摘 要:隨著中國(guó)“碳達(dá)峰”與“碳中和”目標(biāo)的提出,內(nèi)燃機(jī)低碳化、零碳化勢(shì)在必行。氨作為零碳燃料和氫的高能量密度載體,是實(shí)現(xiàn)碳中和有潛力的替代燃料。研發(fā)氨氫燃燒技術(shù),實(shí)現(xiàn)氨高效清潔融合燃料零碳大功率內(nèi)燃機(jī)高效近零排放對(duì)全球氣候治理具有重大意義。該文在分析氨作為未來(lái)綠色能源的潛力及其在內(nèi)燃機(jī)中實(shí)際應(yīng)用的基礎(chǔ)上,從氨氫內(nèi)燃機(jī)的燃燒模式、氨氫燃料的燃燒化學(xué)反應(yīng)動(dòng)力學(xué)、氨氫燃料供給方式等方面綜述了氨氫內(nèi)燃機(jī)的燃燒的最新進(jìn)展,對(duì)比分析了火花點(diǎn)燃/均質(zhì)壓燃/射流引燃3種燃燒模式、氨氣道噴射/液氨缸內(nèi)直噴2種燃料供給方式、主動(dòng)射流/被動(dòng)射流2種點(diǎn)火方式,提出并論述了基于氨在線裂解制氫實(shí)現(xiàn)基于單一液氨燃料油箱的氨氫融合燃燒,是內(nèi)燃機(jī)實(shí)現(xiàn)碳中和的極具潛力的技術(shù)路線,指出了氨氫內(nèi)燃機(jī)噴霧、燃燒和氮基排放控制三方面需要解決的關(guān)鍵技術(shù)和科學(xué)問(wèn)題。研究表明:氨氫融合內(nèi)燃機(jī)采用微量氫氣(小于3%)引燃氨混合氣,可以獲得穩(wěn)定燃燒和高熱效率,并拓展稀然極限。氨氫融合零碳大功率內(nèi)燃機(jī)作為氨燃料高效可靠的應(yīng)用載體,在重型車(chē)輛、工程機(jī)械、遠(yuǎn)洋船舶、發(fā)電等多個(gè)領(lǐng)域具備廣泛的應(yīng)用潛力與價(jià)值,氨氫內(nèi)燃機(jī)的研發(fā)可推動(dòng)基礎(chǔ)燃燒理論的進(jìn)步,也可以促進(jìn)中國(guó)內(nèi)燃機(jī)產(chǎn)業(yè)邁上新的臺(tái)階。
關(guān)鍵詞: 氨氫融合;零碳內(nèi)燃機(jī);燃燒模式;燃燒化學(xué)反應(yīng)動(dòng)力學(xué)
中圖分類號(hào): TK 467.1+4 文獻(xiàn)標(biāo)識(shí)碼: A DOI: 10.3969/j.issn.1674-8484.2024.04.001
Overview of the combustion of ammonia-hydrogen internal
combustion engines
WANG Zhi1,2, QI Yunliang1,2, CHEN Qingchu1,2, LI Jun*1,2
(1. School of Vehicle and Mobility, Tsinghua University, Beijing 100084, China;2. State Key Laboratory of Intelligent Green Vehicle and Mobility, Tsinghua University, Beijing 100084, China)
Abstract: With the introduction of Chinese goals of “carbon peak” and “carbon neutrality”, the low-carbon and zero-carbon transition of internal combustion engines is imperative. Ammonia, as a zero-carbon fuel and a high-energy-density carrier for hydrogen, is a promising alternative fuel for achieving carbon neutrality in the near to mid-term. Developing ammonia-hydrogen combustion technology for high-power, zero-carbon internal combustion engines is of signifcant importance for global climate governance. This paper analyzes the potential"of ammonia as a future green energy source and its practical applications in internal combustion engines. It reviews the latest advancements in ammonia-hydrogen engine combustion from the aspects of combustion modes, reaction kinetics of ammonia-hydrogen fuel, and fuel supply methods, comparing three combustion modes (spark ignition/homogeneous compression ignition/jet ignition), two ammonia supply methods (gaseous port injection/liquid ammonia direct injection), and two jet ignition methods (active/passive). A promising technology of ammonia-hydrogen synergy combustion based on online ammonia cracking to produce hydrogen from a single liquid ammonia fuel tank is proposed and discussed. Key technical and scientifc issues to be addressed in spray, combustion, and nitrogen-based emission control are also pointed out. Research indicates that using a small amount of hydrogen (less than 3%) to ignite ammonia-air mixtures in ammonia-hydrogen engines can achieve stable combustion and high thermal effciency while extending the lean limit. Ammonia-hydrogen synergy zero-carbon high-power internal combustion engines, as effcient and reliable application carriers for ammonia fuel, have broad application potential and value in heavy-duty vehicles, construction machinery, ocean-going vessels, and power generation. The development of ammonia-hydrogen engines can advance fundamental combustion theory and revitalize China's internal combustion engine industry.
Key words: ammonia-hydrogen synergy; zero-carbon engine; combustion mode; reaction kinetics
氨在世界范圍內(nèi)來(lái)源豐富,是全球量產(chǎn)最高的化工原料之一,已廣泛應(yīng)用于農(nóng)業(yè)、工業(yè)、建筑和醫(yī)藥等領(lǐng)域。氨具有零碳、易液化、基礎(chǔ)設(shè)施完善、產(chǎn)業(yè)鏈成熟、產(chǎn)量和生產(chǎn)效率高、成本低、儲(chǔ)運(yùn)安全的特點(diǎn),是未來(lái)有潛力的綠色能源載體。在碳中和背景下,氨作為氫能載體和零碳燃料越來(lái)越被重視。在本文成稿之際,中國(guó)工業(yè)和信息化部也發(fā)布了2024年國(guó)家重點(diǎn)研發(fā)計(jì)劃“新能源汽車(chē)”專項(xiàng),將“重型商用車(chē)混合動(dòng)力專用氨內(nèi)燃機(jī)”列入了項(xiàng)目申報(bào)指南,進(jìn)一步凸顯了氨燃料內(nèi)燃機(jī)在未來(lái)重型交通運(yùn)輸領(lǐng)域應(yīng)用的潛力。
內(nèi)燃機(jī)消耗了世界上約60%的石油資源,當(dāng)前內(nèi)燃機(jī)正在由利用化石能源向可再生能源過(guò)渡,燃料由低碳化向零碳化發(fā)展。氨作為燃料具有零碳屬性,但也存在點(diǎn)火難、燃燒慢等缺點(diǎn)。將氨與其他高活性燃料摻混可以解決氨的點(diǎn)火燃燒難題,但若與含碳燃料混燒,將不可避免地產(chǎn)生碳排放,且兩套燃燒供給系統(tǒng)進(jìn)一步增加了系統(tǒng)的復(fù)雜度和綜合成本。氫的化學(xué)活性極高,將氫與氨混合能顯著加快燃速,但氣態(tài)氫存儲(chǔ)會(huì)占用較大空間。基于氨是氫載體的特性,氨氫發(fā)動(dòng)機(jī)可以僅攜帶單一液氨燃料,通過(guò)將部分氨分解制得的氫用于促進(jìn)其余氨的燃燒,解決氫在運(yùn)輸、存儲(chǔ)、加注、安全等方面的問(wèn)題。因此,近年來(lái)氨氫發(fā)動(dòng)機(jī)成為新能源與交通運(yùn)輸裝備碳中和的國(guó)際科技創(chuàng)新前沿。然而,氨的噴霧特性、燃燒特性和排放特性均與汽柴油機(jī)不同(如圖1),為實(shí)現(xiàn)氨氫發(fā)動(dòng)機(jī)高效清潔燃燒,氨氫發(fā)動(dòng)機(jī)研發(fā)需要首先從基礎(chǔ)研究入手。
1 氨氫發(fā)動(dòng)機(jī)的燃燒模式
表1列出了近20年國(guó)內(nèi)外關(guān)于氨氫發(fā)動(dòng)機(jī)的主要研究工作。根據(jù)點(diǎn)火方式不同,可分為3類:1) 壓燃(compression ignition,CI);2) 火花點(diǎn)火(spark ignition,SI);3) 射流點(diǎn)火( jet ignition,JI);其燃燒模式包括均質(zhì)混合氣壓燃燃燒(homogeneous charge compression"ignition,HCCI)模式、均質(zhì)火花點(diǎn)燃燃燒(homogeneous charge spark ignition,HCSI)模式、氣道噴射射流點(diǎn)火(port injection jet ignition,PIJI)模式、直接噴射射流點(diǎn)火(direct injection jet ignition,DIJI)模式, 如圖2所示。
1.1 火花點(diǎn)燃式 (SI)
使用火花塞點(diǎn)燃是內(nèi)燃機(jī)中成熟且簡(jiǎn)單的點(diǎn)火方式。火花點(diǎn)火的最大優(yōu)點(diǎn)是無(wú)需對(duì)發(fā)動(dòng)機(jī)進(jìn)行結(jié)構(gòu)改動(dòng),僅需在進(jìn)氣道內(nèi)噴入氨和氫就可以實(shí)現(xiàn)運(yùn)行。然而,氨的燃燒惰性強(qiáng)、火焰?zhèn)鞑ニ俣嚷?,低摻氫比例下,燃燒不穩(wěn)定且燃燒效率低。因此,氫與氨的混合比例對(duì)于發(fā)動(dòng)機(jī)燃燒與排放特性有著重要影響。提高氫能比將增加燃燒穩(wěn)定性,但也會(huì)增加傳熱損失,不利于提高熱效率。C. Lhuillier等[5, 17-18]在寬氫能比(氫能量比0~54%)、寬當(dāng)量比工況下的實(shí)驗(yàn)結(jié)果如圖3所示,可見(jiàn)在中低氫能比(氫能比為16%)的濃燃與稀燃工況均能獲得最佳指示熱效率,降低氫能比會(huì)縮減發(fā)動(dòng)機(jī)穩(wěn)定燃燒的濃度范圍。
