亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        自身炎癥性疾病的致病基因概述

        2024-01-01 00:00:00韓旭周青

        摘要 自身炎癥性疾病(autoinflammatory disease,AIDs)是一類因先天性免疫系統(tǒng)過度激活而引發(fā)的疾病,主要表現(xiàn)為全身的炎癥反應(yīng)和多系統(tǒng)多器官的受累。在AIDs中,遺傳因素發(fā)揮著重要作用。自首個(gè)單基因AIDs被發(fā)現(xiàn)以來,目前系統(tǒng)性自身炎癥性疾病的致病基因已超過50個(gè)。隨著免疫學(xué)和基因組學(xué)研究的進(jìn)展,AIDs的致病基因譜被不斷拓展,對AIDs的認(rèn)識(shí)也逐漸加深。從AIDs的致病基因和臨床表型出發(fā),總結(jié)了AIDs的致病機(jī)制,有助于以更全面的視角了解這一類疾病。

        關(guān)鍵詞 自身炎癥性疾病;生殖系突變;體細(xì)胞突變;單基因疾病

        中圖分類號(hào):R394 DOI:10.16152/j.cnki.xdxbzr.2024-05-004

        Review of autoinflammatory diseases pathogenic genes

        HAN Xu, ZHOU Qing

        (Life Science Institute, Zhejiang University, Hangzhou 310058,China)

        Abstract Autoinflammatory diseases (AIDs) is a group of inflammatory disease caused by excessive activation of innate immune system, with ubiquitous inflammation and involvement of multiple systems and organs. Genetics plays an important role in the pathogenesis of AIDs. So far, there are more than 50 monogenic AIDs causal genes have been described since the discovery of the first autoinflammatory disease. With the progress of immunological and genomic research, the spectrum of AIDs pathogenic genes was expanded with better interpretation of AIDs. With the introduction to AIDs causal genes and clinical phenotypes, we provide a comprehensive review of the pathogenesis of AIDs to better understand this group of disorders.

        Keywords systemic autoinflammatory diseases; germline variant; somatic variants; monogenic disease

        先天免疫系統(tǒng)是由一系列位于細(xì)胞表面和細(xì)胞內(nèi)的模式識(shí)別受體(pattern recognition receptors, PRRs)以及補(bǔ)體系統(tǒng)組成[1, 能夠在識(shí)別到相應(yīng)病原配體后, 快速地引發(fā)免疫信號(hào)響應(yīng),清除病原, 保護(hù)宿主。 當(dāng)先天免疫系統(tǒng)信號(hào)失調(diào)時(shí), 便會(huì)引發(fā)自身炎癥性疾病。 自身炎癥性疾?。╝utoinflammatory disorders, AIDs)的概念最初于1999年由Kastner提出,其研究闡述了編碼腫瘤壞死因子(tumor necrosis factor, TNF)受體基因TNFRSF1A激活突變引發(fā)TNFR1相關(guān)周期性發(fā)熱綜合征(tumor necrosis factor receptor-associated periodic syndrome, TRAPS)的致病性[2-3。TRAPS的患者主要表現(xiàn)為先天免疫細(xì)胞的異常激活,這使得AIDs與因適應(yīng)性免疫失調(diào)引發(fā)的自身免疫性疾病區(qū)分開來。1997年首個(gè)AIDs,即家族性地中海熱(familial mediterranean fever,F(xiàn)MF)及其致病基因MEFV被鑒定和報(bào)道[4-6。

        隨著研究的快速發(fā)展,AIDs作為一類由單基因引發(fā)的自體系統(tǒng)性炎癥疾病,其臨床表型與遺傳基礎(chǔ)的異質(zhì)性逐漸為人所知[7-8。與通常在成人期發(fā)病的自身免疫疾病不同,AIDs的發(fā)病特征主要表現(xiàn)為兒童時(shí)期起病、反復(fù)發(fā)熱以及一系列累及皮膚、關(guān)節(jié)、消化道、眼部的炎癥表現(xiàn)。在遺傳上,符合常染色體顯性、常染色體隱性、X染色體連鎖等遺傳模式的功能獲得性(gain-of-function,GoF)或失活(loss-of-function,LoF)的生殖系突變及體細(xì)胞變異均有可能導(dǎo)致AIDs。而在發(fā)育過程中出現(xiàn)的新發(fā)(de novo)突變同樣會(huì)引發(fā)AIDs,且常常臨床表型會(huì)更加嚴(yán)重。由于AIDs的異質(zhì)性,AIDs患者在臨床上的外顯率(penetrance)和表現(xiàn)度(expressivity)也存在著較大的差異。綜上所述,AIDs的這種臨床異質(zhì)性給患者的臨床診斷與治療帶來了較大的困難。

        基于致病基因以及其影響的炎癥通路,AIDs能夠被大致分為以下2個(gè)大類:①核因子kappa B(nuclear factor-κB,NF-κB)相關(guān)的AIDs;②I型干擾素(interferon,IFN)上調(diào)導(dǎo)致的AIDs[7-9。這些通路上的致病基因之間互相關(guān)聯(lián),單一通路上的致病基因往往會(huì)引發(fā)AIDs患者的大范圍炎癥信號(hào)基因表達(dá)譜上調(diào)。大部分AIDs患者的炎癥信號(hào)主要表現(xiàn)在其外周血中的白細(xì)胞與單核細(xì)胞中,通常為一系列促炎細(xì)胞因子,如白細(xì)胞介素中的IL-1β、IL-6、IL-8、IL-17、IL-18,TNF以及IFN,如IFN-α、IFN-β和IFN-γ等表達(dá)水平的上調(diào)。長期的炎癥信號(hào)失調(diào)會(huì)在患者體內(nèi)引發(fā)細(xì)胞死亡、蛋白降解、自噬以及細(xì)胞穩(wěn)態(tài)失調(diào)等結(jié)果,從而造成患者多樣的臨床表型。

        總體而言,AIDs是一類在遺傳、臨床表現(xiàn)以及致病機(jī)制上均較為復(fù)雜的疾病??偨Y(jié)并討論時(shí)下已經(jīng)報(bào)道的AIDs,能夠加深我們對AIDs的理解,更好地促進(jìn)我們后續(xù)對該領(lǐng)域的進(jìn)一步深入研究(見圖1、表1)。

