摘 " " "要: 環(huán)氧樹(shù)脂是一種重要的高分子材料,研究提高其阻燃性能的方法對(duì)拓展其應(yīng)用領(lǐng)域有重要意義。綜述了基于9,l0-二氫-9-氧雜-10-磷雜菲-10-氧化物(DOPO)衍生物的反應(yīng)型與添加型阻燃劑在環(huán)氧樹(shù)脂中應(yīng)用的近期研究進(jìn)展,對(duì)DOPO衍生物開(kāi)發(fā)應(yīng)用的前景進(jìn)行了展望。
關(guān) "鍵 "詞:DOPO;環(huán)氧樹(shù)脂;阻燃
中圖分類號(hào):TQ314 " " "文獻(xiàn)標(biāo)識(shí)碼: A " " 文章編號(hào): 1004-0935(2023)03-0401-04
環(huán)氧樹(shù)脂具有優(yōu)良的力學(xué)性能、電絕緣性能、尺寸穩(wěn)定性和粘接性能等,因此可以用它制成涂料、膠黏劑、復(fù)合材料,在汽車、航天、電子封裝等領(lǐng)域應(yīng)用[1-3]。但是,環(huán)氧樹(shù)脂是一種可以燃燒的高分子材料,這就需要提高它的阻燃性能,以滿足實(shí)際應(yīng)用的需求[4]。添加阻燃劑是提高環(huán)氧樹(shù)脂這類高分子材料阻燃性能的一種重要方法[5-6]。9,l0-二氫-9-氧雜-10-磷雜菲-10-氧化物(DOPO)衍生物是一類重要的無(wú)鹵阻燃劑,這類物質(zhì)在高分材料燃燒時(shí)不但能中斷燃燒過(guò)程的自由基反應(yīng),實(shí)現(xiàn)氣相阻燃,還能促進(jìn)材料表面脫水成碳,實(shí)現(xiàn)凝聚相阻燃[7]。因此,關(guān)于DOPO衍生物的開(kāi)發(fā)應(yīng)用成為高分子材料阻燃領(lǐng)域的研究熱點(diǎn)。本文總結(jié)近幾年DOPO衍生物在阻燃環(huán)氧樹(shù)脂中應(yīng)用的研究進(jìn)展,對(duì)該類阻燃劑的未來(lái)發(fā)展趨勢(shì)進(jìn)行展望。
1 "反應(yīng)型DOPO衍生物的開(kāi)發(fā)
反應(yīng)型DOPO衍生物阻燃劑可以通過(guò)其分子結(jié)構(gòu)中的可反應(yīng)活性官能團(tuán)反應(yīng)鍵合到環(huán)氧樹(shù)脂的分子結(jié)構(gòu)中。由于它是以結(jié)構(gòu)單元的形式存在于環(huán)氧樹(shù)脂中,因此該類衍生物不會(huì)發(fā)生從環(huán)氧樹(shù)脂中遷移出的問(wèn)題,能賦予環(huán)氧樹(shù)脂持久的阻燃性能。
Liu等[8]將DOPO與5,5-二烯丙基-2,2-對(duì)苯二酚反應(yīng)制備出含有DOPO官能團(tuán)的雙羥基化合物DOBP。利用環(huán)氧氯丙烷與DOBP的反應(yīng),制備出帶有DOPO基團(tuán)的環(huán)氧化合物FREP。該種環(huán)氧化合物是一種反應(yīng)型阻燃劑。使用4,4-二氨基二苯甲烷(DDM)固化FREP后,得到的阻燃環(huán)氧樹(shù)脂可以通過(guò)UL-94測(cè)試的V-0等級(jí),極限氧指數(shù)可達(dá)40.2%。該種阻燃環(huán)氧樹(shù)脂的力學(xué)性能同DDM固化的E-51環(huán)氧樹(shù)脂相比,略有增加。
Wu等[9]利用甲基四氫苯酐(MeTHPA)與DOPO的反應(yīng),制備出含磷的酸酐固化劑PFA。由于PFA分子中含有DOPO官能團(tuán),以其為固化劑能有效地提高制備的環(huán)氧樹(shù)脂的阻燃性能。對(duì)其阻燃性能的研究表明,利用PFA固化的E-51環(huán)氧樹(shù)脂,在UL-94測(cè)試中,燃燒時(shí)間在6 s左右,能達(dá)到V-0等級(jí),極限氧指數(shù)可達(dá)31.2%。在力學(xué)性能方面,相對(duì)于MeTHPA固化的E-51環(huán)氧樹(shù)脂,使用PFA固化得到的阻燃環(huán)氧樹(shù)脂沖擊強(qiáng)度和彈性模量均有所增加。