H. M. Dinesh等[19-20]的研究發(fā)現(xiàn)在5%氫能比時(shí),壓縮比為12的發(fā)動(dòng)機(jī)的有效熱效率為22%,氫能比增加會(huì)提高指示熱效率,但這種趨勢(shì)會(huì)逐漸減小,21%氫能比時(shí),有效熱率為26%。LI Jinguang等[21]利用光學(xué)發(fā)動(dòng)機(jī)對(duì)不同氫能比工況的缸內(nèi)燃燒情況進(jìn)行了分析,不同氫能比下的缸內(nèi)火焰發(fā)展如圖4所示。從圖4中可見(jiàn),增大氫能比不僅能夠增大火焰?zhèn)鞑ニ俣?,而且能夠加速早期火焰的傳播;?dāng)氫能比高于10%~12.5%時(shí),氫能比對(duì)早期火焰形成影響顯著,低于此值時(shí),氫能比對(duì)火焰?zhèn)鞑ニ俣扔绊戯@著。
早期研究中,點(diǎn)燃式氨氫發(fā)動(dòng)機(jī)通常由汽油機(jī)改造而成。S. Frigo等[2, 22-23]在一臺(tái)壓縮比為10.7發(fā)動(dòng)機(jī)中對(duì)比了汽油與氨氫燃料燃燒特性。與汽油相比,氨氫燃料的長(zhǎng)時(shí)間燃燒會(huì)導(dǎo)致更高的熱損失和更少的殘余膨脹,相同轉(zhuǎn)速和負(fù)荷下氨氫燃料的熱效率比汽油低2%。由于氨和氫的辛烷值均比汽油高,允許使用更高壓縮比提高熱效率,在近年的研究中,點(diǎn)燃式氨氫發(fā)動(dòng)機(jī)壓縮比已提升至15以上。ZHU Tiankui等[24]在壓縮比15的發(fā)動(dòng)機(jī)中實(shí)現(xiàn)了中高負(fù)荷(平均有效指示壓力,brake mean effective pressure,BMEP = 0.94 MPa)下的純氨穩(wěn)定運(yùn)行(循環(huán)變動(dòng)系數(shù),coef?cient of variation,COV lt; 3%),有效熱效率達(dá)33.7%,如圖5a所示,其中,BTE(brake thermal efficiency)為制動(dòng)熱效率,BTDC(before top"dead center)為(活塞)上止點(diǎn)前。增加氫能比至10%,在中負(fù)荷(IMEP = 0.63 MPa)下,有效熱效率可提升至35.8%,如圖5b所示。增大壓縮比可以提高氨的燃燒穩(wěn)定性,但也有研究表明,高壓縮比會(huì)帶來(lái)更高的傳熱損失,降低指示熱效率[25]。
在高溫高壓條件下,氨氫發(fā)動(dòng)機(jī)中也會(huì)發(fā)生爆震。ZHANG Ridong[26]利用全視場(chǎng)可視化快速壓縮機(jī)對(duì)氫能比為10%的氨氫混合燃料進(jìn)行了火花點(diǎn)火對(duì)比實(shí)驗(yàn),實(shí)驗(yàn)結(jié)果如圖6和圖7所示:在3 MPa、750~915 K 的熱力學(xué)條件下,末端氣發(fā)生了強(qiáng)烈自燃,引發(fā)了高達(dá)10 MPa以上的壓力振幅。該自燃燃燒呈現(xiàn)出清晰的波面特征,其波面速度達(dá)到1.812 km/s,接近C-J爆轟速度(1.865 km/s),為完全發(fā)展的爆轟。
1.2 壓燃式點(diǎn)燃 (CI)
氨的化學(xué)活性低,與空氣混合氣后壓縮著火難度大。早在1966年,T. G. Gray[27]等試驗(yàn)表明純氨混合氣需要在進(jìn)氣溫度422 K、壓縮比為35∶1的發(fā)動(dòng)機(jī)條件下才能壓燃;如果用高十六烷值燃料引燃,壓縮比為12∶1便可使氨混合氣燃燒。P. Van Blarigan [28]研究表明在不采用進(jìn)氣加熱的條件下,氨的壓縮點(diǎn)燃所需要壓縮比要達(dá)到40以上。但過(guò)高的壓縮比會(huì)增加熱損失和摩擦損失,導(dǎo)致熱效率反而降低。
氨氫均質(zhì)混合氣壓縮點(diǎn)火(HCCI)可以實(shí)現(xiàn)混合氣的快速燃燒,提高熱效率并降低污染物排放[29]。由于氫氣活性較高,與氨氣混合后可以降低氨的自燃溫度,降低所需要的進(jìn)氣溫度和壓縮比。M. Pochet等[4]在壓縮比為15.3、氨體積分?jǐn)?shù)為70%的工況條件下,實(shí)現(xiàn)了氨氫混合氣的HCCI燃燒,試驗(yàn)中使用了進(jìn)氣增壓和加熱(進(jìn)氣壓力0.15 MPa,進(jìn)氣溫度473 K)。由于整體負(fù)荷不高、缸內(nèi)活塞形狀未優(yōu)化等原因,試驗(yàn)中的缸內(nèi)燃燒溫度很低,最高僅為1 400 K左右,導(dǎo)致氨的燃燒效率約為75%。低溫使得熱力型NOx的排放明顯減小,燃料型NOx起主導(dǎo)作用。進(jìn)一步的研究[6] (如圖8所示)實(shí)現(xiàn)了壓縮比為22、氨體積分?jǐn)?shù)為94%的氨氫混合氣HCCI燃燒,利用進(jìn)氣增壓和高當(dāng)量比的方式,純氨的燃燒溫度達(dá)到1 800 K,燃燒效率為95%。提高氨在混合氣中的占比,可以提高發(fā)動(dòng)機(jī)運(yùn)行的最大負(fù)荷,進(jìn)一步提高燃燒溫度和燃燒效率。
另一種壓燃模式,火花輔助壓燃(spark assisted compress ignition, SACI),可能是實(shí)現(xiàn)氨氫壓縮點(diǎn)火的可行方法。C. Mouna?m-Rousselle等[30]通過(guò)提高壓縮比至14~17,成功實(shí)現(xiàn)了純氨SACI燃燒。與氫能比為10%的傳統(tǒng)火花點(diǎn)火相比,純氨SACI點(diǎn)火延遲期更短,火焰?zhèn)鞑ジ?,需要的進(jìn)氣壓力更低。高轉(zhuǎn)速和低負(fù)荷下,SI模式的燃燒出現(xiàn)惡化,而純氨SACI的穩(wěn)定工作區(qū)間更大。S. Reggeti等[31]也比較了氫體積比為0%、2.5%和5%這3種工況下,高壓縮比(18)發(fā)動(dòng)機(jī)中SACI模式的燃燒情況。結(jié)果表明SACI模式對(duì)氫氣比例、點(diǎn)火正時(shí)和進(jìn)氣溫度都十分敏感。
在SACI燃燒模式下,如果發(fā)動(dòng)機(jī)的溫度、壓力、當(dāng)量比等偏離優(yōu)化區(qū)間,自燃部分的放熱率也存在失控的可能,進(jìn)而引發(fā)爆震。ZHANG Ridong等[26]在快速壓縮機(jī)上研究了氨氫燃料的理論化學(xué)計(jì)量比混合氣高溫條件下點(diǎn)燃后的燃燒過(guò)程。在初始?jí)毫? MPa條件下,當(dāng)混合氣初始溫度低于845 K時(shí),對(duì)于純氨,末端混合氣仍難以自燃,但加入10%的氫后,末端混合氣能夠自燃并引發(fā)低強(qiáng)度爆震;而當(dāng)溫度進(jìn)一步提升至985 K后,即使純氨,也會(huì)產(chǎn)生末端混合氣自燃,而且自燃后會(huì)引起爆轟和高強(qiáng)度爆震(見(jiàn)圖9a)。使用稀釋燃燒對(duì)末端混合氣自燃強(qiáng)度具有抑制作用,劉尚等[32]將純氨混合氣中的氧氣與稀釋氣比例從空氣的1∶ 3.76調(diào)整到1∶ 20,即使在將混合氣溫度和壓力提高到1 340 K和3.6 MPa時(shí),末端混合氣自燃過(guò)程不會(huì)引起任何壓力振蕩(見(jiàn)圖9b)。
1.3 射流式點(diǎn)燃 (JI)
射流點(diǎn)火是利用射流點(diǎn)火系統(tǒng)取代火花塞的點(diǎn)火模式。射流點(diǎn)火系統(tǒng)通常由射流室和火花塞構(gòu)成,射流室經(jīng)射流孔與主燃室相連,火花塞安裝在射流室頂部。射流點(diǎn)火一般分為3個(gè)階段:第1階段,火花塞點(diǎn)火后,射流室內(nèi)壓力升高,推動(dòng)射流孔附近氣體射入主燃室,這一階段被稱為冷射流,不發(fā)生化學(xué)反應(yīng)。第2階段,射流室內(nèi)溫度和壓力進(jìn)一步升高,火焰噴出射流孔,引燃主燃室氣體。第3階段,射流室內(nèi)氣體燃燒充分,壓力低于主燃室,主燃室氣體反向進(jìn)入射流室[33]。射流點(diǎn)火,相比于傳統(tǒng)火花塞有著更高的點(diǎn)火強(qiáng)度,能夠在主燃室內(nèi)形成多個(gè)點(diǎn)火核,提高惰性燃料[34-36]和稀燃中[37-39]的燃燒穩(wěn)定性和火焰?zhèn)鞑ニ俣取?/p>
射流點(diǎn)火分為2種方式,被動(dòng)射流和主動(dòng)射流,區(qū)別在于射流室內(nèi)是否安裝有活性燃料的噴射器。對(duì)于氨氫發(fā)動(dòng)機(jī)而言,被動(dòng)射流方式在進(jìn)氣道內(nèi)噴射氨氫混合氣,壓縮過(guò)程中混合氣被壓入射流室點(diǎn)燃;主動(dòng)射流模式則在進(jìn)氣道內(nèi)噴射氨氣,射流室內(nèi)噴射氫氣,射流室內(nèi)火花塞附近為富氫混合氣,利于形成更強(qiáng)的射流火焰[35]。
主動(dòng)射流模式可以在低氫能比下,實(shí)現(xiàn)更穩(wěn)定的燃燒和更高的熱效率。WANG Zhi等[16]對(duì)比研究了氨氫預(yù)混被動(dòng)射流點(diǎn)火(passive jet ignition, PJI)和氫主動(dòng)射流引燃(active jet ignition, AJI)氨的發(fā)動(dòng)機(jī)性能。
試驗(yàn)結(jié)果(見(jiàn)圖10)表明: PJI模式下氫能量占比(αH2)需達(dá)到10%以上,COV才能低于5%; 在更稀的混合氣下,所需的氫能比更高; 而AJI所需的氫能量占比大幅下降,且能在更稀的混合氣條件下實(shí)現(xiàn)穩(wěn)定燃燒。
進(jìn)一步探索了單次、2次和3次氫主動(dòng)噴射策略下發(fā)動(dòng)機(jī)的燃燒穩(wěn)定性。結(jié)果表明:?jiǎn)未螄姎洳呗韵?,降低噴氫量后燃燒不穩(wěn)定(見(jiàn)圖11a);在壓縮沖程前期再增加一次噴氫,能夠大幅提高燃燒穩(wěn)定性(見(jiàn)圖11b);采用進(jìn)氣沖程、壓縮沖程早期、壓縮沖程后期的3次噴射,可在降低總氫能比條件下實(shí)現(xiàn)發(fā)動(dòng)機(jī)更穩(wěn)定燃燒;當(dāng)氫能比為2.9%時(shí),發(fā)動(dòng)機(jī)指示熱效率達(dá)到42.5%,COV小于1%。(見(jiàn)圖11d)
以上試驗(yàn)工況的數(shù)值計(jì)算表明(見(jiàn)圖12),較理想的氨氫混合氣濃度分布是3次氫主動(dòng)噴射在低氫能比下實(shí)現(xiàn)缸內(nèi)穩(wěn)定燃燒的主要原因:即第1次噴射形成均質(zhì)氨氫混合氣,有助于射流火焰在末端混合氣中的引燃;第2次噴射形成濃稀分層的氫混合氣,有助于射流火焰快速傳播;第3次噴射在射流室內(nèi)形成的偏濃混合氣,有助于穩(wěn)定火花點(diǎn)火。
A. Ambalakatte 等[40]比較了火花點(diǎn)火(SI)、被動(dòng)射流(PJI)和主動(dòng)射流(AJI)3種模式在壓縮比為12.39的發(fā)動(dòng)機(jī)中最大氨能替代率、燃燒相位等結(jié)果的變化情況,發(fā)現(xiàn)在低負(fù)荷(IMEP lt; 0.8 MPa)工況下,由于氫氣集中于射流室,主動(dòng)射流穩(wěn)定運(yùn)行的氨能替代率最高,如圖13a。而在高負(fù)荷下,由于主燃室內(nèi)更均質(zhì)的混合氣,火花點(diǎn)火可以實(shí)現(xiàn)純氨穩(wěn)定運(yùn)行。相較于主動(dòng)射流,被動(dòng)射流的點(diǎn)火延遲期更長(zhǎng),SI模式的點(diǎn)火延遲期在含氫工況下較小,而轉(zhuǎn)變?yōu)榧儼惫r后大幅上升,之后隨著負(fù)荷提高而下降。主動(dòng)射流的燃燒持續(xù)期最長(zhǎng),其放熱率在達(dá)峰后出現(xiàn)停滯現(xiàn)象,可能是由于活塞邊緣附近火焰鋒的淬火導(dǎo)致的。因?yàn)橹鲃?dòng)射流中,主燃室燃燒由氨主導(dǎo),而氨有著較大的淬火距離,同時(shí)更快的火焰發(fā)展速度使得火焰更有可能接近活塞邊緣,但這仍需進(jìn)一步試驗(yàn)驗(yàn)證。對(duì)于NOx排放而言,主動(dòng)射流相較于火花點(diǎn)火模式可以減少約60%的排放量,如圖13b所示。