        1 單基因?qū)е碌腁IDs

        1.1 pyrin相關(guān)的AIDs

        FMF是首個(gè)被發(fā)現(xiàn)致病基因的自身炎癥性疾病, 其致病基因是編碼pyrin炎癥小體的MEFV基因4-6。 在臨床上, FMF患者主要表現(xiàn)為漿膜炎、滑膜炎以及不連續(xù)的發(fā)熱及腹痛。 在后續(xù)的研究中, 由MEFV基因上突變導(dǎo)致的pyrin相關(guān)自身炎癥性中性粒細(xì)胞性皮炎(pyrin-associated autoinflammation with neutrophilic dermatosis,PAAND)也陸續(xù)得到了報(bào)道。PAAND的患者在臨床上的表型不同于FMF,主要表現(xiàn)為反復(fù)發(fā)熱、中性粒細(xì)胞性皮膚病、關(guān)節(jié)痛、肌肉疼痛以及肌炎等表型[10。

        1.2 RIPK1相關(guān)的AIDs

        RIPK1是細(xì)胞內(nèi)炎癥與細(xì)胞死亡通路的關(guān)鍵調(diào)節(jié)因子,受到多種因子的調(diào)控,對細(xì)胞內(nèi)穩(wěn)態(tài)的維持起著至關(guān)重要的作用[11-13。RIPK1的單等位基因GoF突變會(huì)導(dǎo)致切割抵抗性RIPK1誘導(dǎo)的自身炎癥性綜合征(cleavage-resistant RIPK1-induced autoinflammatory syndrome,CRIA)。導(dǎo)致CRIA的致病突變?yōu)轱@性遺傳的雜合變異位于RIPK1蛋白的321和324位。RIPK1的321—324位氨基酸是其接受caspase-8切割的基序。位于該基序上的變異能夠影響caspase-8對RIPK1的切割,從而導(dǎo)致RIPK1的持續(xù)性激活,引發(fā)細(xì)胞程序性死亡異常[14-16。CRIA患者的細(xì)胞死亡明顯異于健康人對照,其單核細(xì)胞也表現(xiàn)出了明顯的NF-κB和IFN通路激活。臨床上,CRIA患者通常表現(xiàn)為反復(fù)發(fā)熱、淋巴結(jié)腫大等表型。RIPK1的LoF突變則會(huì)導(dǎo)致RIPK1缺陷及免疫缺陷并伴隨炎癥[17-18。RIPK1缺陷的患者臨床上通常表現(xiàn)為炎癥性腸病和關(guān)節(jié)炎。值得注意的是,盡管這2類疾病的免疫表型譜有所差異,但其患者的外周血單個(gè)核細(xì)胞(peripheral blood mononuclear cells,PBMCs)均對TNF刺激下的凋亡與壞死等細(xì)胞死亡事件敏感。

        1.3 NF-κB信號(hào)相關(guān)的AIDs

        1.3.1 A20單倍劑量不足導(dǎo)致的AIDs

        A20是炎癥與免疫通路上的重要負(fù)向調(diào)節(jié)子,其能夠通過去泛素化的方式抑制底物分子的激活。在A20分子上,單等位基因截短突變引起的細(xì)胞內(nèi)A20水平下降,會(huì)觸發(fā)單倍劑量不足效應(yīng),從而引發(fā)疾病。A20單倍劑量不足(haploinsufficiency of A20, HA20)最初于2016年被報(bào)道[19,患者在臨床上主要表現(xiàn)為白塞病、反復(fù)發(fā)熱、炎癥性腸病、免疫缺陷以及周期性發(fā)熱、口瘡性口炎、咽炎、腺炎(periodic fever,aphthous stomatitis,pharyngitis,adenitis,PFAPA)等表型[20。A20水平下降會(huì)導(dǎo)致HA20患者體內(nèi)NF-κB信號(hào)抑制失調(diào),從而造成NF-κB相關(guān)的炎癥信號(hào),如IL-1β、IL-6、IL-18、IFN-γ及TNF等促炎因子表達(dá)水平上升,最終引發(fā)患者的疾病表型。

        1.3.2 OTULIN缺陷導(dǎo)致的AIDs

        OTULIN缺陷的自身炎癥性綜合征(又稱OTULIN缺乏癥)是由編碼去線性泛素化酶OTULIN基因上LoF突變引起的OTULIN功能失調(diào)而引發(fā)的AIDs[21-22。OTULIN作為線性泛素鏈裝配復(fù)合物(linear ubiquitination chain assembly complex,LUBAC)和NF-κB信號(hào)的負(fù)向調(diào)節(jié)子,其缺陷會(huì)導(dǎo)致NF-κB通路的炎癥信號(hào)異常上調(diào)[23。患者的PBMCs及成纖維細(xì)胞中,IκBα抑制子的降解和IKKα/IKKβ的磷酸化激活水平均顯著上升,提示了患者NF-κB信號(hào)通路受到了組成性激活。該疾病患者的臨床表現(xiàn)復(fù)雜,包括了皮膚皮疹、皮膚結(jié)節(jié)、脂肪代謝障礙及膿包樣皮疹等表型。皮膚活檢則顯示嗜中性皮炎、混合型脂膜炎及小、中型血管血管炎。

        1.3.3 LUBAC缺陷導(dǎo)致的AIDs

        LUBAC由3個(gè)元件組成,分別是HOIL1、HOIP以及SHANK相關(guān)的RH結(jié)構(gòu)域交互蛋白(SHANK-associated RH domain-interacting protein,SHARPIN),其主要行使向底物蛋白組裝線性泛素鏈的功能。線性泛素鏈在免疫通路中發(fā)揮著重要作用[24-25,因此,LUBAC元件,如HOIL1、HOIP的缺陷,通常會(huì)引發(fā)患者免疫響應(yīng)的失調(diào)。在目前的研究中,編碼HOIL1和HOIP的RBCK1、RNF31基因上的雙等位基因LoF變異均會(huì)引發(fā)因LUBAC缺陷而導(dǎo)致的自身炎癥性疾病。