Chi等[10]先將DOPO與二乙醇胺反應(yīng)得到雙羥基化合物DHDP,再將DHDP與雙酚酸進(jìn)行酯化反應(yīng),得到四羥基化合物TPDE。通過(guò)TPDE與環(huán)氧氯丙烷的反應(yīng),得到四環(huán)氧基化合物TEBA。制備的TEBA可以和DDM反應(yīng),制備出阻燃環(huán)氧樹(shù)脂,該環(huán)氧樹(shù)脂的氧指數(shù)達(dá)到了42.3%,達(dá)到了UL-94測(cè)試的V-0等級(jí)。但是,該環(huán)氧樹(shù)脂的拉伸強(qiáng)度比DDM固化E-51的環(huán)氧樹(shù)脂的拉伸強(qiáng)度低。
Wang等[11]將磺胺胍與對(duì)苯二甲醛反應(yīng),制備出了亞胺中間產(chǎn)物,將該中間產(chǎn)物與DOPO反應(yīng),制備出了帶胺基的反應(yīng)型固化劑SFG??梢詫FG與DDM混合使用,用于E-44的固化。SFG在制備的阻燃環(huán)氧樹(shù)脂中的含量達(dá)到5%時(shí),阻燃環(huán)氧樹(shù)脂的氧指數(shù)達(dá)到32.8%,能通過(guò)UL-94的V-0等級(jí)測(cè)試,并且材料的拉伸強(qiáng)度略有提高。
2 "添加型DOPO衍生物的開(kāi)發(fā)
添加型DOPO衍生物阻燃劑是通過(guò)物理混合的方法,在環(huán)氧樹(shù)脂制備的過(guò)程中,均勻分散在環(huán)氧樹(shù)脂基體中,賦予環(huán)氧樹(shù)脂阻燃性能的阻燃劑。
Yan等[12]將DOPO與三聚氰胺反應(yīng),制備出含有氮、磷元素的阻燃劑DOPO-M。該種阻燃劑在三乙烯四胺固化E-51的環(huán)氧樹(shù)脂中添加量大于20%時(shí),制備的阻燃環(huán)氧樹(shù)脂才能通過(guò)UL-94測(cè)試的V-0等級(jí)。
Wei等[13]將DOPO與環(huán)氧樹(shù)脂反應(yīng),制備出添加型阻燃劑DOPO-P。這種阻燃劑在4,4'-二氨基二苯砜(DDS)固化E-44的環(huán)氧樹(shù)脂中,表現(xiàn)出良好的阻燃性能。當(dāng)DOPO–P的添加量為8.4%時(shí),制備的阻燃環(huán)氧樹(shù)脂極限氧指數(shù)可達(dá)30.0%,能通過(guò)UL-94測(cè)試的V-0級(jí)別。
Jin等[14]將DOPO與丙烯醛反應(yīng),通過(guò)與丙烯醛分子中的碳碳雙鍵及羰基的加成,制備出分子中含有兩個(gè)DOPO基團(tuán)的高效阻燃劑ABD。該種阻燃劑在DDM固化的E-51環(huán)氧樹(shù)脂中展現(xiàn)出良好的阻燃性能。當(dāng)ABD的含量為3%時(shí),制備的阻燃環(huán)氧樹(shù)脂能通過(guò)UL-94測(cè)試的V-0等級(jí),極限氧指數(shù)高達(dá)36.2%。ABD的添加使得環(huán)氧樹(shù)脂燃燒時(shí)的熱釋放率峰值降低了26.5%、總熱釋放降低了29.3%、平均有效燃燒熱降低了24.4%,燃燒以后的殘?zhí)籍a(chǎn)率提高了4.1%,這是ABD具有優(yōu)良阻燃性能的原因。
Luo等[15]將DOPO與丙烯酰胺上的碳碳雙鍵反應(yīng),制備出含DOPO官能團(tuán)的阻燃劑DOPO-AM。該種阻燃劑在間二甲苯二胺固化的E51環(huán)氧樹(shù)脂中,添加量達(dá)到7%時(shí),制備的阻燃環(huán)氧樹(shù)脂能通過(guò)UL-94測(cè)試的V-0等級(jí),極限氧指數(shù)可達(dá)34.6%。