1.4 其他模式
對(duì)于氨燃料來(lái)說(shuō),傳統(tǒng)火花點(diǎn)火在許多工況下失效,而高能點(diǎn)火、激光點(diǎn)火和等離子輔助點(diǎn)火等方式有助于實(shí)現(xiàn)惰性燃料或者超稀薄條件下的成功點(diǎn)火。H. D. Pearsall等[41]發(fā)現(xiàn)高能點(diǎn)火和有助于氨的著火。激光點(diǎn)火同樣可以提供高點(diǎn)火能量,同時(shí)布置方式更靈活,但存在使用成本高、可靠性一般等問(wèn)題,尚未大規(guī)模應(yīng)用。目前已有不少學(xué)者采用激光點(diǎn)火在汽油[42]或者天然氣[43]發(fā)動(dòng)機(jī)中開(kāi)展了實(shí)驗(yàn),針對(duì)氨燃料的研究目前還停留在基礎(chǔ)試驗(yàn)階段。等離子體輔助點(diǎn)火目前已有數(shù)值模擬研究[44-47],但還需要更多的發(fā)動(dòng)機(jī)臺(tái)架試驗(yàn)驗(yàn)證其有效性。
2 氨氫燃料的燃燒化學(xué)反應(yīng)動(dòng)力學(xué)
氨燃燒化學(xué)機(jī)理開(kāi)發(fā)已有40多年歷史。20世紀(jì)80年代,A. J. Miller等[48]基于試驗(yàn)[49-51]提出了能較完整描述氨氧化的化學(xué)機(jī)理。如圖14所示,NH3氧化的主干路徑是脫氫反應(yīng),即NH3會(huì)逐步脫除分子中的3個(gè)氫原子,生成NH2、NH、N自由基。在理論空燃比條件下,上述脫氫過(guò)程主要通過(guò)OH自由基的氫提取實(shí)現(xiàn),如NH3 + OH = NH2 + H2O;在濃燃條件下,脫氫過(guò)程主要通過(guò)與H自由基發(fā)生的反應(yīng)進(jìn)行,如NH3 + H = NH2 + H2;而在稀燃條件下,脫氫過(guò)程則主要通過(guò)與O自由基發(fā)生的反應(yīng)進(jìn)行,如NH3 + O = NH2 + OH。NH3脫氫生成的NH2自由基在氨氧化體系中扮演重要角色,其主要通過(guò)2條路徑消耗:1) 通過(guò)加氧反應(yīng)生成HNO與NO,即產(chǎn)生燃料NOx;2) 直接與NOx發(fā)生氧化,生成NNH與N2。因此,NH2相關(guān)路徑的準(zhǔn)確與否,決定了氨氧化體系的活性。Miller等提出的機(jī)理綜合納入了上述反應(yīng),在一定工況范圍內(nèi)可預(yù)測(cè)氨氣的NOx生成特性,成為后續(xù)氨氣機(jī)理開(kāi)發(fā)的基礎(chǔ)。?. Skreiberg等[53]、A. A. Konnov [54]、TIAN Zhenyu等[55]、C. Duynslaegher等[56]以及T. Mendiara等[57]關(guān)注氨燃燒過(guò)程中NOx生成、N2O生成、NH2相關(guān)反應(yīng)、C-N交互反應(yīng)等方面,對(duì)氨燃燒化學(xué)機(jī)理不斷修正,提升了機(jī)理對(duì)氨燃燒特性的預(yù)測(cè)準(zhǔn)確度。2018年,P. Glarborg等[58]綜述了已有的氨機(jī)理開(kāi)發(fā)研究,提出了涵蓋NH、H和C1-C2燃料的綜合性機(jī)理,在國(guó)際上32受到廣泛關(guān)注,并成為后續(xù)氨氫燃料燃燒化學(xué)機(jī)理開(kāi)發(fā)的模板。但由于氨氫燃料基礎(chǔ)燃燒特性實(shí)驗(yàn)數(shù)據(jù)的缺乏,P. Glarborg等[58]提出的機(jī)理并未得到廣泛的實(shí)驗(yàn)數(shù)據(jù)驗(yàn)證。O. Mathieu等[59]、A. Hayakawa等[60]曾對(duì)多種氨氫燃料燃燒機(jī)理進(jìn)行對(duì)比評(píng)估,結(jié)果表明: 現(xiàn)有機(jī)理對(duì)氨氫燃料在高壓下的滯燃期與層流火焰速度的預(yù)測(cè)誤差較大。這表明盡管以上氨氫燃料燃燒機(jī)理在某些條件下可以較為準(zhǔn)確地預(yù)測(cè)某些氨氫燃料燃燒特性,但其普適性仍有待進(jìn)一步提高,針對(duì)特定工況,尤其發(fā)動(dòng)機(jī)熱力學(xué)條件下的氨氫燃料燃燒特性亟待探究。
為開(kāi)發(fā)更加準(zhǔn)確的氨氣燃燒化學(xué)機(jī)理并深入探究氫氣添加對(duì)氨燃燒的促進(jìn)作用,近年來(lái),針對(duì)氨氫燃料基礎(chǔ)燃燒特性研究廣泛開(kāi)展,包含采用激波管[59, 61-62]和快速壓縮機(jī)[63-67]測(cè)量氨氫燃料滯燃期、采用定容彈測(cè)量氨氫燃料層流火焰速度[68-71],以及采用流動(dòng)管[72-74]和射流攪拌反應(yīng)器[75-77]測(cè)量氨氫燃料氧化過(guò)程中間組分的mole分?jǐn)?shù)。SHU Bo [61]與HE Xiaoyu [64]等分別采用激波管與快速壓縮機(jī)在實(shí)驗(yàn)工況壓力2~6 MPa、溫度950~1 600 K、當(dāng)量比0.5~2.0、氫燃料mole比例0~0.2條件下對(duì)氨氫燃料自燃特性進(jìn)行了研究。DAI Liming等[65]利用快速壓縮機(jī)在壓力2.0~7.5 MPa、溫度1 040~1 210 K、當(dāng)量比0.5~3.0、氫燃料mole比例0~0.1工況下對(duì)氨氫燃料的滯燃期進(jìn)行了測(cè)量。M. Pochet [63]、CHEN Jundie [62]、LIAO Wanxiong [66]等也開(kāi)展了相似的工作。為對(duì)比現(xiàn)有氨氫燃料基礎(chǔ)燃燒特性研究與發(fā)動(dòng)機(jī)熱力學(xué)工況的相關(guān)性,圖15總結(jié)了目前氨氫燃料相關(guān)研究的溫度壓力范圍,目前氨氫燃料發(fā)動(dòng)機(jī)研究的常用工況范圍圖中給出了相應(yīng)的放大圖(見(jiàn)圖右上角處)??梢园l(fā)現(xiàn),目前針對(duì)氨氫燃料基礎(chǔ)燃燒特性研究的溫度壓力范圍寬廣(0.01~10 MPa和298~2 500 K),其中關(guān)于氨氫燃料滯燃期測(cè)量研究的熱力學(xué)工況覆蓋了發(fā)動(dòng)機(jī)條件,這為氨氫燃料燃燒化學(xué)機(jī)理的開(kāi)發(fā)提供了堅(jiān)實(shí)基礎(chǔ)與有效約束。
表2匯總了2018年至今,新發(fā)表的受到國(guó)際廣泛關(guān)注的氨氫燃燒化學(xué)機(jī)理。ZHOU Shangkun等[81]、ZHU Yuxiang等[82]、ZHANG Ridong等[83]最近開(kāi)發(fā)的機(jī)理已經(jīng)能夠在寬工況范圍內(nèi)實(shí)現(xiàn)對(duì)氨氫滯燃期、層流火焰速度、中間物種mole分?jǐn)?shù)的準(zhǔn)確預(yù)測(cè)。
著火延遲時(shí)間是反映燃料燃燒特性的重要基本參數(shù)之一,準(zhǔn)確預(yù)測(cè)著火延遲對(duì)燃燒化學(xué)動(dòng)力學(xué)模型的開(kāi)發(fā)至關(guān)重要。針對(duì)目前發(fā)動(dòng)機(jī)條件下氨氫燃料滯燃期測(cè)量結(jié)果的缺失,ZHANG Ridong等[83]在油浴加熱快速壓縮機(jī)上對(duì)不同摻混比例的氨氫燃料開(kāi)展了發(fā)動(dòng)機(jī)工況下的滯燃期測(cè)量,進(jìn)行了滯燃期、層流火焰速度、N2Omole分?jǐn)?shù)、NOxmole分?jǐn)?shù)的敏感性分析,確定了氨氫燃料氧化過(guò)程的關(guān)鍵反應(yīng)路徑,優(yōu)化了涉及NH3、NH2、NH、H2NO、HNO、NOx、N2O、HNNO子機(jī)理中的42個(gè)反應(yīng)速率系數(shù),并增加了9 個(gè)新反應(yīng),最終構(gòu)建了包含31個(gè)組分、 214個(gè)反應(yīng)的氨氫燃料燃燒化學(xué)機(jī)理。該機(jī)理能夠良好預(yù)測(cè)發(fā)動(dòng)機(jī)工況下的氨氫燃料滯燃期、層流火焰速度和重要中間物種mole分?jǐn)?shù)(見(jiàn)圖16),適用于氨氫發(fā)動(dòng)機(jī)高精度計(jì)算流體力學(xué)(computational ?uid dynamics,CFD)模擬。
另外,氨發(fā)動(dòng)機(jī)氨基排放物中的N2O在后處理系統(tǒng)中較難解決,需要在缸內(nèi)燃燒充分。因此,理解氨燃燒過(guò)程中N2O的形成和演化對(duì)污染物控制和建立更準(zhǔn)確的氨動(dòng)力學(xué)模型具有重要意義。WANG Qiao等[90]研究了NH3 / N2O / Ar混合物氧化過(guò)程(圖17),采用同步真空紫外光電離質(zhì)譜(synchrotron vacuum ultraviolet"photoionization mass spectrometry,SVUV-PIMS)、氣相色譜(gas chromatography,GC)和Fourier變換紅外光譜(Fourier transform infrared spectroscopy,F(xiàn)TIR)等多種診斷技術(shù)對(duì)氧化產(chǎn)物進(jìn)行了詳細(xì)檢測(cè),計(jì)算出關(guān)鍵反應(yīng)NH2 + N2O的速率系數(shù),在理論計(jì)算和試驗(yàn)觀測(cè)解釋的基礎(chǔ)上更新了氨燃燒化學(xué)動(dòng)力學(xué)模型,實(shí)現(xiàn)了對(duì)試驗(yàn)結(jié)果的良好預(yù)測(cè)。
可見(jiàn),目前氨氫機(jī)理可在寬溫度、壓力、當(dāng)量比、氧濃度范圍內(nèi)捕捉氨氫燃料滯燃期、層流火焰速度與組分摩爾分?jǐn)?shù)。但針對(duì)不同壓力下純氨燃料滯燃期,現(xiàn)有氨氫機(jī)理的預(yù)測(cè)結(jié)果仍有優(yōu)化空間,這表明壓力依賴的反應(yīng)是后續(xù)機(jī)理優(yōu)化的一個(gè)重要方向。
近年來(lái)人工智能技術(shù)(arti?cial intelligence,AI)發(fā)展迅速,將AI技術(shù)融入氨氫燃燒化學(xué)反應(yīng)動(dòng)力學(xué)機(jī)理模型的優(yōu)化和開(kāi)發(fā)中,可以顯著提高模型的預(yù)測(cè)能力。已有研究[91-93]通過(guò)機(jī)器學(xué)習(xí)和深度學(xué)習(xí)來(lái)預(yù)測(cè)燃燒反應(yīng)速率、優(yōu)化反應(yīng)路徑,以及改進(jìn)動(dòng)力學(xué)模型的精度,展示了AI在提升模型預(yù)測(cè)能力和簡(jiǎn)化機(jī)理復(fù)雜性方面的潛力。
3 氨燃料供給方式與系統(tǒng)
3.1 氨供給系統(tǒng)
3.1.1 氣態(tài)氨燃料供給
得益于容易液化的特性,氨通常加壓儲(chǔ)存于高壓儲(chǔ)罐中,氨罐內(nèi)下層是液態(tài)氨,上層是氣態(tài)氨,因此,高壓氨罐可以直接對(duì)外供應(yīng)氣態(tài)氨,而在實(shí)際使用中,供氨管路還需要加裝減壓閥,以調(diào)控噴射壓力并穩(wěn)定流量。將氣態(tài)氨直接通入進(jìn)氣道,不需要復(fù)雜的增壓裝置或高壓噴射器,且對(duì)原發(fā)動(dòng)機(jī)結(jié)構(gòu)改動(dòng)小,方便快速開(kāi)展相關(guān)試驗(yàn)。因此,現(xiàn)有大部分發(fā)動(dòng)機(jī)研究均采取氣態(tài)氨進(jìn)氣道噴射方式,并可以直接使用非專用噴射器作為臨時(shí)氨噴射器[94-95]。