        對于HOIL1而言,由于HOIL1的Ubl結(jié)構(gòu)域?qū)UBAC的組裝與線性泛素化的形成均非常關(guān)鍵,因此HOIL1的缺陷會(huì)導(dǎo)致LUBAC的整體表達(dá)水平下降。因HOIL1缺失引起的LUBAC缺陷病人在臨床上常表現(xiàn)為免疫缺陷、自身炎癥、支鏈淀粉病、早發(fā)進(jìn)行性肌無力以及心肌病等表型?;颊叩某衫w維細(xì)胞中則存在NF-κB信號(hào)激活受損,具體表現(xiàn)為NF-κB信號(hào)通路相關(guān)基因在TNF及IL-1β刺激下的無響應(yīng)[26-28。

        HOIP是LUBAC的主要催化元件,行使E3泛素連接酶的作用[29,其編碼基因RNF31上的LoF突變會(huì)引發(fā)LUBAC組裝和活性下降[30。因HOIP缺失引起的LUBAC缺陷病人在臨床上的表現(xiàn)與HOIL1缺失的病人有所重合,表現(xiàn)為自身炎癥、免疫缺陷、支鏈淀粉病以及全身性淋巴管擴(kuò)張癥。與HOIL1類似,HOIP缺失病人的成纖維細(xì)胞中,同樣表現(xiàn)出TNF與IL-1β刺激下的NF-κB信號(hào)響應(yīng)缺失,而其髓系細(xì)胞則額外表現(xiàn)出細(xì)胞死亡的傾向[31。

        1.4 I型干擾素病

        I型干擾素病(type I interferonopathies)是AIDs中的一大分類,主要體現(xiàn)為干擾素信號(hào)通路的組成性激活。參與在I型干擾素通路中的基因往往都與抗病毒免疫密切相關(guān)。這些基因上的GoF突變引發(fā)的臨床表型十分多樣,囊括了系統(tǒng)性炎癥至器質(zhì)性損傷等多種表型[32。首個(gè)被發(fā)現(xiàn)的I型干擾素病是Aicardi-Goutieres綜合征,主要由胞內(nèi)的核酸處理蛋白失調(diào)所引發(fā)[33-34。I型干擾素通路上的負(fù)向調(diào)節(jié)子,如ISG15、USP18以及SOCS1等分子上的LoF突變,同樣會(huì)引發(fā)I型干擾素信號(hào)異常上調(diào),最終引發(fā)I型干擾素病。此外,研究者在5個(gè)家系中報(bào)道了編碼RIG-I蛋白的DDX58基因上的p.Arg109Cys突變。該突變能夠?qū)е翿IG-I的自抑制功能喪失,引發(fā)I型干擾素信號(hào)異常上調(diào),導(dǎo)致狼瘡腎炎的表型[35。這些發(fā)現(xiàn)進(jìn)一步拓展了I型干擾素病的表型譜。

        1.5 未分類的單基因AIDs

        在當(dāng)前的AIDs分類當(dāng)中,有一批致病機(jī)制獨(dú)特但無法歸類在經(jīng)典AIDs當(dāng)中的分子,在此處進(jìn)行闡述。

        1.5.1 DADA2

        DADA2(deficiency of ADA2)是一種常染色體隱性遺傳的AIDs,是首個(gè)報(bào)道的影響中小動(dòng)脈血管的單基因疾病[36-37。ADA2是一類在髓系細(xì)胞中高表達(dá)的分泌型蛋白,具有腺苷脫氨酶活性。DADA2由ADA2蛋白上的雙等位基因酶活缺失突變導(dǎo)致,其通常在兒童時(shí)期起病,常見的臨床表現(xiàn)包括了發(fā)燒、皮疹、血管炎、反復(fù)中風(fēng)以及體液免疫缺陷等。在ADA2的酶活缺失突變中,酶活缺失的程度有所不同,這也導(dǎo)致了攜帶不同ADA2酶活缺失突變病人之間的表型差異。表現(xiàn)為血管炎的DADA2患者常攜帶有殘余部分酶活的ADA2 LoF突變。而導(dǎo)致ADA2酶活完全缺失的LoF突變則往往會(huì)在患者中引起較為嚴(yán)重的血液表型,如骨髓衰竭。目前發(fā)現(xiàn)的ADA2酶活缺失變異已經(jīng)超過100種,其中部分變異存在奠基者效應(yīng),如p.Gly47Arg和p.Arg169Gln2種突變分別在南亞/中東和北歐人群中以高頻率存在。ADA2 LoF突變的預(yù)計(jì)變異頻率約為1/240,即每240人中就有1人會(huì)發(fā)生突變?;诖?,DADA2在全世界的患者可能已逾30 000例[38。ADA2在免疫系統(tǒng)中的功能尚不清晰。目前的研究表明,ADA2能夠調(diào)節(jié)單核細(xì)胞的極化,其缺陷會(huì)導(dǎo)致促炎性M1巨噬細(xì)胞的分化失調(diào),從而引發(fā)血管炎表型[39。在DADA2患者中,TNF抑制劑在預(yù)防患者的中風(fēng)表型和改善患者炎癥反應(yīng)方面效果顯著,患者的血液表型對其響應(yīng)較差[40。

        1.5.2 磷脂酶C-γ家族引發(fā)的AIDs

        磷脂酶C(phospholipase C,PLC)是一類位于細(xì)胞質(zhì)膜上的跨膜蛋白,能夠通過水解膜上的磷脂分子,生成1,4,5-三磷酸鹽(IP3)和二?;视停╠iacylglycerol,DAG)這2類第二信使,激活下游的信號(hào)級(jí)聯(lián)反應(yīng)。PLC下游包括了激活性T細(xì)胞核因子(nuclear factor of activated T cells,NFAT)、有絲分裂原激活蛋白激酶(mitogen-activated protein kinase,MAPK)以及NF-κB信號(hào)通路。PLCγ是PLC家族中在結(jié)構(gòu)上較為特殊的一類,其在結(jié)構(gòu)上具有γSA調(diào)節(jié)結(jié)構(gòu)域,能夠與催化結(jié)構(gòu)域相互作用,起到調(diào)節(jié)PLCγ分子功能的作用[41。PLC家族下游通路與炎癥密切相關(guān),PLCγ家族中的PLCγ1和PLCγ2上的GoF突變均會(huì)導(dǎo)致自身炎癥性疾病。