Hou等[16]首先將2-氨基苯并咪唑與對(duì)苯二甲醛反應(yīng),制備出芳香亞胺。然后,再將DOPO與芳香亞胺反應(yīng)制備出了含有氮雜原子的DOPO衍生物阻燃劑DTA。該種阻燃在DDS固化E51的環(huán)氧樹(shù)脂中,展現(xiàn)出良好的阻燃性能。DTA的添加量達(dá)到9.5%左右時(shí),制備的阻燃環(huán)氧樹(shù)脂能通過(guò)UL-94測(cè)試的V-0等級(jí),極限氧指數(shù)可達(dá)36.7%。相對(duì)于未添加阻燃劑的環(huán)氧樹(shù)脂,DTA的添加,使得環(huán)氧樹(shù)脂燃燒時(shí)的熱釋放率峰值降低了41.1%、總熱釋放降低了24.2%、平均有效燃燒熱降低了28.4%。
Luo等[17]利用4-氨基苯乙酮與苯胺反應(yīng)生成的亞胺與DOPO反應(yīng),制備出含有兩個(gè)胺基的中間體DOPO-NH2。再將中間體與乙二胺四乙酸(EDTA)反應(yīng),制備出一種支化的聚酰胺齊聚物HPD。HPD上含有大量的DOPO基團(tuán),可以用作添加型阻燃劑。當(dāng)HPD在DDM固化E-51的環(huán)氧樹(shù)脂中的添加量達(dá)到7.5%時(shí),制備的阻燃環(huán)氧樹(shù)脂氧指數(shù)達(dá)到29.6%,能通過(guò)UL-94的V-0等級(jí)測(cè)試。
Li等[18]將DOPO與聚硅氮烷上的碳碳雙鍵反應(yīng),制備出含有硅、氮、磷元素的添加型阻燃劑PPVSZ,該阻燃劑中的這些雜原子在提高環(huán)氧樹(shù)脂阻燃性能與力學(xué)性能方面具有協(xié)效作用。PPVSZ阻燃劑在DDM固化E-44的環(huán)氧樹(shù)脂中添加量為4%左右時(shí)即可通過(guò)UL-94測(cè)試的V-0等級(jí),極限氧指數(shù)達(dá)到29.7%。在力學(xué)性能方面,PPVSZ在環(huán)氧樹(shù)脂中的使用不會(huì)降低環(huán)氧樹(shù)脂的力學(xué)性能。添加4%左右PPVSZ的阻燃環(huán)氧樹(shù)脂相對(duì)于未添加阻燃劑的環(huán)氧樹(shù)脂,其拉伸強(qiáng)度提高了14.2%,沖擊強(qiáng)度提高了45.4%。
圖10 "添加型DOPO衍生物PPVSZ的化學(xué)結(jié)構(gòu)
Chen等[19]將2-氨基苯并噻唑和甲基乙烯基二氯硅烷反應(yīng),制備出含有可反應(yīng)碳碳雙鍵的化合物MSBA。然后將DOPO與MSBA反應(yīng),制備出了含有氮、磷、硅、硫元素的阻燃劑PMSBA。由于這些元素之間的協(xié)效作用,PMSBA在DDM固化的E-44環(huán)氧樹(shù)脂中的添加量為2.5%時(shí),制備的阻燃環(huán)氧樹(shù)脂即可通過(guò)UL-94測(cè)試的V-0等級(jí),極限氧指數(shù)可達(dá)29.6%。這種阻燃劑的添加還能提高環(huán)氧樹(shù)脂的力學(xué)性能,相對(duì)于未添加PMSBA的環(huán)氧樹(shù)脂,PMSBA的添加量達(dá)到2.5%時(shí),材料的沖擊強(qiáng)度提高了37.5%,拉伸強(qiáng)度提高了10.6%。
圖11 "添加型DOPO衍生物PMSBA的化學(xué)結(jié)構(gòu)
Zheng等[20]將DOPO與苯并惡嗪反應(yīng)后,再與氯化亞銅反應(yīng),制備出一種含有氮、磷、銅元素的阻燃劑DOPO-CuPc。該種阻燃劑在DDS固化E-51的環(huán)氧樹(shù)脂中的添加量大于10.5%時(shí),能達(dá)到UL-94測(cè)試的V-0等級(jí)。