然而,在具備顯著成本優(yōu)勢(shì)的同時(shí),這種燃料供給策略也存在2類缺陷。一方面,隨著儲(chǔ)罐內(nèi)的液態(tài)氨持續(xù)蒸發(fā),吸熱效應(yīng)會(huì)導(dǎo)致罐內(nèi)剩余液氨的溫度顯著下降,對(duì)應(yīng)飽和蒸汽壓降低,減慢液氨的蒸發(fā)速度,尤其在冬季。對(duì)氨儲(chǔ)罐和供給管路外部使用恒溫加熱可以緩解這一現(xiàn)象(圖18),但會(huì)引入較高能耗,尾氣預(yù)熱加熱或循環(huán)水加熱則又將導(dǎo)致系統(tǒng)結(jié)構(gòu)復(fù)雜化[96]。因此,氨氣進(jìn)氣道噴射不利于實(shí)現(xiàn)持續(xù)、穩(wěn)定、大流量的氨燃料供給。另一方面,在進(jìn)氣道噴射氨氣會(huì)占據(jù)進(jìn)氣體積,降低充量系數(shù),特別是高摻氨比例條件下,這意味著發(fā)動(dòng)機(jī)最大負(fù)荷受限。然而,高摻氨比例下反而更加需要通過(guò)大負(fù)荷工況時(shí)的缸內(nèi)高溫促進(jìn)氨的消耗[97]。因此,這一矛盾點(diǎn)意味著氨氣進(jìn)氣道噴射不利于實(shí)現(xiàn)較大的氨能量替代率。
3.1.2 液態(tài)氨燃料供給
因氨以液態(tài)被儲(chǔ)存在壓力容器中,因此可以考慮利用高噴射壓力將液氨直接注入氣缸。液態(tài)噴射意味著更精準(zhǔn)的流量控制和更大的流量上限,而缸內(nèi)直噴有利于提高充量系數(shù)進(jìn)而提升功率密度。然而,氨在常溫條件下的蒸氣壓大約為1 MPa。即使采取加熱措施來(lái)提升儲(chǔ)罐中的氨蒸氣壓,也僅能滿足在進(jìn)氣沖程中的液氨缸內(nèi)直噴。因此,還需進(jìn)一步引入升壓泵以滿足壓縮沖程中液氨缸內(nèi)直噴的高壓需求。
液氨作為液態(tài)燃料,與汽油、柴油等液體燃料物性差異較大。液氨在30 ℃時(shí)的粘度僅為0.12 cP,遠(yuǎn)低于汽油(0.57 cP)和柴油(3.39 cP)。如果使用汽油或柴油的高壓泵和噴油器來(lái)輸送液氨,機(jī)械結(jié)構(gòu)不僅易磨損,還會(huì)面臨氨腐蝕的風(fēng)險(xiǎn)。因此,開(kāi)發(fā)專用于氨燃料的燃料供應(yīng)系統(tǒng)顯得尤為迫切[98]。同時(shí),在發(fā)動(dòng)機(jī)工況下,液氨噴霧的熱力學(xué)發(fā)展路徑極易穿過(guò)其氣液飽和線,發(fā)生閃急沸騰(?ash boiling,簡(jiǎn)稱閃沸,下同),如圖19中C1-C2所示。發(fā)生閃沸時(shí),液氨進(jìn)入過(guò)熱態(tài)并在內(nèi)部產(chǎn)生大量氣泡。隨著過(guò)熱液氨從噴嘴噴出,幾何約束消失,液氨內(nèi)部氣泡急劇發(fā)展,直至發(fā)生微爆,促進(jìn)射流的破碎和霧化并引起徑向膨脹(見(jiàn)圖20)。CHENG Qiang等[99]使用空心錐壓電噴油器對(duì)液氨在高達(dá)100 MPa壓力下的噴霧特性進(jìn)行了研究。研究表明,由于液氨的粘度和密度較低,其噴射穿透力和覆蓋面積均優(yōu)于甲醇和乙醇。
閃沸和閃沸狀態(tài)下的噴射特性進(jìn)行了研究,結(jié)果表明:液氨噴霧在常溫常壓下會(huì)發(fā)生劇烈閃沸,近場(chǎng)噴霧顯著膨脹,噴霧寬度增加。在閃沸狀態(tài)下,由于液氨在噴油器內(nèi)部腔體和噴孔中產(chǎn)生大量氣體和氣泡,導(dǎo)致噴嘴在噴射初期0.05 ms內(nèi)發(fā)生阻塞,如圖19所示。因此,使用內(nèi)部有腔體的噴嘴噴射液氨會(huì)產(chǎn)生空化阻塞作用,使近場(chǎng)噴霧膨脹加劇,降低噴霧初期的速度和貫穿距。此外,液氨容易閃沸的特性也會(huì)對(duì)噴霧的霧化性能產(chǎn)生影響,F(xiàn)ANG Yuwen等[102]在常溫條件下對(duì)高壓液氨和柴油在非閃沸和閃沸條件下的霧化性能進(jìn)行相位多普勒離子分析儀(PDPA)試驗(yàn)研究(圖21b)。由于液氨的粘度較低,液氨在非閃沸條件下的SMD比柴油低大約50%~70%。在閃沸條件下,液氨的SMD進(jìn)一步降低,而非閃沸條件下液氨需要提高大約25 MPa噴射壓力才能達(dá)到和閃沸條件下相同的SMD。因此,液氨高壓噴射可以實(shí)現(xiàn)比柴油更好的霧化效果,但閃沸狀態(tài)下液氨在噴油器內(nèi)部腔體和噴孔內(nèi)的劇烈空化會(huì)影響噴霧初期的速度和貫穿距等噴霧特性,在實(shí)際應(yīng)用中需要綜合考慮。
R. Payri等[103]采用漫射背照成像和紋影法,在定容燃燒彈內(nèi)模擬發(fā)動(dòng)機(jī)工況,測(cè)量了80 MPa單孔液氨噴霧在不同壓力和溫度條件下的發(fā)展過(guò)程。高壓直噴液氨在噴射初期由于滯后效應(yīng),穿透速度慢于柴油。可見(jiàn),液氨閃沸噴霧特性與柴油等傳統(tǒng)燃料相比具有顯著差異,這對(duì)后續(xù)混合氣的形成以及著火和燃燒組織產(chǎn)生重要影響。當(dāng)前針對(duì)液氨閃沸噴射過(guò)程的試驗(yàn)多側(cè)重于研究噴霧的宏觀形貌特征,而液滴粒徑、速度等微觀特性數(shù)據(jù)缺乏,制約了相關(guān)噴霧模型的構(gòu)建。進(jìn)一步明晰液氨噴霧特性、開(kāi)發(fā)高效準(zhǔn)確的噴霧仿真模型是研究缸內(nèi)混合氣形成與發(fā)展過(guò)程的核心,也是解析缸內(nèi)著火與燃燒過(guò)程的基礎(chǔ)。
相比氣態(tài)氨噴射,在發(fā)動(dòng)機(jī)上實(shí)現(xiàn)液氨噴射對(duì)氨燃料供給系統(tǒng)的耐腐蝕、耐高壓性能提出了更高的要求,需要添加額外的保壓、增壓裝置,這導(dǎo)致現(xiàn)有涉及液氨缸內(nèi)直噴的研究較少。目前液氨發(fā)動(dòng)機(jī)研究大多基于柴油機(jī)開(kāi)展,這與柴油機(jī)通常缸徑較大、便于在缸蓋上增設(shè)液氨噴射器有關(guān)。對(duì)原柴油機(jī)進(jìn)行改造時(shí),將柴油噴射器與液氨噴射器分別插入燃燒室不同位置,形成異軸噴射的布置方式[104]。而在模擬仿真研究中,也有學(xué)者研究了柴油、液氨噴射器同軸布置的效果[105],以及提出使用單個(gè)噴射器實(shí)現(xiàn)柴油/液氨兩種燃料的交替噴射[106] (見(jiàn)圖22)。P. K. O. Bj?rgen等[104]在壓燃式發(fā)動(dòng)機(jī)上研究了氨/柴油的缸內(nèi)雙直噴策略,發(fā)現(xiàn)噴射時(shí)刻對(duì)燃油經(jīng)濟(jì)性和排放性影響顯著,液氨和柴油噴射時(shí)刻重疊可以提高燃燒效率。
LIN Zhelong等[15]對(duì)點(diǎn)燃式氨氫發(fā)動(dòng)機(jī)進(jìn)行了模擬研究,利用缸內(nèi)晚噴液氨形成濃度分層實(shí)現(xiàn)了氨富燃產(chǎn)氫加速氨燃燒,獲得了比均質(zhì)模式更優(yōu)的燃油經(jīng)濟(jì)性和排放性。之后,LIN Zhelong等[107]基于僅3%的氫能比,研究了氫主動(dòng)射流、氨缸內(nèi)直噴同時(shí)應(yīng)用于大缸徑發(fā)動(dòng)機(jī)的效果。如圖23所示,相比氣態(tài)氨進(jìn)氣道噴射,液氨缸內(nèi)直噴可以提高容積效率、降低傳熱損失。通過(guò)優(yōu)化噴射策略和點(diǎn)火時(shí)刻,液氨缸內(nèi)直噴能在可接受的未燃氨、N2O排放下,較氨進(jìn)氣道噴射進(jìn)一步降低NO排放并提高熱效率。
液氨直噴發(fā)動(dòng)機(jī)中,液氨噴射時(shí)刻、噴射位置、噴射次數(shù)等均會(huì)對(duì)發(fā)動(dòng)機(jī)性能產(chǎn)生影響[106, 108]。使用液氨缸內(nèi)直噴會(huì)降低缸內(nèi)溫度,可能惡化氨的排放,但通過(guò)優(yōu)化液氨噴射次數(shù)、噴射時(shí)刻等策略,可以一定程度上緩解氨在較低溫度下燃燒不充分的劣勢(shì),反而有機(jī)會(huì)通過(guò)降低傳熱損失最終獲得比進(jìn)氣道噴射模式更高的熱效率。
3.2 氫供給系統(tǒng)
3.2.1 氫獨(dú)立供應(yīng)
現(xiàn)有氨氫發(fā)動(dòng)機(jī)研究主要關(guān)注可燃混合氣的過(guò)量空氣系數(shù)和氨氫比例。因此,將氨和氫獨(dú)立儲(chǔ)存與噴射有利于更加靈活地調(diào)節(jié)可燃混合氣成分,以便更有針對(duì)性地研究燃料特性對(duì)發(fā)動(dòng)機(jī)性能的影響。與進(jìn)氣道噴射氣態(tài)氨類似,氫氣儲(chǔ)罐中的高壓足以支持氫在進(jìn)氣道內(nèi)的低壓噴射。事實(shí)上,由于車(chē)用高壓氫氣儲(chǔ)罐的壓力通??蛇_(dá)35~70 MPa,因此只需利用儲(chǔ)罐本身的壓力即可滿足缸內(nèi)直噴氫氣。當(dāng)儲(chǔ)罐壓力隨著氫氣消耗逐漸降低后,還可以進(jìn)一步使用升壓泵提升壓力。
氫原子半徑小,能進(jìn)入金屬的晶格空隙中,并在材料的缺陷處重新結(jié)合形成氫分子,導(dǎo)致體積迅速膨脹,進(jìn)而產(chǎn)生裂紋(即氫脆),常見(jiàn)于氫氣壓力較高的系統(tǒng)中。目前,博格華納(BorgWarner Inc.) [109]、西港(Westport Fuel Systems) [110]等公司已開(kāi)發(fā)出高壓氫氣噴射系統(tǒng)樣件,考慮了抗氫脆。相比之下,低壓環(huán)境下未觀察到明顯的氫脆現(xiàn)象[111]。
3.2.2 氨催化制氫
氨是氫的優(yōu)良載體,使用合適的催化劑,可在300~600 ℃的溫度下將氨分解成氫氣和氮?dú)狻,F(xiàn)有研究主要圍繞鐵基、鎳基、鉑基、釕基等多類合金和貴金屬催化劑展開(kāi)[112-115]。然而,金屬氮化物和金屬碳化物會(huì)因?yàn)樯倭康难鯕夂退焖偈Щ?,因此被認(rèn)為不適用于氨的分解[116]。需要指出的是,催化裝置難以將氨完全分解,不完全分解產(chǎn)物中殘留的氨可能會(huì)對(duì)燃料電池造成不利的影響[117]。相比之下,將含氨混合氣通入內(nèi)燃機(jī)則是可以接受的。通過(guò)使用車(chē)載催化裝置,氨氫發(fā)動(dòng)機(jī)系統(tǒng)可將一部分氨催化分解以實(shí)現(xiàn)氫的供應(yīng),利用這部分氫促進(jìn)其余氨燃料的燃燒,從而實(shí)現(xiàn)僅儲(chǔ)存單一氨燃料,而同時(shí)使用氨氫2種燃料(見(jiàn)圖24 [118])。該技術(shù)路線有助于降低氫燃料儲(chǔ)存的成本,但也臨能耗、成本、熱響應(yīng)速度等一系列挑戰(zhàn)。
K. Ryu等[94]在3.175 mm氧化鋁顆粒上包覆2%釕基氨催化劑,并將催化裝置置于排氣管中,以充分利用發(fā)動(dòng)機(jī)尾氣余熱加熱催化劑。研究表明,催化效率受氨流量的影響,這使得該裝置更適用于較小氨流量需求的工況。M. Comotti等[3]使用名為ACTA 10010的商用釕基催化劑,并引入了額定功率1 kW的電加熱器。0.2 L的催化劑床可在450 ℃條件下提供1.4 Nm3/h的氫氣供應(yīng),大流量氫氣供應(yīng)下,COV低于3%,且達(dá)到與純汽油工況相當(dāng)?shù)臒嵝?。考慮到氨的分解是吸熱反應(yīng)(ΔHr = -46.22 kJ / mol),因此使用電加熱維持催化劑溫度需要大量耗能,且升溫速度慢。M. Koike [119]等除了使用電加熱輔助外,還引入少量空氣應(yīng)對(duì)冷啟動(dòng)工況??諝庵械难鯕饪蓪?duì)氨進(jìn)行氧化,并通過(guò)氧化放熱輔助催化劑升溫以縮短催化裝置升溫時(shí)間。催化裝置中的當(dāng)量比為5.4時(shí),重整器出口處的氫氣分?jǐn)?shù)在啟動(dòng)8 s后穩(wěn)定至接近50%。
高溫催化分解氨產(chǎn)生的含氫混合氣溫度較高,需要對(duì)混合氣進(jìn)一步冷卻才能用于氣體噴射器[3, 119]。同時(shí),該分解方法產(chǎn)生的混合氣中含有大量氮?dú)猓?dāng)混合氣被用作氨點(diǎn)火源時(shí),如作為主動(dòng)射流點(diǎn)火的燃料[16],氮?dú)饪赡軙?huì)對(duì)氫氣射流火焰的發(fā)展產(chǎn)生阻礙作用,其影響有待進(jìn)一步研究。相比之下,液氨電解結(jié)合氫氣分離則可產(chǎn)生高純度常溫氫氣,然而,即使使用鉑作為陽(yáng)極,電極仍然會(huì)被腐蝕[120],從而限制了這一技術(shù)的應(yīng)用。