        PLCγ2上的GoF突變會(huì)導(dǎo)致PLCγ2相關(guān)的抗體缺陷與免疫失調(diào)(PLCG2-associated antibody deficiency and immune dysregulation,PLAID)和伴隨自身炎癥的PLAID(autoinflammation and PLAID,APLAID)2種AIDs[42-43。這些PLCγ2上的GoF突變會(huì)破壞PLCγ2的自抑制功能,從而導(dǎo)致PLCγ2的過度激活以及IP3與DAG2類第二信使分子數(shù)量增加,最終導(dǎo)致下游信號(hào)上調(diào)導(dǎo)致疾病。APLAID和PLAID的患者在臨床上通常表現(xiàn)為免疫失調(diào),而APLAID的患者中則沒有觀察到在PLAID患者中出現(xiàn)的冷蕁麻疹的表型。

        PLCγ1上的GoF突變會(huì)導(dǎo)致激活性PLCG1變異相關(guān)綜合征(activating PLCG1 variant associated syndrome,APLS)[44?;颊咴谂R床上主要表現(xiàn)為免疫失調(diào)。由于PLCγ1在髓系細(xì)胞中主要表達(dá)在T細(xì)胞上,因此患者體內(nèi)T細(xì)胞對其臨床上的炎癥表型具有獨(dú)特貢獻(xiàn)。此外,患者的PBMCs中的低密度粒細(xì)胞(low-density granulocytes,LDGs)數(shù)量顯著增加,提示了LDGs在免疫響應(yīng)和免疫失調(diào)疾病發(fā)病中的特殊作用。

        1.5.3 IL-1信號(hào)負(fù)向調(diào)控失調(diào)導(dǎo)致的AIDs

        IL-1家族的細(xì)胞因子在體內(nèi)主要發(fā)揮著促炎作用,其信號(hào)主要受到一系列受體拮抗劑和抗炎細(xì)胞因子調(diào)節(jié)。IL-1受體拮抗劑缺陷(deficiency of the interleukin-1 receptor antagonist,DIRA)是由編碼IL-1受體拮抗劑IL1Ra的IL1RN基因上的雙等位基因LoF突變導(dǎo)致的,通過引起IL-1α、IL-1β信號(hào)持續(xù)性激活從而引發(fā)疾病。由于IL1Ra在表皮組織中高表達(dá),因此DIRA的患者在臨床上主要表現(xiàn)為全身性的炎癥,包括膿皰性皮膚損傷、無菌性多灶骨髓炎和骨膜炎等表型[45-46。IL36Ra是IL1通路中的另一種拮抗劑,其編碼基因IL36RN上的雙等位基因LoF突變會(huì)引發(fā)IL-36受體拮抗劑缺陷(deficiency of the interleukin-36 receptor antagonist,DITRA)。DITRA患者臨床上的特點(diǎn)為反復(fù)發(fā)熱和全身范圍的膿皰性銀屑病,其表型的表現(xiàn)度具有差異,且一定程度上與環(huán)境相關(guān)[47-48。近期,一種全新的IL-1信號(hào)引發(fā)的新型AIDs,IL-1Ra與IL-1R1結(jié)合缺陷疾?。╨oss of interleukin-1 receptor to interleukin-1 receptor antagonist,LIRSA)得到了報(bào)道[49。LIRSA的炎癥信號(hào)與DIRA、DIRTA相似,均為IL-1信號(hào)的持續(xù)性激活,但是其致病機(jī)制為IL-1受體IL1-R1上的p.K131E突變破壞IL-1R1與IL-1信號(hào)拮抗劑IL-1Ra之間的相互作用引起的信號(hào)失調(diào)。LIRSA患者在臨床上表現(xiàn)為慢性復(fù)發(fā)性多灶骨髓炎,其血清中促炎細(xì)胞因子水平顯著上升,其對IL-1β抑制劑的響應(yīng)良好。

        2 雙基因?qū)е碌腁IDs

        在經(jīng)典的單基因AIDs之外,還有一類以雙基因的形式致病的非典型AIDs。雙基因遺傳模式是指同一通路中發(fā)揮功能的2個(gè)互相獨(dú)立基因上的雜合突變,在疾病生成方面表現(xiàn)出累加效應(yīng)的模式。

        蛋白酶體相關(guān)的自身炎癥綜合征(proteasome-associated autoinflammatory syndrome,PRAAS)是首個(gè)被報(bào)道的雙基因遺傳AIDs[50。蛋白酶體是一類ATP依賴的、具有蛋白水解活性的多蛋白復(fù)合物,能夠介導(dǎo)K48泛素鏈標(biāo)記蛋白的清除。蛋白酶體復(fù)合物的催化核心由堆疊的4個(gè)七聚環(huán)上的14個(gè)不同蛋白亞基組成。蛋白酶體在免疫系統(tǒng)中發(fā)揮著重要作用。免疫細(xì)胞中的免疫蛋白酶體能夠選擇性地整合PSMB8、PSMB9、PSMB10等基因編碼的催化亞基,調(diào)控免疫響應(yīng)。此外,蛋白酶體的組裝和活性還受到蛋白酶體成熟蛋白POMP(proteasome maturation protein)以及其他分子伴侶蛋白,如PAC2等的調(diào)節(jié)。蛋白酶體組裝和行使功能所需的亞基,以及相關(guān)伴侶蛋白上的LoF突變均會(huì)導(dǎo)致PRAAS。目前已知的PRAAS致病突變已經(jīng)在編碼蛋白酶體α7、β7、β5i、β1i、β2i以及RPN5等亞基的PSMA3、PSMB4、PSMB8、PSMB9、PSMB10、PSMD12等基因上以及編碼伴侶分子PAC2和POMP的PSMG2和POMP基因上被報(bào)道50-61。 這些基因上的致病突變多為雙等位基因的LoF變異。而POMP和PSMD12上的單等位基因LoF突變能夠分別通過顯性失活和單倍劑量不足效應(yīng)引起疾病。 在編碼蛋白酶體亞基的關(guān)鍵基因中, PSMB8/PSMA3、PSMB8/PSMB4、PSMB9/PSMB4等組合上的LoF突變能夠以雙基因的遺傳模式引發(fā)PRAAS[50,59,61。PRAAS患者在臨床上主要表現(xiàn)為早發(fā)性的反復(fù)發(fā)熱、中型粒細(xì)胞性的皮膚病、脂肪營養(yǎng)不良、鈣質(zhì)沉著、進(jìn)行性關(guān)節(jié)攣縮以及多器官衰竭等。