3 "結(jié)束語(yǔ)
DOPO衍生物阻燃劑在應(yīng)用的過(guò)程中,顯示出優(yōu)異的阻燃性能,所以該類阻燃劑在高性能阻燃環(huán)氧樹(shù)脂中的應(yīng)用引起越來(lái)越多的關(guān)注。目前,無(wú)論是反應(yīng)型的還是添加型的DOPO衍生物阻燃劑,在阻燃劑設(shè)計(jì)開(kāi)發(fā)的時(shí)候,除了關(guān)注阻燃劑的阻燃性能,還關(guān)注使用阻燃劑后制備的阻燃環(huán)氧樹(shù)脂的力學(xué)性能等其他性能。開(kāi)發(fā)具有優(yōu)良阻燃性能和力學(xué)性能的阻燃環(huán)氧樹(shù)脂材料是該領(lǐng)域的研究重點(diǎn)。近幾年,在開(kāi)發(fā)DOPO衍生物阻燃劑的時(shí)候,逐漸開(kāi)始在阻燃劑分子中引入具有協(xié)效作用的氮、硅、硫元素。在提高材料阻燃性能的同時(shí),提高阻燃環(huán)氧樹(shù)脂材料的力學(xué)性能。因此,探索DOPO衍生物中氮、硅、硫等元素組分與磷組分的協(xié)效作用機(jī)理,開(kāi)發(fā)兼具優(yōu)良阻燃性能和力學(xué)性能的高性能阻燃劑將成為DOPO衍生物阻燃劑開(kāi)發(fā)領(lǐng)域的研究方向。
參考文獻(xiàn):
[1]厲安昕,周麗. 磷氮阻燃固化劑PPXSPB的合成[J].遼寧化工,2021,50(10):1445-1447.
[2] 孔俊嘉,明皓. 碳纖維/改性環(huán)氧樹(shù)脂復(fù)合材料的制備與表征[J].遼寧化工,2019,48(11):1077-1079.
[3]RAJ M, MAHETA J, RAJ L. Synthesis characterization and application of hexafunctional epoxy resin and comparison against commercial epoxy resin[J]. Polymers amp; Polymer Composites, 2022, 30, 09673911221076721.
[4]CHEN J H, LU J H, PU X L. Recyclable, malleable and intrinsically flame-retardant epoxy resin with catalytic transesterification[J]. Chemosphere, 2022,294,133778.
[5]LU X Y, ZHU X J, DAI P. Thermal performance and thermal decomposition kinetics of a novel lignin-based epoxy resin containing phosphorus and nitrogen elements[J]. Journal of Thermal Analysis and Calorimetry, 2022, 147 (8): 5237-5253.
[6]XU Q B, ZHANG S C, SU Z X. A novel 9,10-dihydro-9-oxa -10-phosphaphenanthrene-10-oxide-based reactive flame retardant for epoxy resin: Synthesis, properties, and comparison[J]. Journal of Applied Polymer Science, 2022, 139 (8):e51688.
[7]邢鳳欽,張偉. 阻燃型硬質(zhì)聚氨酯泡沫的研究進(jìn)展[J]. 遼寧化工, 2021, 50 (5):650-653.