綜上,現(xiàn)有研究主要基于便于改造和快速投入使用的氨氣態(tài)供應(yīng)、氫獨(dú)立供應(yīng)2種方式開(kāi)展。最新的研究逐漸開(kāi)始關(guān)注氨液態(tài)供應(yīng),并嘗試通過(guò)這種更復(fù)雜的燃料供應(yīng)系統(tǒng)解決氣態(tài)氨供應(yīng)的燃料流量受限且不穩(wěn)定等問(wèn)題,拓展發(fā)動(dòng)機(jī)負(fù)荷邊界。同時(shí),車(chē)載氨催化制氫設(shè)備已得到初步探索,未來(lái)通過(guò)進(jìn)一步優(yōu)化體積、成本、能耗,有望解決氫獨(dú)立供應(yīng)模式下氫氣儲(chǔ)存、運(yùn)輸困難等問(wèn)題。
4 氨氫發(fā)動(dòng)機(jī)技術(shù)挑戰(zhàn)與未來(lái)研究方向
在可預(yù)見(jiàn)的未來(lái),內(nèi)燃機(jī)仍將是重型長(zhǎng)途運(yùn)輸和非道路機(jī)械領(lǐng)域動(dòng)力系統(tǒng)的重要組成部分。面向雙碳目標(biāo),內(nèi)燃機(jī)低碳化勢(shì)在必行。盡管當(dāng)前內(nèi)燃機(jī)熱效率已有大幅提高,然而,基于傳統(tǒng)化石燃料,內(nèi)燃機(jī)實(shí)現(xiàn)雙碳目標(biāo)仍極為困難。因此,開(kāi)發(fā)使用清潔無(wú)碳燃料的新一代高效碳中和內(nèi)燃機(jī),對(duì)于交通領(lǐng)域?qū)崿F(xiàn)雙碳目標(biāo)具有重要意義。氨能源與氨動(dòng)力研究已成為國(guó)際科技前沿,其中氨氫發(fā)動(dòng)機(jī)是重要研究方向。目前中國(guó)、歐盟、美國(guó)、日本均發(fā)布國(guó)家氨能源戰(zhàn)略并實(shí)施國(guó)家級(jí)研發(fā)項(xiàng)目,中國(guó)亟需加快自主創(chuàng)新, 占領(lǐng)制高點(diǎn)。
氨氫發(fā)動(dòng)機(jī)在燃料、噴霧、燃燒、排放等方面與汽柴油機(jī)不同,其研發(fā)首先要針對(duì)當(dāng)前面臨的技術(shù)挑戰(zhàn),從基礎(chǔ)研究入手。
1) 噴霧穩(wěn)定性。氨燃料的供應(yīng)方式包括進(jìn)氣道噴射氣態(tài)氨和缸內(nèi)直噴液氨。進(jìn)氣道噴射氨氣會(huì)擠占空氣體積,導(dǎo)致發(fā)動(dòng)機(jī)功率下降。缸內(nèi)直噴液氨不僅能夠在較短時(shí)間內(nèi)向缸內(nèi)供應(yīng)足量燃料,而且噴射策略靈活,能通過(guò)改變噴射正時(shí),調(diào)控出不同的燃燒模式,從而提高熱效率。當(dāng)采用液氨缸內(nèi)直噴模式時(shí),在不同的噴射時(shí)刻,其霧化形式因背壓變化呈現(xiàn)閃沸或常規(guī)霧化。霧化形式對(duì)噴霧形態(tài)和貫穿距有較大影響,進(jìn)而影響混合氣形成與分布。此外,液氨的臨界溫度較低(132 ℃),當(dāng)缸內(nèi)熱負(fù)荷較高時(shí),噴嘴內(nèi)部的氨可能會(huì)進(jìn)入超臨界狀態(tài),這也將對(duì)氨噴霧的霧化和貫穿距產(chǎn)生影響。
2) 燃燒穩(wěn)定性。由于氨的點(diǎn)火難和燃燒慢等問(wèn)題,當(dāng)氨作為單一燃料時(shí),將引起較為嚴(yán)重的循環(huán)波動(dòng)。在著火燃燒方面,氨的最小點(diǎn)火能為8 mJ,是汽油(約0.8 mJ)的10倍以上。在較低負(fù)荷下,使用目前的常規(guī)點(diǎn)火裝置無(wú)法穩(wěn)定點(diǎn)燃氨混合氣。
3) 氮基排放物?,F(xiàn)有研究表明,氨發(fā)動(dòng)機(jī)的NOx為數(shù)千ppm(ppm為百萬(wàn)分之一體積比)量級(jí),N2O為數(shù)十ppm量級(jí),而NH3排放可高達(dá)數(shù)萬(wàn)ppm量級(jí)[25]。
這些氮基污染物的排放遠(yuǎn)超當(dāng)前柴油機(jī)水平,如果不通過(guò)缸內(nèi)燃燒和排氣后處理措施進(jìn)行協(xié)同解決,將對(duì)環(huán)境造成嚴(yán)重影響。
針對(duì)氨的噴霧、燃燒和排放特性,為實(shí)現(xiàn)氨氫發(fā)動(dòng)機(jī)高效清潔燃燒,亟需解決3個(gè)關(guān)鍵科學(xué)問(wèn)題,如 圖25所示:閃沸噴霧機(jī)理與模型、高壓下的液氨噴霧與氨氫燃燒交互、氮基排放污染物協(xié)同控制機(jī)制。這3個(gè)問(wèn)題相互關(guān)聯(lián),均來(lái)自以氨氫發(fā)動(dòng)機(jī)高效清潔燃燒為目標(biāo)的工程實(shí)踐,涉及流體相變、燃燒化學(xué)和排放控制等工程熱物理學(xué)科中多個(gè)基礎(chǔ)理論。因此,亟需揭示發(fā)動(dòng)機(jī)工況下氨氫燃燒化學(xué)反應(yīng)動(dòng)力學(xué)機(jī)理、污染物生成機(jī)理及三效合一專用后處理器原理,提出新型高效熱力循環(huán)燃燒理論和近零排放控制方法。
5 總結(jié)和展望
交通運(yùn)輸裝備燃料體系由高碳向低碳、零碳燃料轉(zhuǎn)型,內(nèi)燃機(jī)“低碳”到“零碳”技術(shù)代表了其未來(lái)發(fā)展方向。世界范圍內(nèi)氨來(lái)源豐富,液態(tài)綠氨具有零碳、產(chǎn)業(yè)鏈齊全、成本低、儲(chǔ)運(yùn)安全等特點(diǎn),是未來(lái)有潛力的綠色能源。氨是氫載體,氫和氨2種“無(wú)碳燃料”特性互補(bǔ),易相互轉(zhuǎn)換。研發(fā)氨氫融合發(fā)動(dòng)機(jī)有利于應(yīng)對(duì)單一氫能利用在制備、存儲(chǔ)、運(yùn)輸、車(chē)載、安全、成本等方面的技術(shù)挑戰(zhàn)。
1) 氨燃料在遠(yuǎn)洋船舶上已經(jīng)得到初步研發(fā)。相比船舶,汽車(chē)量大面廣,占交通碳排放3/4,應(yīng)用零碳燃料效果更為顯著。目前國(guó)際上對(duì)氨在車(chē)輛方面能否應(yīng)用并未形成共識(shí),中國(guó)近年來(lái)在氨氫融合零碳動(dòng)力重型車(chē)輛領(lǐng)域已開(kāi)展引領(lǐng)研究,為氨燃料在重型商用車(chē)上應(yīng)用提出了一條可能的技術(shù)路線,也為農(nóng)機(jī)、工程機(jī)械、發(fā)電領(lǐng)域?qū)崿F(xiàn)碳中和提供了技術(shù)參考。
2) 氨氫發(fā)動(dòng)機(jī)存在多種燃燒模式:均質(zhì)壓燃(HCCI)、火花點(diǎn)燃(SI)、射流點(diǎn)火(JI)等。HCCI對(duì)壓縮比要求過(guò)高,燃燒難控制;SI結(jié)構(gòu)簡(jiǎn)單但熱效率低;JI燃燒穩(wěn)定且熱效率高。采用單一液氨燃料的氨氫融合發(fā)動(dòng)機(jī),通過(guò)少量液氨在線制氫并利用氫氣射流點(diǎn)火引燃氨混合氣,是高效清潔零碳內(nèi)燃機(jī)的一個(gè)重要方向。
3) 氨氫發(fā)動(dòng)機(jī)射流點(diǎn)火有2種方式:被動(dòng)射流和主動(dòng)射流。被動(dòng)射流結(jié)構(gòu)簡(jiǎn)單,但燃燒穩(wěn)定性差;主動(dòng)射流在射流室內(nèi)噴射氫氣,利于火花點(diǎn)火形成強(qiáng)射流火焰,可以實(shí)現(xiàn)微量氫氣(小于3%的氫能比)引燃氨混合氣,獲得穩(wěn)定燃燒和高熱效率,拓展稀然極限。極低的氫需求量,降低了氨氫發(fā)動(dòng)機(jī)的實(shí)用化難度。
4) 氨燃料供給有2種方式:氣道噴射和缸內(nèi)直噴。氣道噴射對(duì)發(fā)動(dòng)機(jī)改動(dòng)小,成本低,但會(huì)降低充量系數(shù),導(dǎo)致發(fā)動(dòng)機(jī)功率下降;缸內(nèi)直噴液氨可提高功率密度,通過(guò)靈活的噴射策略,實(shí)現(xiàn)多模式燃燒。優(yōu)化液氨直噴燃燒可降低傳熱損失,提高熱效率,控制NOx排放,但需要解決燃料供給系統(tǒng)的氨腐蝕問(wèn)題。
5) 氨氫燃燒的化學(xué)反應(yīng)動(dòng)力學(xué)機(jī)理是理解燃燒過(guò)程和排放物生成的基礎(chǔ)科學(xué)問(wèn)題。目前氨氫燃燒化學(xué)反應(yīng)動(dòng)力學(xué)機(jī)理,能夠較準(zhǔn)確預(yù)測(cè)發(fā)動(dòng)機(jī)工況下的燃燒排放過(guò)程。基礎(chǔ)燃燒研究發(fā)現(xiàn),氨氫混合氣著火過(guò)程與汽、柴油的原理不同。高溫高壓條件下,氨氫存在反應(yīng)交互機(jī)制:低H2條件下,NH3 / H2混合燃料在著火過(guò)程中呈現(xiàn)順序氧化;高活性的H2先反應(yīng)并主導(dǎo)了第1階段著火行為,其生成的H、O等自由基引燃低活性的NH3,并主導(dǎo)了第2階段著火行為。而高H2工況呈現(xiàn)單階段著火;在高壓縮比高增壓條件下,氨氫混合氣燃燒在近壁面處會(huì)發(fā)生爆轟(超級(jí)爆震)。
6) 目前氨氫發(fā)動(dòng)機(jī)燃燒系統(tǒng)多基于現(xiàn)有汽、柴油機(jī)改造,并未針對(duì)氨、氫的噴霧燃燒特性進(jìn)行正向開(kāi)發(fā),發(fā)動(dòng)機(jī)的熱效率潛力尚未挖掘。氨具有極高辛烷值,在超高壓縮比下,預(yù)混燃燒模式可實(shí)現(xiàn)無(wú)爆震燃燒。提高壓縮比能實(shí)現(xiàn)更高的壓縮終點(diǎn)溫度,克服液氨的高氣化潛熱在擴(kuò)散燃燒條件下造成的缸內(nèi)溫度下降問(wèn)題。因此,在超高壓縮比下,開(kāi)展氨氫發(fā)動(dòng)機(jī)的燃燒系統(tǒng)和燃燒策略開(kāi)發(fā)有望同時(shí)提高燃燒和排放性能。
7) 相比于先進(jìn)柴油機(jī),氨氫發(fā)動(dòng)機(jī)無(wú)碳煙排放,無(wú)需高壓共軌燃油噴射系統(tǒng)、顆粒物過(guò)濾器(diesel particulate filter,DPF)等裝置,發(fā)動(dòng)機(jī)本體和排氣后處理系統(tǒng)具有成本優(yōu)勢(shì)。但氨發(fā)動(dòng)機(jī)的氮基排放物應(yīng)高度重視,尤其對(duì)于車(chē)用領(lǐng)域滿足近零排放法規(guī),需要采用機(jī)內(nèi)?機(jī)外協(xié)同控制排放。另外,氨催化制氫設(shè)備已有廣泛研究,未來(lái)通過(guò)進(jìn)一步優(yōu)化體積、成本、能耗,有望解決車(chē)載應(yīng)用中氫獨(dú)立供應(yīng)模式下的氫氣儲(chǔ)運(yùn)問(wèn)題。
氨氫融合發(fā)動(dòng)機(jī)的研發(fā),涉及燃料制備和燃燒排放過(guò)程的化學(xué)反應(yīng)動(dòng)力學(xué)、兩相多組分非穩(wěn)態(tài)流體動(dòng)力學(xué)、熱-電動(dòng)力系統(tǒng)動(dòng)態(tài)控制3個(gè)科學(xué)問(wèn)題。氨氫融合發(fā)動(dòng)機(jī)在車(chē)船和工程機(jī)械上的應(yīng)用,需在現(xiàn)有內(nèi)燃機(jī)產(chǎn)業(yè)上升級(jí),協(xié)同開(kāi)發(fā)穩(wěn)定可靠的供給系統(tǒng)、精準(zhǔn)柔性的噴射和控制系統(tǒng),構(gòu)建適用氨氫燃料體系的燃燒模型及控制策略,優(yōu)化排放后處理系統(tǒng)。這些科學(xué)問(wèn)題和工程技術(shù)問(wèn)題的解決,既可以推動(dòng)基礎(chǔ)燃燒理論的進(jìn)步,也可以促進(jìn)我國(guó)內(nèi)燃機(jī)產(chǎn)業(yè)煥發(fā)新的生機(jī)。
參考文獻(xiàn)(References)