        3 體細(xì)胞突變導(dǎo)致的AIDs

        除了遺傳自父母的生殖系突變外,在胚胎發(fā)育晚期以及成年后,個(gè)體有可能在部分組織中發(fā)生體細(xì)胞類型的突變。過去,體細(xì)胞突變在癌癥發(fā)生的領(lǐng)域中有著較為深入的研究,但近期,其在AIDs發(fā)病中的作用也越來越被人們重視。體細(xì)胞突變引發(fā)的AIDs表現(xiàn)出晚期發(fā)病的特性。目前,已被報(bào)道的導(dǎo)致體細(xì)胞AIDs的基因包括了NLRP3、NLRC4、TNFRSF1A、NOD2、STING、TLR8、MVK、UBA1等62-72。

        UBA1是人體內(nèi)主要的E1泛素酶,起始著99%的細(xì)胞泛素化過程。UBA1上的體細(xì)胞突變會(huì)導(dǎo)致X染色體連鎖的E1泛素酶體細(xì)胞突變引發(fā)的伴有髓系細(xì)胞空泡的自身炎癥(Vacuoles,E1 enzyme,X-linked,autoinflammatory,somatic,VEXAS)綜合征?;颊吲R床上表現(xiàn)為反復(fù)發(fā)熱、血栓、肺部浸潤以及髓系細(xì)胞空泡等[72。導(dǎo)致VEXAS的UBA1Met41氨基酸位點(diǎn)的突變會(huì)影響UBA1同工酶的表達(dá),從而引發(fā)部分UBA1介導(dǎo)的泛素化進(jìn)程受損。

        目前,AIDs體細(xì)胞突變的研究愈發(fā)受到重視。近期,研究者通過數(shù)字PCR和高通量測序的方法,在晚發(fā)自身炎癥性疾病的患者體內(nèi)鑒定到了NLRC4上的全新p.His443Gln體細(xì)胞突變。該突變主要在患者單核細(xì)胞中高比例存在。實(shí)驗(yàn)表明該突變對NLRC4炎癥小體具有更強(qiáng)的激活效應(yīng)[65。

        4 AIDs的診斷與治療

        隨著對AIDs致病基因研究的不斷深入,AIDs的致病基因譜和臨床表型譜逐漸得到拓展,為AIDs的高效診斷和精準(zhǔn)治療提供了理論基礎(chǔ)[73。提高AIDs的診斷效率能夠更及時(shí)地在患者展現(xiàn)出疾病表現(xiàn)時(shí)給予干預(yù),避免患者因疾病產(chǎn)生不可逆的后遺癥[74,而且,對AIDs致病基因的精準(zhǔn)用藥能夠避免臨床上因非特異性療法,如激素沖擊治療等對患者帶去的傷害。

        在AIDs中,免疫抑制劑常常能夠?yàn)锳IDs患者提供特異且有效的治療。在因MEFV導(dǎo)致的AIDs中秋水仙堿能夠特異性抑制pyrin活性從而緩解患者的疾病表型,而靶向IL-1信號(hào)的阻斷劑則能夠在炎癥小體或IL-1信號(hào)通路致病基因介導(dǎo)的AIDs中發(fā)揮治療作用。對于I型干擾素病的患者,JAK抑制劑能夠有效地抑制IFN信號(hào),從而緩解這些患者的炎癥表型。TNF抑制劑則能夠?qū)χ虏』蛭挥赥NF信號(hào)相關(guān)通路,如炎癥小體、NF-κB等通路上的患者進(jìn)行有效的干預(yù)。ADA2缺陷的患者同樣對TNF抑制劑具有良好的響應(yīng)[75。此外,對具有AIDs表型的患者,造血干細(xì)胞移植也是一種較為有效的治療方式[76。

        5 總結(jié)與展望

        在過去的10年中,隨著研究技術(shù)的快速進(jìn)步,AIDs致病機(jī)制的闡述也愈發(fā)詳實(shí),越來越多的單基因致病突變,乃至雙基因、體細(xì)胞突變被發(fā)現(xiàn),使得人們對AIDs發(fā)病機(jī)制的了解取得了很大的進(jìn)步。對AIDs了解的加深不僅能夠極大地促進(jìn)對AIDs患者的疾病診斷、臨床表型評估和治療,而且能夠加深我們對先天免疫通路復(fù)雜調(diào)節(jié)網(wǎng)絡(luò),及其對人類健康貢獻(xiàn)的理解,從而確定全新的治療靶點(diǎn),及時(shí)對患者進(jìn)行精準(zhǔn)干預(yù),避免因疾病產(chǎn)生的不良后果。然而,在疑似AIDs表型的患者當(dāng)中,目前僅有約30%的患者獲得了診斷,這說明AIDs的研究領(lǐng)域內(nèi)仍然有許多問題需要解決。在當(dāng)前的研究中,學(xué)者們大多將目光著眼于基因組上蛋白編碼區(qū)的單堿基遺傳變異。因此,在未來的研究中,隨著測序技術(shù)的不斷完善,應(yīng)當(dāng)將目光更多地著眼在非編碼區(qū)、表觀遺傳調(diào)控以及拷貝數(shù)變異、體細(xì)胞變異等更加廣闊的領(lǐng)域中。

        參考文獻(xiàn)

        [1] MEDZHITOV R, JANEWAY C. Innate immunity[J].New England Journal of Medicine, 2000, 343(5): 338-344.

        [2] MASTERS S L, SIMON A, AKSENTIJEVICH I, et al. Horror autoinflammaticus: The molecular pathophysiology of autoinflammatory disease (*)[J]. Annual Review of Immunology, 2009, 27: 621-668.

        [3] MCDERMOTT M F, AKSENTIJEVICH I, GALON J, et al. Germline mutations in the extracellular domains of the 55 kDa TNF receptor, TNFR1, define a family of dominantly inherited autoinflammatory syndromes[J]. Cell, 1999, 97(1): 133-144.

        [4] CONSORTIUM F F. A candidate gene for familial Mediterranean fever[J].Nature Genetics, 1997, 17(1):25-31.

        [5] CONSORTIUM T I F. Ancient missense mutations in a new member of the RoRet gene family are likely to cause familial Mediterranean fever[J].Cell, 1997, 90(4):797-807.

        [6] PRAS E, AKSENTIJEVICH I, GRUBERG L, et al. Mapping of a gene causing familial Mediterranean fever to the short arm of chromosome 16[J]. The New England Journal of Medicine, 1992, 326(23): 1509-1513.

