-toxic effects of intraperitoneally injected EGCG in diabetic mice: involvement of oxidative stress, inflammation and apoptosis"[J]. Scientific Reports, 2017, 7(1): 40617."doi: 10.1038/srep40617.

        [87]"Hu J, Webster D, Cao J, et al. The safety of green tea and green tea extract consumption in adults: results of a systematic review"[J]. Regulatory Toxicology and Pharmacology, 2018, 95: 412-433.

        [88]"Wang D X, Wang Y J, Wan X C, et al. Green tea polyphenol (-)-epigallocatechin-3-gallate triggered hepatotoxicity in mice: responses of major antioxidant enzymes and the Nrf2 rescue pathway"[J]. Toxicology and Applied Pharmacology, 2015, 283(1): 65-74.

        [89]"Lambert J D, Kennett M J, Sang S, et al. Hepatotoxicity of high oral dose (-)-epigallocatechin-3-gallate in mice"[J]. Food and Chemical Toxicology, 2010, 48(1): 409-416.

        [90]"Hirsch N, Konstantinov A, Anavi S, et al. Prolonged feeding with green tea polyphenols exacerbates cholesterol-induced fatty liver disease in mice"[J]. Molecular Nutrition amp; Food Research, 2016, 60(12): 2542-2553.

        [91]"Dekant"W, Fujii K, Shibata E, et al. Safety assessment of green tea based beverages and dried green tea extracts as nutritional supplements"[J]. Toxicology Letters, 2017, 277: 104-108.

        [92]"Ouyang J, Zhu K, Liu Z"H, et al. Prooxidant effects of epigallocatechin-3-gallate in health benefits and potential adverse effect"[J]. Oxidative Medicine and Cellular Longevity, 2020, 2020: 9723686."doi: 10.1155/2020/9723686.

        猜你喜歡
        氧化應(yīng)激小鼠研究
        FMS與YBT相關(guān)性的實(shí)證研究
        遼代千人邑研究述論
        小鼠大腦中的“冬眠開關(guān)”
        基于炎癥-氧化應(yīng)激角度探討中藥對新型冠狀病毒肺炎的干預(yù)作用
        視錯覺在平面設(shè)計中的應(yīng)用與研究
        科技傳播(2019年22期)2020-01-14 03:06:54
        EMA伺服控制系統(tǒng)研究
        米小鼠和它的伙伴們
        氧化應(yīng)激與糖尿病視網(wǎng)膜病變
        氧化應(yīng)激與結(jié)直腸癌的關(guān)系
        加味四逆湯對Con A肝損傷小鼠細(xì)胞凋亡的保護(hù)作用
        少妇深夜吞精一区二区| 欧美成人aaa片一区国产精品| 四虎国产精品永久在线| 久久久精品国产sm调教网站| 国产超碰人人做人人爱ⅴa| 国产人成精品综合欧美成人| 日韩在线视精品在亚洲| 在线免费观看视频播放| 国产影院一区二区在线| 少妇免费av一区二区三区久久 | 加勒比亚洲视频在线播放| 国产白浆一区二区三区佳柔| 国产91久久麻豆黄片| 日韩午夜福利无码专区a| 久久久久国产精品熟女影院| 国产午夜亚洲精品一级在线| 亚洲中文字幕不卡一区二区三区 | 成人国产激情自拍视频 | 久久久久久久性潮| 亚洲中文字幕在线爆乳| 久久免费网站91色网站| 全国一区二区三区女厕偷拍| 一本一道vs无码中文字幕| 成人免费一区二区三区| 91麻豆国产香蕉久久精品| 久久精品国产亚洲av热九九热| 日本视频在线观看二区| 欧美大胆性生话| 蜜臀aⅴ国产精品久久久国产老师| 国产成人一区二区三区影院免费| 人妖与人妖免费黄色片| 亚洲最新国产av网站| 老妇女性较大毛片| 午夜性刺激免费视频| 日本在线免费一区二区三区| 国产性自爱拍偷在在线播放| 亚洲国产av玩弄放荡人妇系列| 国产精品成人av在线观看| 久久综合给合久久狠狠狠9| 一区二区三区四区免费国产视频| 婷婷五月深深久久精品|