[1] M?rch C S, Bjerre A, G?ttrup M P, et al. Ammonia / hydrogen mixtures in an SI-engine: Engine performance and analysis of a proposed fuel system [J]. Fuel, 2011, 90(2): 854-864.
[2] Frigo S, Gentili R. Analysis of the behaviour of a 4-stroke Si engine fuelled with ammonia and hydrogen [J]. Int'l J Hydro Energ, 2013, 38(3): 1607-1615.
[3] Comotti M, Frigo S. Hydrogen generation system for ammonia–hydrogen fuelled internal combustion engines [J]. Int'l J Hydro Energ, 2015, 40(33): 10673-10686.
[4] Pochet M, Truedsson I, Foucher F, et al. Ammonia-hydrogen blends in homogeneous-charge compression-ignition engine [R]. SAE Technical Paper, 2017-24-0087.[5] Lhuillier C, Brequigny P, Contino F, et al. Experimental study on ammonia/hydrogen/air combustion in spark ignition engine conditions [J]. Fuel, 2020, 269: 117448.
[6] Pochet M, Jeanmart H, Contino F. A 22: 1 compression ratio ammonia-hydrogen HCCI engine: Combustion, load, and emission performances [J]. Front Mech Engineering, 2020, 6: 43.
[7] Mouna?m-Rousselle C, Bréquigny P, Dumand C, et al. Operating limits for ammonia fuel spark-ignition engine [J]. Energies, 2021, 14(14): 4141.
[8] JI Changwei, GU Xin, WANG Shuofeng, et al. Effect of ammonia addition on combustion and emissions performance of a hydrogen engine at part load and stoichiometric conditions [J]. Int'l J Hydro Energ, 2021, 46(80): 40143-40153.
[9] GU Xin, JI Changwei, WANG Shuofeng, et al. Effect of ammonia addition on combustion and emission characteristics of hydrogen-fueled engine under lean-burn condition [J]. Int'l J Hydro Energ, 2022, 47(16): 9762-9774.
[10] GU Xin, JI Changwei, WANG Shuofeng, et al. Effect of different volume fractions of ammonia on the combustion and emission characteristics of the hydrogen-fueled engine [J]. Int'l J Hydro Energ, 2022, 47(36): 16297-16308.
[11] LIU Zongkuan, ZHOU Lei, ZHONG Lijia, et al. Enhanced combustion of ammonia engine based on novel air-assisted pre-chamber turbulent jet ignition [J]. Energ Con Manag, 2023, 276: 116526.
[12] LIU Zongkuan, ZHOU Lei, WEI Haiqiao, et al. Experimental investigation on the performance of pure ammonia engine based on reactivity controlled turbulent jet ignition [J]. Fuel, 2023, 335: 127116.
[13] LIU Zongkuan, ZHOU Lei, ZHONG Lijia, et al. Experimental investigation on the combustion"characteristics of NH3 / H2 / air by the spark ignition and turbulent jet ignition . Combust Sci Tech, 2024, 196(1): 73-94.
[14] QI Yunliang, LIU Wei, LIU Shang, et al. A review on ammonia-hydrogen fueled internal combustion engines . eTransportation, 2023, 18: 100288.
[15] LIN Zhelong, LIU Shang, LIU Wei, et al. Numerical investigation of ammonia-rich combustion produces hydrogen to accelerate ammonia combustion in a direct injection SI engine . Int'l J Hydro Energ, 2024, 49: 338-351.
[16] WANG Zhi, QI Yunliang, SUN Qiyang, et al. Ammonia combustion using hydrogen jet ignition (AHJI) in internal combustion engines . Energy, 2024, 291: 130407.
[17] Lhuillier C, Brequigny P, Contino F, et al. Combustion characteristics of ammonia in a modern spark-ignition engine . SAE Technical Paper, 2019-24-0237.
[18] Lhuillier C, Brequigny P, Contino F, et al. Performance and emissions of an ammonia-fueled SI engine with hydrogen enrichment . SAE Technical Paper, 2019-24-0137.
[19] Dinesh M H, Pandey J K and Kumar G N. Study of performance, combustion, and NOx emission behavior of an SI engine fuelled with ammonia/hydrogen blends at various compression ratio . Int'l J Hydro Energ. 2022, 47(60): 25391-25403.
[20] Dinesh M H, Kumar G N. Effects of compression and mixing ratio on NH3 / H2 fueled Si engine performance, combustion stability, and emission . Energ Conv Manag, 2022, 15: 100269.
[21] LI Jinguang, ZHANG Ren, PAN Jiaying, et al. Ammonia and hydrogen blending effects on combustion stabilities in optical SI engines . Energ Conv Manag, 2023, 280: 116827.
[22] Frigo S, Gentili R, Doveri N. Ammonia plus hydrogen as fuel in a SI engine: experimental results . SAE Technical Paper, 2012-32-0019.
[23] Frigo S, Gentili R, De Angelis F. Further insight into the possibility to fuel a SI engine with ammonia plus hydrogen . SAE Technical Paper, 2014-32-0082.
[24] ZHU Tiankui, YAN Xin, GAO Zhan, et al. Combustion and emission characteristics of ammonia-hydrogen fueled SI engine with high compression ratio . Int'l J Hydro Energ, 2024, 62: 579-590.
[25] Swift E, Kane S, Northrop W F. Operating range and emissions from ammonia-hydrogen mixtures in spark-ignited engines ]// Inter Combust Engi Divi Fall Tech Conf. American Society of Mechanical Engineers, 2022, 86540: V001T02A013
[26] ZHANG Ridong, ZHANG Qihang, QI Yunliang, et al. Investigation on ?ame propagation and end-gas auto-ignition of ammonia/hydrogen in a full-?eld-visualized rapid compression machine . Proc Combust Inst, 2024, 40(1): 105455.
[27] Gray J T, Dimitroff E, Meckel N T, et al. Ammonia fuel: Engine compatibility and combustion . SAE Trans, 1967, 75: 785-807.
[28] Van Blarigan P. Advanced internal combustion electrical generator . 2001, NREL/CP-610-32405.
[29] Dimitriou P, Javaid R. A review of ammonia as a compression ignition engine fuel . Int'l J Hydro Energ, 2020, 45(11): 7098-7118.
[30] Mouna?m-Rousselle C, Mercier A, Brequigny P, et al. Performance of ammonia fuel in a spark assisted compression ignition engine . Int'l J Engi Res. 2021, 23(5): 781-792.
[31] Reggeti S, Kane S, Northrop W. Experimental investigation of spark-assisted compression-ignition with ammonia-hydrogen blends . J Ammonia Energy, 2023, 1(1): 91-105.