        [7] MANTHIRAM K, ZHOU Q, AKSENTIJEVICH I, et al. The monogenic autoinflammatory diseases define new pathways in human innate immunity and inflammation[J]. Nature Immunology, 2017, 18(8): 832-842.

        [8] AKSENTIJEVICH I, SCHNAPPAUF O. Molecular mechanisms of phenotypic variability in monogenic autoinflammatory diseases[J]. Nature Reviews Rheumatology, 2021, 17(7): 405-425.

        [9] SAVIC S, CASELEY E A, MCDERMOTT M F. Moving towards a systems-based classification of innate immune-mediated diseases[J]. Nature Reviews Rheumatology, 2020, 16(4): 222-237.

        [10]MOGHADDAS F, LLAMAS R, DE NARDO D, et al. A novel pyrin-associated autoinflammation with neutrophilic dermatosis mutation further defines 14-3-3 binding of pyrin and distinction to familial Mediterranean fever[J]. Annals of the Rheumatic Diseases, 2017, 76(12): 2085-2094.

        [11]XU D C, ZOU C Y, YUAN J Y. Genetic regulation of RIPK1 and necroptosis[J]. Annual Review of Genetics, 2021, 55: 235-263.

        [12]YUAN J Y, AMIN P, OFENGEIM D. Necroptosis and RIPK1-mediated neuroinflammation in CNS diseases[J]. Nature Reviews Neuroscience, 2019, 20(1): 19-33.

        [13]ZHANG X H, DOWLING J P, ZHANG J K. RIPK1 can mediate apoptosis in addition to necroptosis during embryonic development[J]. Cell Death & Disease, 2019, 10(3): 245.

        [14]LALAOUI N, BOYDEN S E, ODA H, et al. Mutations that prevent caspase cleavage of RIPK1 cause autoinflammatory disease[J].Nature,2020,577(7788):103-108.

        [15]TAO P F, SUN J Q, WU Z M, et al. A dominant autoinflammatory disease caused by non-cleavable variants of RIPK1[J]. Nature, 2020, 577(7788): 109-114.

        [16]TAPIZ I REULA A J, COCHINO A V, MARTINS A L, et al. Characterization of novel pathogenic variants leading to caspase-8 cleavage-resistant RIPK1-induced autoinflammatory syndrome[J]. Journal of Clinical Immunology, 2022, 42(7): 1421-1432.

        [17]CUCHET-LOUREN?O D, ELETTO D, WU C X, et al. Biallelic RIPK1 mutations in humans cause severe immunodeficiency, arthritis, and intestinal inflammation[J]. Science, 2018, 361(6404): 810-813.

        [18]LI Y, FüHRER M, BAHRAMI E, et al. Human RIPK1 deficiency causes combined immunodeficiency and inflammatory bowel diseases[J]. Proceedings of the National Academy of Sciences of the United States of America, 2019, 116(3): 970-975.

        [19]ZHOU Q, WANG H Y, SCHWARTZ D M, et al. Loss-of-function mutations in TNFAIP3 leading to A20 haploinsufficiency cause an early-onset autoinflammatory disease[J]. Nature Genetics, 2016, 48(1): 67-73.

        [20]YU M P, XU X S, ZHOU Q, et al. Haploinsufficiency of A20 (HA20): Updates on the genetics, phenotype, pathogenesis and treatment[J]. World Journal of Pediatrics, 2020, 16(6): 575-584.

        [21]SPAAN A N, NEEHUS A L, LAPLANTINE E, et al. Human OTULIN haploinsufficiency impairs cell-intrinsic immunity to staphylococcal α-toxin[J]. Science, 2022, 376(6599): eabm6380.

        [22]ZHOU Q, YU X M, DEMIRKAYA E, et al. Biallelic hypomorphic mutations in a linear deubiquitinase define otulipenia, an early-onset autoinflammatory disease[J]. Proceedings of the National Academy of Sciences of the United States of America, 2016, 113(36): 10127-10132.

        [23]LI M Q, LI L, ASEMOTA S, et al. Reciprocal interplay between OTULIN-LUBAC determines genotoxic and inflammatory NF-κB signal responses[J]. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(33): e2123097119.

        [24]IWAI K. LUBAC-mediated linear ubiquitination: A crucial regulator of immune signaling[J]. Proceedings of the Japan Academy, 2021, 97(3): 120-133.

        [25]PELTZER N, DARDING M, MONTINARO A, et al. LUBAC is essential for embryogenesis by preventing cell death and enabling haematopoiesis[J]. Nature, 2018, 557(7703): 112-117.

        [26]BOISSON B, LAPLANTINE E, PRANDO C, et al. Immunodeficiency, autoinflammation and amylopectinosis in humans with inherited HOIL-1 and LUBAC deficiency[J]. Nature Immunology, 2012, 13(12): 1178-1186.

        [27]NILSSON J, SCHOSER B, LAFORET P, et al. Polyglucosan body myopathy caused by defective ubiquitin ligase RBCK1[J]. Annals of Neurology, 2013, 74(6): 914-919.

        [28]WANG K, KIM C, BRADFIELD J, et al. Whole-genome DNA/RNA sequencing identifies truncating mutations in RBCK1 in a novel Mendelian disease with neuromuscular and cardiac involvement[J]. Genome Medicine, 2013, 5(7): 67.

        [29]SMIT J J, MONTEFERRARIO D, NOORDERMEER S M, et al. The E3 ligase HOIP specifies linear ubiquitin chain assembly through its RING-IBR-RING domain and the unique LDD extension[J]. The EMBO Journal, 2012, 31(19): 3833-3844.

        [30]BOISSON B, LAPLANTINE E, DOBBS K, et al. Human HOIP and LUBAC deficiency underlies autoinflammation, immunodeficiency, amylopectinosis, and lymphangiectasia[J]. The Journal of Experimental Medicine, 2015, 212(6): 939-951.

        [31]ODA H, BECK D B, KUEHN H S, et al. Second case of HOIP deficiency expands clinical features and defines inflammatory transcriptome regulated by LUBAC[J]. Frontiers in Immunology, 2019, 10: 479.

        [32]CROW Y J, STETSON D B. The type I interferonopathies: 10 years on[J]. Nature Reviews Immunology, 2022, 22(8): 471-483.