[8]LIU D Y, JI P F, ZHANG T L. A bi-DOPO type of flame retardancy epoxy prepolymer: Synthesis, properties and flame-retardant mechanism[J]. Polymer Degradation and Stability, 2021,190:109629.
[9]LI Q, LI Y J, CHEN Y F. An effective method for preparation of liquid phosphoric anhydride and its application in flame retardant epoxy resin[J]. Materials, 2021, 14 (9):2205.
[10]CHI Z Y, GUO Z W, XU Z C. A DOPO-based phosphorus-nitrogen flame retardant bio-based epoxy resin from diphenolic acid: Synthesis, flame-retardant behavior and mechanism[J]. Polymer Degradation and Stability,2020,176:109151.
[11]WANG P, CHEN L, XIAO H. Nitrogen/sulfur-containing DOPO based oligomer for highly efficient flame-retardant epoxy resin[J]. Polymer Degradation and Stability, 2019,171:109023.
[12]YAN Y A, LIANG B. Flame-retardant behavior and mechanism of a DOPO-based phosphorus–nitrogen flame retardant in epoxy resin[J]. High Performance Polymers, 2019, 31 (8): 885-892.
[13]WEI Z Q, GU X T, WU J. Performance comparison of epoxy resins modified with diphenylphosphine oxide and DOPO[J]. Fire and Materials, 2019, 43 (7): 892-902.
[14]JIN S L, QIAN L J, QIU Y. High-efficiency flame retardant behavior of bi-DOPO compound with hydroxyl group on epoxy resin[J]. Polymer Degradation and Stability, 2019, 166: 344-352.
[15]LUO C Y, NAN C, ZUO J D. Effect of sulfur in different valence on flame retardance of epoxy resin for light emitting diode[J]. Journal of Applied Polymer Science, 2021,138 (17):e50271.
[16]HUO S Q, LIU Z T, LI C. Synthesis of a phosphaphenanthrene /benzimidazole-based curing agent and its application in flame-retardant epoxy resin[J]. Polymer Degradation and Stability, 2019, 163:100-109.
[17]LUO Q Q, SUN Y L, YU B. Synthesis of a hyperbranched polyamide oligomer containing DOPO for simultaneously enhancing the flame retardance and glass transition temperature of epoxy resin[J]. Polymers for Advanced Technologies, 2020, 32 (2): 525-537.
[18]LI Z N, CHEN M F, LI S S. Simultaneously improving the thermal, flame-retardant and mechanical properties of epoxy resins modified by a novel multi-element synergistic flame retardant[J]. Macromolecular Materials and Engineering, 2019,304(4):1800619.
[19]LI S S, CHEN M F, SU L P. Highly efficient multielement flame retardant for multifunctional epoxy resin with satisfactory thermal, flame-retardant, and mechanical properties[J]. Polymers for Advanced Technologies, 2019, 31(1): 146-159.
[20]ZHENG P L, WANG R, WANG D H. A phosphorus?containing hyperbranched phthalocyanine flame retardant for epoxy resins[J]. Scientific Reports, 2021, 11 (1):17731.
Research Progress of DOPO Derivative in Flame-retardant Epoxy Resin
ZHENG Qiao1, XIA Wei2, FU Rong1, WANG Jia-xin1, GU Hong-fei1, JI Xin1, WANG Song1, LI San-xi1
(1. Shenyang University of Technology, Shenyang Liaoning 110870, China;
2. Nonmetallic Mineral Industry Association of Liaoning, Shenyang Liaoning 110000, China)
Abstract: "Epoxy resin (EP) is an important polymer material, it is of great significance to study the methods to improve the flame retardancy of epoxy resin (EP) to expand the application field of EP. The recent research progress of reactive and additive flame retardants based on 9,10-dihudro-9-oxa-10-phosphaphenanthrene-10-oxide (DOPO) derivatives in EP was reviewed. The prospect on development and application of DOPO derivatives was discussed.
Key words: DOPO; Epoxy resin; Flame-retardant