[32] 劉尚, 蔡開(kāi)源, 劉偉, 等. 多燃燒模式下?lián)桨卑l(fā)動(dòng)機(jī)試驗(yàn)研究 . 汽車(chē)安全與節(jié)能學(xué)報(bào). 2022, 13(1): 142-148.LIU Shang, CAI Kaiyuan, LIU Wei, et al. Experimental study on different combustion modes of ammonia blended engines . J Autom Safe Energ, 2022, 13(1): 142-148.
[33] Benekos S, Frouzakis C E, Giannakopoulos G K, et al. A 2-D DNS study of the effects of nozzle geometry, ignition kernel placement and initial turbulence on prechamber ignition . Combust Flame, 2021, 225: 272-290.
[34] ZHOU Lei, ZHONG Lijia, LIU Zongkuan, et al. Toward highly-ef?cient combustion of ammonia–hydrogen engine: Prechamber turbulent jet ignition . Fuel, 2023, 352: 129009.
[35] LIU Zongkuan, ZHOU Lei, ZHONG Lijia, et al. Reactivity controlled turbulent jet ignition (RCTJI) for ammonia engine . Int'l J Hydro Energ, 2023, 48(33): 12519-12522.
[36] LI Zhuohang, ZHANG Zhenyingnan, FAN Yezeng, et al. Fuel reactivity strati?cation assisted jet ignition for low-speed two-stroke ammonia marine engine . Int'l J Hydro Energ, 2024, 49: 570-585.
[37] ZHAO Ziqing, WANG Zhi, QI Yunliang, et al. Experimental study of combustion strategy for jet ignition on a natural gas engine . Int'l J Engi Res, 2022, 23(1): 104-119.
[38] ZHANG Tianyue, JI Changwei, WANG Zhe, et al. Experimental investigation on the combustion characteristics of ultra-lean premixed hydrogen/air using turbulent jet ignition . Energy, 2024, 293: 130573.
[39] Korb B, Kuppa K, Nguyen H D, et al. Experimental and numerical investigations of charge motion and combustion in lean-burn natural gas engines . Combust Flame, 2020, 212: 309-322.
[40] Ambalakatte A, Cairns A, Geng S, et al. Experimental comparison of spark and jet ignition engine operation with ammonia/hydrogen co-fuelling . SAE Technical Paper, 2024-01-2099.
[41] Pearsall T J, Garabedian C G. Combustion of anhydrous ammonia in diesel engines . SAE Technical Paper, 1967, 670947.
[42] Dodd R, Mullett J, Carroll S, et al. Laser ignition of an IC test engine using an Nd: YAG laser and the effect of key laser parameters on engine combustion performance . Lasen Engi, 2007, 17(3): 1554-2971.
[43] Kopecek H, Wintner E, Lackner M, et al. Laser-stimulated ignition in a homogeneous charge compression ignition engine . SAE Technical Paper, 2004-01-0937.
[44] Faingold G, Kalitzky O, Lefkowitz J K. Plasma reforming for enhanced ammonia-air ignition: A numerical study . Fuel Commun. 2022, 12: 100070.
[45] Shahsavari M, Konnov A A, Valera-Medina A, et al. On nanosecond plasma-assisted ammonia combustion: Effects of pulse and mixture properties . Combust Flame. 2022, 245: 112368.
[46] Taneja T S, Johnson P N, Yang S. Nanosecond pulsed plasma assisted combustion of ammonia-air mixtures: Effects on ignition delays and NOx emission . Combust Flame, 2022, 245: 112327.
[47] ZHAO Ziqing, QI Yungliang, CAI Kaiyuan. Research on the combustion mechanism of plasma-induced ammonia-hydrogen jet ignition engine . Int'l J Hydro Energ, 2024, 65: 398-409.
[48] Miller J A, Bowman C T. Mechanism and modeling of nitrogen chemistry in combustion . Prog Energ Combust Sci, 1989, 15(4): 287-338.
[49] Miller J A, Smooke M D, Green R M, et al. Kinetic modeling of the oxidation of ammonia in ?ames . Combust Sci Tech, 1983, 34(1-6): 149-176.
[50] Dean A M, Chou M S, Stern D. Kinetics of rich ammonia ?ames. Int'l J Chem Kinet, 1984, 16(6): 633-653.
[51] Salimian S, Hanson R K, Kruger C H. High temperature study of the reactions of O and OH with NH3 . Int'l J Chem Kinet, 1984, 16(6): 725-739.
[52] Lindstedt R P, Lockwood F C, Selim M A. Detailed kinetic modelling of chemistry and temperature effects on ammonia oxidation . Combust Sci Tech, 1994, 99(4-6): 253-276.
[53] Skreiberg ?, Kilpinen P, Glarborg P. Ammonia chemistry below 1 400 K under fuel-rich conditions in a ?ow reactor . Combust Flame, 2004, 136(4): 501-518.
[54] Konnov A A. Implementation of the NCN pathway of prompt-NO formation in the detailed reaction mechanism . Combust Flame, 2009, 156(11): 2093-2105.
[55] TIAN Zhenyu, LI Yuyang, ZHANG Lidong, et al. An experimental and kinetic modeling study of premixed NH3 / CH4 / O2 / Ar ?ames at low pressure . Combust Flame, 2009, 156(7): 1413-1426.
[56] Duynslaegher C, Jeanmart H, Vandooren J. Kinetics in ammonia-containing premixed ?ames and a preliminary investigation of their use as fuel in spark ignition engines . Combust Sci Tech, 2009, 181(8): 1092-1106.
[57] Mendiara T, Glarborg P. Ammonia chemistry in oxy-fuel combustion of methane . Combust Flame, 2009, 156(10): 1937-1949.
[58] Glarborg P, Miller J A, Ruscic B, et al. Modeling nitrogen chemistry in combustion . Prog Energy Combust Sci, 2018, 67: 31-68.
[59] Mathieu O, Petersen E L. Experimental and modeling study on the high-temperature oxidation of ammonia and related NOx chemistry . Combust Flame, 2015, 162(3): 554-570.
[60] Hayakawa A, Goto T, Mimoto R, et al. Laminar burning velocity and Markstein length of ammonia/air premixed ?ames at various pressures . Fuel, 2015, 159: 98-106.
[61] SHU Bo, Vallabhuni S K, HE Xiaoyu, et al. A shock tube and modeling study on the autoignition properties of ammonia at intermediate temperatures . Proc Combust Inst, 2019, 37(1): 205-211.
[62] CHEN Jundie, JIANG Xue, QIN Xiaokang, et al. Effect of hydrogen blending on the high temperature auto-ignition of ammonia at elevated pressure . Fuel, 2021, 287: 119563.
[63] Pochet M, Dias V, Moreau B, et al. Experimental and numerical study, under LTC conditions, of ammonia ignition delay with and without hydrogen addition . Proc Combust Inst, 2019, 37(1): 621-629.
[64] HE Xiaoyu, Shu B, Nascimento D, et al. Auto-ignition kinetics of ammonia and ammonia/ hydrogen mixtures at intermediate temperatures and high pressures . Combust Flame, 2019, 206: 189-200.
[65] Dai Liming, Gersen S, Glarborg P, et al. Experimental and numerical analysis of the autoignition behavior of NH3 and NH3 / H2 mixtures at high pressure . Combust Flame, 2020, 215: 134-144.
[66] LIAO Wanxiong, CHU Zhaohan, WANG Yiru, et al. An experimental and modeling study on auto-ignition of ammonia in an RCM with N2O and H2 addition . Proc Combust Inst, 2023, 39(4): 4377-4385.
[67] LIAO Wanxiong, WANG Yiru, CHU Zhaohan, et al. Chemical insights into the two-stage ignition behavior of NH3 / H2 mixtures in an RCM . Combust Flame. 2023, 256: 112985.
[68] Ichikawa A, Hayakawa A, Kitagawa Y, et al. Laminar burning velocity and Markstein length of ammonia/hydrogen/air premixed ?ames at elevated pressures . Int'l J Hydro Energ, 2015, 40(30): 9570-9578.
[69] HAN Xinlu, WANG Zhihua, Costa M, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3 / air, NH3 / H2 / air, NH3 / CO/air and NH3 / CH4 / air premixed ?ames . Combust Flame, 2019, 206: 214-226.
[70] Lhuillier C, Brequigny P, Lamoureux N, et al. Experimental investigation on laminar burning velocities of ammonia / hydrogen / air mixtures at elevated temperatures . Fuel, 2020, 263: 116653.
[71] Shrestha K P, Lhuillier C, Barbosa A A, et al. An experimental and modeling study of ammonia with enriched oxygen content and ammonia / hydrogen laminar ?ame speed at elevated pressure and temperature . Proc Combust Inst, 2021, 38(2): 2163-2174.
[72] SONG Yu, Hashemi H, Christensen J M, et al. Ammonia oxidation at high pressure and intermediate temperat-ures . Fuel, 2016, 181: 358-365.
[73] Abián M, Benés M, Go?i A D, et al. Study of the oxidation of ammonia in a ?ow reactor: Experiments and kinetic modeling simulation . Fuel, 2021, 300: 120979.
[74] Stagni A, Arunthanayothin S, Dehue M, et al. Low- and intermediate-temperature ammonia / hydrogen oxidation in a ?ow reactor: Experiments and a wide-range kinetic modeling . Chem Engi J, 2023, 471: 144577.
[75] Sabia P, Manna M V, Cavaliere A, et al. Ammonia oxidation features in a jet stirred ?ow reactor: The role of NH2 chemistry . Fuel, 2020, 276: 118054.
[76] ZHANG Xiaoyuan, Moosakutty S P, Rajan R P, et al. Combustion chemistry of ammonia / hydrogen mixtures: Jet-stirred reactor measurements and comprehensive kinetic modeling . Combust Flame, 2021, 234: 111653.
[77] TANG Ruoyue, XU Qiang, PAN Jiaying, et al. An experimental and modeling study of ammonia oxidation in a jet stirred reactor . Combust Flame, 2022, 240: 112007.
[78] Mercier A, Mouna?m-Rousselle C, Brequigny P, et al. Improvement of SI engine combustion with ammonia as fuel: Effect of ammonia dissociation prior to combus-tion . Fuel Commun, 2022, 11: 100058.
[79] Pyrc M, Gruca M, Tutak W and Jamrozik A. Assessment of the co-combustion process of ammonia with hydrogen in a research VCR piston engine . Int'l J Hydro Energ, 2023, 48(7): 2821-2834
[80] Westlye F R, Ivarsson A, Schramm J. Experimental investigation of nitrogen based emissions from an ammonia fueled SI-engine . Fuel, 2013, 111: 239-247.
[81] ZHOU Shangkun, CUI Baochong, YANG Wenjun, et al. An experimental and kinetic modeling study on NH3 / air, NH3 / H2 / air, NH3 / CO / air, and NH3 / CH4 / air premixed laminar ?ames at elevated temperature . Combust Flame, 2023, 248: 112536.
[82] ZHU Yuxiang, Curran H J, Girhe S, et al. The combustion chemistry of ammonia and ammonia / hydrogen mixtures: A comprehensive chemical kinetic modeling study . Combust Flame, 2024, 260: 113239.
[83] ZHANG Ridong, ZHANG Qihang, QI Yunliang, et al. A study on measuring ammonia-hydrogen IDTs and constructing an ammonia-hydrogen combustion mechanism at engine-relevant thermodynamic and fuel concentration conditions . Int'l J Hydro Energ, 2024, 82: 786-800.
[84] Lhuillier C, Brequigny P, Lamoureux N, et al. Experimental investigation on laminar burning velocities of ammonia/hydrogen/air mixtures at elevated temperatures . Fuel, 2020, 263: 116653.
[85] Otomo J, Koshi M, Mitsumori T, et al. Chemical kinetic modeling of ammonia oxidation with improved reaction mechanism for ammonia/air and ammonia/hydrogen/air combustion . Int'l J Hydro Energ, 2018, 43(5): 3004-3014.
[86] MEI Bowen, ZHANG Xiaoyuan, MA Siyuan, et al. Experimental and kinetic modeling investigation on the laminar ?ame propagation of ammonia under oxygen enrichment and elevated pressure conditions . Combust Flame, 2019, 210: 236-246.