        [33]CROW Y J, LIVINGSTON J H. Aicardi-Goutières syndrome: An important Mendelian mimic of congenital infection[J]. Developmental Medicine & Child Neurology, 2008, 50(6): 410-416.

        [34]CROW Y J, MANEL N. Aicardi-Goutières syndrome and the type I interferonopathies[J]. Nature Reviews Immunology, 2015, 15(7): 429-440.

        [35]PENG J H, WANG Y S, HAN X, et al. Clinical implications of a new DDX58 pathogenic variant that causes lupus nephritis due to RIG-I hyperactivation[J]. Journal of the American Society of Nephrology, 2023, 34(2): 258-272.

        [36]ZHOU Q, YANG D, OMBRELLO A K, et al. Early-onset stroke and vasculopathy associated with mutations in ADA2[J]. New England Journal of Medicine, 2014, 370(10): 911-920.

        [37]ELKAN P N, PIERCE S B, SEGEL R, et al. Mutant adenosine deaminase 2 in a polyarteritis nodosa vasculopathy[J]. The New England Journal of Medicine, 2014, 370(10): 921-931.

        [38]JEE H, HUANG Z P, BAXTER S, et al. Comprehensive analysis of ADA2 genetic variants and estimation of carrier frequency driven by a function-based approach[J]. Journal of Allergy and Clinical Immunology, 2022, 149(1): 379-387.

        [39]LEE P Y, AKSENTIJEVICH I, ZHOU Q. Mechanisms of vascular inflammation in deficiency of adenosine deaminase 2 (DADA2)[J]. Seminars in Immunopathology, 2022, 44(3): 269-280.

        [40]OMBRELLO A K, QIN J, HOFFMANN P M, et al. Treatment strategies for deficiency of adenosine deaminase 2[J]. The New England Journal of Medicine, 2019, 380(16): 1582-1584.

        [41]KATAN M, COCKCROFT S. Phospholipase C families: Common themes and versatility in physiology and pathology[J]. Progress in Lipid Research, 2020, 80: 101065.

        [42]OMBRELLO M J, REMMERS E F, SUN G P, et al. Cold urticaria, immunodeficiency, and autoimmunity related to PLCG2 deletions[J]. The New England Journal of Medicine, 2012, 366(4): 330-338.

        [43]ZHOU Q, LEE G S, BRADY J, et al. A hypermorphic missense mutation in PLCG2, encoding phospholipase Cγ2, causes a dominantly inherited autoinflammatory disease with immunodeficiency[J]. American Journal of Human Genetics, 2012, 91(4): 713-720.

        [44]TAO P F, HAN X, WANG Q T, et al. A gain-of-function variation in PLCG1 causes a new immune dysregulation disease[J]. The Journal of Allergy and Clinical Immunology, 2023, 152(5): 1292-1302.

        [45]REDDY S, JIA S, GEOFFREY R, et al. An autoinflammatory disease due to homozygous deletion of the IL1RN locus[J]. The New England Journal of Medicine, 2009, 360(23): 2438-2444.

        [46]AKSENTIJEVICH I, MASTERS S L, FERGUSON P J, et al. An autoinflammatory disease with deficiency of the interleukin-1-receptor antagonist[J]. The New England Journal of Medicine, 2009, 360(23): 2426-2437.

        [47]MARRAKCHI S, GUIGUE P, RENSHAW B R, et al. Interleukin-36-receptor antagonist deficiency and generalized pustular psoriasis[J]. The New England Journal of Medicine, 2011, 365(7): 620-628.

        [48]ONOUFRIADIS A, SIMPSON M A, PINK A E, et al. Mutations in IL36RN/IL1F5 are associated with the severe episodic inflammatory skin disease known as generalized pustular psoriasis[J]. American Journal of Human Genetics, 2011, 89(3): 432-437.

        [49]WANG Y S, WANG J, ZHENG W J, et al. Identification of an IL-1 receptor mutation driving autoinflammation directs IL-1-targeted drug design[J]. Immunity, 2023, 56(7): 1485-1501.e7.

        [50]BREHM A, LIU Y, SHEIKH A, et al. Additive loss-of-function proteasome subunit mutations in CANDLE/PRAAS patients promote type I IFN production[J]. The Journal of Clinical Investigation, 2015, 125(11): 4196-4211.

        [51]AGARWAL A K, XING C, DEMARTINO G N, et al. PSMB8 encoding the β5i proteasome subunit is mutated in joint contractures, muscle atrophy, microcytic anemia, and panniculitis-induced lipodystrophy syndrome[J]. The American Journal of Human Genetics, 2010, 87(6): 866-872.

        [52]DE JESUS A A, BREHM A, VANTRIES R, et al. Novel proteasome assembly chaperone mutations in PSMG2/PAC2 cause the autoinflammatory interferonopathy CANDLE/PRAAS4[J]. The Journal of Allergy and Clinical Immunology, 2019, 143(5): 1939-1943.e8.

        [53]ISIDOR B, EBSTEIN F, HURST A, et al. Stankiewicz-Isidor syndrome: Expanding the clinical and molecular phenotype[J]. Genetics in Medicine: Official Journal of the American College of Medical Genetics, 2022, 24(1): 179-191.

        [54]KANAZAWA N, HEMMI H, KINJO N, et al. Heterozygous missense variant of the proteasome subunit β-type 9 causes neonatal-onset autoinflammation and immunodeficiency[J]. Nature Communications, 2021, 12(1): 6819.

        [55]KHALIL R, KENNY C, HILL R S, et al. PSMD12 haploinsufficiency in a neurodevelopmental disorder with autistic features[J]. American Journal of Medical Genetics, 2018, 177(8): 736-745.

        [56]KüRY S, BESNARD T, EBSTEIN F, et al. De novo disruption of the proteasome regulatory subunit PSMD12 causes a syndromic neurodevelopmental disorder[J]. American Journal of Human Genetics, 2017, 100(2): 352-363.

        [57]NAUD M E, TOSCA L, MARTINOVIC J, et al. Prenatal diagnosis of a 2.5 mb de novo 17q24.1q24.2 deletion encompassing KPNA2 and PSMD12 genes in a fetus with craniofacial dysmorphism, equinovarus feet, and syndactyly[J]. Case Reports in Genetics, 2017, 2017: 7803136.