[87] HAN Xinlu, WANG Zhihua, HE Yong, et al. Experimental and kinetic modeling study of laminar burning velocities of NH3 / syngas / air premixed ?ames . Combust Flame, 2020, 213: 1-13.
[88] Glarborg P. The NH3 / NO2 / O2 system: Constraining key steps in ammonia ignition and N2O formation . Combust Flame, 2023, 257: 112311.
[89] Stagni A, Cavallotti C. H-abstractions by O2, NO2, NH2, and HO2 from H2NO: Theoretical study and implications for ammonia low-temperature kinetics . Proc Combust Inst, 2023, 39(1): 633-641.
[90] WANG Qiao, WANG Huanhuan, CHEN Haodong, et al. New insights into the NH3 / N2O / Ar system: Key steps in N2O evolution ]// Proceed Combust Instit. 2024, 40(1-4): 105236.
[91] Staszak M. Arti?cial intelligence in the modeling of chemical reactions kinetics . Phy Sci Rev, 2023, 8(1): 51-72.
[92] HAN Xu, JIA Ming, CHANG Yachao, et al. An improved approach towards more robust deep learning models for chemical kinetics . Combust Flame, 2022, 238: 111934.
[93] ZHENG Zhihao, LIN Xiaodong, YANG Ming, et al. Progress in the application of machine learning in combustion studies . ES Energ Environ, 2020, 9(2): 1-14.
[94] Ryu K, Zacharakis-Jutz G E, Kong S-C. Performance enhancement of ammonia-fueled engine by using dissociation catalyst for hydrogen generation . Int'l J Hydro Energ, 2014, 39(5): 2390-2398.
[95] Scharl V, Lackovic T, Sattelmayer T. Characterization of ammonia spray combustion and mixture formation under high-pressure, direct injection conditions . Fuel, 2023, 333: 126454.
[96] LIN Zhelong, LIU Shang, QI Yunliang, et al. Experimental study on the performance of a high compression ratio SI engine using alcohol/ammonia fuel . Energy, 2024, 289: 129998.
[97] LIU Shang, LIN Zhelong, QI Yunliang, et al. Combustion and emission characteristics of a spark ignition engine fueled with ammonia/gasoline and pure ammonia . Appl Energy, 2024, 369: 123538.
[98] Willmann M, Berger I, B?row E. Woodward L’Orange’s new injector generation: An ideal platform for the combustion of E-fuels in large engines[A]// Liebl J (edit). Heavy-duty-, on- und off-highway-motor 2020. Wiesbaden: Springer Fachmedien Wiesbaden, 2021: 223-240.
[99] CHENG Qiang, Ojanen K, Diao Y, et al. Dynamics of the ammonia spray using high-speed schlieren imaging . SAE Int'l J Adv Curr Prac Mobil, 2022, 4(4): 1138-1153.
[100] LI Shiyan, LI Tie, WANG Ning, et al. An investigation on near-?eld and far-?eld characteristics of superheated ammonia spray . Fuel, 2022, 324: 124683.
[101] FANG Yuwen, MA Xiao, ZHANG Yixiao, et al. Experimental investigation of high-pressure liquid ammonia injection under non-?ash boiling and ?ash boiling conditions . Energies, 2023, 16(6): 2843.
[102] FANG Yuwen, ZHANG Kaiqi, MA Xiao, et al. Droplet measurement of high-pressure liquid ammonia injection using PDPA . SAE Technical Paper, 2023-01-1637.
[103] Payri R, García-Oliver J M, Bracho G, et al. Experimental characterization of direct injection liquid ammonia sprays under non-reacting diesel-like conditions . Fuel, 2024, 362: 130851.
[104] Bj?rgen K O P, Emberson D R, L?v?s T. Combustion of liquid ammonia and diesel in a compression ignition engine operated in high-pressure dual fuel mode . Fuel, 2024, 360: 130269.
[105] ZHOU Xinyi, LI Tie, WANG Ning, et al. Pilot diesel-ignited ammonia dual fuel low-speed marine engines: A comparative analysis of ammonia premixed and high-pressure spray combustion modes with CFD simulation . Renew Sustain Energ Rev, 2023, 173: 113108.
[106] LIU Long, WU Yue, WANG Yang, et al. Exploration of environmentally friendly marine power technology -ammonia/diesel strati?ed injection . J Clean Product. 2022, 380: 135014.
[107] LIN Zhelong, LIU Shang, SUN Qiyang, et al. Effect of injection and ignition strategy on an ammonia direct injection–Hydrogen jet ignition (ADI-HJI) engine . Energy, 2024, 306: 132502.
[108] LIU Long, WU Zan, TAN Fusheng, et al. CFD investigation the combustion characteristic of ammonia in low-speed marine engine under different combustion modes . Fuel, 2023, 351: 128906.
[109] Dober G, Hoffmann G, Doradoux L, et al. Direct injection systems for hydrogen engines . MTZ Worldwide, 2021, 82(12): 60-65.
[110] Schneider T. It is critical to ?nd alternative low- or no-emission solutions . MTZ Worldwide, 2023, 84(1): 24-27.
[111] Beauregard G. Findings of hydrogen internal combustion engine durability . Electric Trans Engineering Corporation, 2010.
[112] LU Anhui, Nitz J-J, Comotti M, et al. Spatially and size selective synthesis of fe-based nanoparticles on ordered mesoporous supports as highly active and stable catalysts for ammonia decomposition . J Am Chem Soc, 2010, 132(40): 14152-14162.
[113] YIN Shuangfeng, ZHANG Qinhui, XU Boqing, et al. Investigation on the catalysis of COx-free hydrogen generation from ammonia . J Catal, 2004, 224(2): 384-396.
[114] YIN Shuangfeng, XU Boqing, ZHU Weixia, et al. Carbon nanotubes-supported Ru catalyst for the generation of COx-free hydrogen from ammonia . Catal Today, 2004, 93: 27-38.
[115] LIANG Changhai, LI Wenzhen, WEI Zhaobin, et al. Catalytic decomposition of ammonia over nitrided MoNx / α-Al2O3 and NiMoNy / α-Al2O3 catalysts . Ind Engi Chem Res, 2000, 39(10): 3694-3697.
[116] Hacker V, Kordesch K. Ammonia crackers[M]// Vielstich W, Lamm A, Gasteiger H A, et al. Handbook of Fuel Cells (edit) . Heoboken: John Wiley amp; Sons, Inc., 2010: 121-126.
[117] Chiuta S, Everson R C, Neomagus H W J P, et al. Reactor technology options for distributed hydrogen generation via ammonia decomposition: A review . Int'l J Hydro Energ, 2013, 38(35): 14968-14991.
[118] Ezzat M F, Dincer I. Development and assessment of a new hybrid vehicle with ammonia and hydrogen . Appl Energ, 2018, 219: 226-239.
[119] Koike M, Suzuoki T, Takeuchi T, et al. Cold-start performance of an ammonia-fueled spark ignition engine with an on-board fuel reformer . Int'l J Hydro Energ, 2021, 46(50): 25689-25698.
[120] Goshome K, Yamada T, Miyaoka H, et al. High compressed hydrogen production via direct electrolysis of liquid ammonia . Int'l J Hydro Energ, 2016, 41(33): 14529-14534.
王志 教授
清華大學(xué)教授,博士生導(dǎo)師,國(guó)家級(jí)一流本科課程負(fù)責(zé)人,清華大學(xué)車(chē)輛與運(yùn)載學(xué)院副院長(zhǎng),中國(guó)汽車(chē)工程學(xué)會(huì)會(huì)士,中國(guó)汽車(chē)工程學(xué)會(huì)(China-SAE)汽車(chē)發(fā)動(dòng)機(jī)分會(huì)主任委員,中國(guó)機(jī)械工業(yè)教育協(xié)會(huì)車(chē)輛工程專業(yè)委員會(huì)副主任委員,中國(guó)內(nèi)燃機(jī)學(xué)會(huì)(CSICE)燃料與潤(rùn)滑油分會(huì)秘書(shū)長(zhǎng)。入選國(guó)家高層次人才支持計(jì)劃。長(zhǎng)期從事內(nèi)燃機(jī)高效清潔燃燒技術(shù)和燃料燃燒化學(xué)研究,攻克爆震燃燒機(jī)理與控制技術(shù)。獲中國(guó)內(nèi)燃機(jī)學(xué)會(huì)自然科學(xué)一等獎(jiǎng)和中國(guó)汽車(chē)工業(yè)技術(shù)發(fā)明一等獎(jiǎng)。主編《汽車(chē)動(dòng)力系統(tǒng)原理》 教材。研究領(lǐng)域?yàn)楸鹑紵?,化學(xué)反應(yīng)動(dòng)力學(xué)、交通能源與智能動(dòng)力。
Prof. WANG Zhi
He is a professor at Tsinghua University, a Ph D supervisor, the director of the National First-Class Undergraduate Course, a deputy dean of the School of Vehicle and Mobility at Tsinghua University, a fellow of China Society of Automotive Engineers (China-SAE), the chairman of the Automotive Engine Committee of China-SAE, a deputy director of the Vehicle Engineering Professional Committee of the China Association of Mechanical Education, and the secretary-general of the Fuel"and Lubricants Committee of the Chinese Society for Internal Combustion Engines (CSICE). He has been selected for the National High-Level Talent Support Program. He has long been engaged in the research of high-efficiency and clean combustion technology for internal combustion engines and fuel combustion chemistry, and has made breakthroughs in the mechanism and control technology of knocking combustion. He has received the First Prize of the Natural Science Award from CSICE and the First Prize of the Technical Invention Award from China-SAE. He is the chief editor of the textbook Principles of Automotive Power Systems. His research areas include knocking combustion, chemical reaction kinetics, transportation energy, and intelligent power systems.
李駿 教授
中國(guó)工程院院士,清華大學(xué)車(chē)輛學(xué)院教授、博士生導(dǎo)師,清華大學(xué)-一汽解放汽車(chē)有限公司智能碳中和車(chē)輛科技聯(lián)合研究中心主任?,F(xiàn)任中國(guó)汽車(chē)工程學(xué)會(huì)(China-SAE)榮譽(yù)理事長(zhǎng)、國(guó)家智能網(wǎng)聯(lián)汽車(chē)創(chuàng)新中心主任、中國(guó)汽車(chē)科技進(jìn)步獎(jiǎng)評(píng)委會(huì)主任、中國(guó)智能網(wǎng)聯(lián)汽車(chē)產(chǎn)業(yè)創(chuàng)新聯(lián)盟理事長(zhǎng),Automotive Innovation學(xué)術(shù)期刊主編。曾任中國(guó)第一汽車(chē)集團(tuán)有限公司總工程師、技術(shù)中心主任、2012—2014年國(guó)際汽車(chē)工程師學(xué)會(huì)聯(lián)合會(huì)(International Federation of Automotive"Engineering Societies, FISITA)主席、中國(guó)汽車(chē)工程學(xué)會(huì)理事長(zhǎng)。研究領(lǐng)域?yàn)橹悄芫W(wǎng)聯(lián)汽車(chē)預(yù)期性功能安全、氨氫融合燃料發(fā)動(dòng)機(jī)、氫燃料發(fā)動(dòng)機(jī)。
Prof. LI Jun
He is an academician of the Chinese Academy of Engineering, a professor, and a PhD supervisor in School of Vehicle and Mobility, Tsinghua University,the director of Tsinghua University-Faw Jiefang Automotive Co., Ltd. Joint Research Center for Intelligent Carbon Neutral Vehicle Technology. He also serves as the Honorary Chairman of the China Society of Automotive Engineers (China-SAE), the director of the National Innovation Center of Intelligent and Connected Vehicles, the chairman of the China Automotive Industry Progress Award, and the chairman of the China Industry Innovation Alliance for the Intelligent and Connected Vehicles. Additionally, he is the editor-in-chief of the academic journal Automotive Innovation. Previously, he was the chief engineer of FAW group,and the director of FAW Research and Development Center,the president of the International Federation of Automotive Engineering Societies (FISITA) from 2012 to 2014, and the chairman of China-SAE. His research interests include safety of the intended functionality for intelligent connected vehicles, ammonia-hydrogen hybrid fuel engines, and hydrogen fuel engines.
汽車(chē)安全與節(jié)能學(xué)報(bào)2024年4期