        [58]PALUMBO P, PALUMBO O, DI MURO E, et al. Expanding the clinical and molecular spectrum of PSMD12-related neurodevelopmental syndrome: An additional patient and review[J]. Archives of Clinical and Medical Case Reports, 2019, 3(5):250-260.

        [59]POLI M C, EBSTEIN F, NICHOLAS S K, et al. Heterozygous truncating variants in POMP escape nonsense-mediated decay and cause a unique immune dysregulatory syndrome[J]. The American Journal of Human Genetics, 2018, 102(6): 1126-1142.

        [60]SARRABAY G, MéCHIN D, SALHI A, et al. PSMB10, the last immunoproteasome gene missing for PRAAS[J]. The Journal of Allergy and Clinical Immunology, 2020, 145(3): 1015-1017.

        [61]YAN K, ZHANG J H, LEE P Y, et al. Haploinsufficiency of PSMD12 causes proteasome dysfunction and subclinical autoinflammation[J]. Arthritis & Rheumatology, 2022, 74(6): 1083-1090.

        [62]NAKAGAWA K, GONZALEZ-ROCA E, SOUTO A, et al. Somatic NLRP3 mosaicism in Muckle-Wells syndrome. A genetic mechanism shared by different phenotypes of cryopyrin-associated periodic syndromes[J]. Annals of the Rheumatic Diseases, 2015, 74(3): 603-610.

        [63]SAITO M, FUJISAWA A, NISHIKOMORI R, et al. Somatic mosaicism of CIAS1 in a patient with chronic infantile neurologic, cutaneous, articular syndrome[J]. Arthritis & Rheumatism, 2005, 52(11): 3579-3585.

        [64]ZHOU Q, AKSENTIJEVICH I, WOOD G M, et al. Brief report: Cryopyrin-associated periodic syndrome caused by a myeloid-restricted somatic NLRP3 mutation[J]. Arthritis & Rheumatology, 2015, 67(9): 2482-2486.

        [65]WANG J, YE Q, ZHENG W J, et al. Low-ratio somatic NLRC4 mutation causes late-onset autoinflammatory disease[J]. Annals of the Rheumatic Diseases, 2022, 81(8): 1173-1178.

        [66]KONTZIAS A, ZARABI S K, CALABRESE C, et al. Somatic mosaicism in adult-onset TNF receptor-associated periodic syndrome (TRAPS)[J]. Molecular Genetics & Genomic Medicine, 2019, 7(8): e791.

        [67]DE INOCENCIO J, MENSA-VILARO A, TEJADA-PALACIOS P, et al. Somatic NOD2 mosaicism in Blau syndrome[J]. The Journal of Allergy and Clinical Immunology, 2015, 136(2): 484-487.

        [68]MENSA-VILARO A, TARNG CHAM W, TANG S P, et al. Brief report: First identification of intrafamilial recurrence of blau syndrome due to gonosomal NOD2 mosaicism[J]. Arthritis & Rheumatology, 2016, 68(4): 1039-1044.

        [69]LIU Y, JESUS A A, MARRERO B, et al. Activated STING in a vascular and pulmonary syndrome[J]. The New England Journal of Medicine, 2014, 371(6): 507-518.

        [70]ALURI J, BACH A, KAVIANY S, et al. Immunodeficiency and bone marrow failure with mosaic and germline TLR8 gain of function[J]. Blood, 2021, 137(18): 2450-2462.

        [71]KUBO A, SASAKI T, SUZUKI H, et al. Clonal expansion of second-hit cells with somatic recombinations or Cgt;T transitions form porokeratosis in MVD or MVK mutant heterozygotes[J].Journal of Investigative Dermatology, 2019, 139(12): 2458-2466.

        [72]BECK D B, FERRADA M A, SIKORA K A, et al. Somatic mutations in UBA1 and severe adult-onset autoinflammatory disease[J]. The New England Journal of Medicine, 2020, 383(27): 2628-2638.

        [73]HSIEH E W Y, BOLZE A, HERNANDEZ J D. Inborn errors of immunity illuminate mechanisms of human immunology and pave the road to precision medicine[J]. Immunological Reviews, 2024, 322(1): 5-14.

        [74]DEMIR D D, ASNAASHARI K, REZAEI N, et al. Management of inborn errors of immunity in the genomic era[J]. Turkish Archives of Pediatrics, 2022, 57(2): 132-145.

        [75]NIGROVIC P A, LEE P Y, HOFFMAN H M. Monogenic autoinflammatory disorders: Conceptual overview, phenotype, and clinical approach[J]. Journal of Allergy and Clinical Immunology, 2020, 146(5): 925-937.

        [76]SIGNA S, DELL’ORSO G, GATTORNO M, et al. Hematopoietic stem cell transplantation in systemic autoinflammatory diseases: The first one hundred transplanted patients[J]. Expert Review of Clinical Immunology, 2022, 18(7): 667-689.

        (編 輯 李 波)

        a级毛片免费观看在线播放| 亚洲国产成人无码电影| 日韩成精品视频在线观看| 美女扒开腿露内裤免费看| 又色又爽又高潮免费视频国产| 丰满少妇愉情中文字幕18禁片| 99色网站| 国产亚洲中文字幕久久网| 新婚少妇无套内谢国语播放| 日本最大色倩网站www| 杨幂AV污网站在线一区二区| 亚洲一区二区免费日韩| 亚洲V在线激情| 久久精品国语对白黄色| 又硬又粗进去好爽免费| 国产涩涩视频在线观看| 91精品国产色综合久久不卡蜜| 色噜噜av亚洲色一区二区| 欧美日韩精品乱国产538| 久久伊人中文字幕有码久久国产| 日本av一区二区三区在线| 国产农村妇女毛片精品久久 | 国产不卡精品一区二区三区| 久激情内射婷内射蜜桃| 久久国产亚洲高清观看5388| 亚洲va在线va天堂va四虎| 国产伦奸在线播放免费| 手机看黄av免费网址| 无码夜色一区二区三区| 亚洲欧洲日韩免费无码h | 国产精品免费av片在线观看| 伊人久久成人成综合网222| 亚洲综合精品在线观看中文字幕| 自拍偷拍 视频一区二区| 亚洲色精品aⅴ一区区三区| 无码之国产精品网址蜜芽| 在线观看一区二区三区国产| 国产后入清纯学生妹| 中文字幕无码无码专区| 亚洲一卡2卡3卡4卡5卡精品| 99热最新在线观看|