摘要:CIPK蛋白家族是Ca2+介導(dǎo)的植物信號(hào)通路中關(guān)鍵蛋白家族,當(dāng)植物受到逆境脅迫時(shí),CBL-CIPK網(wǎng)絡(luò)可調(diào)節(jié)離子運(yùn)輸進(jìn)而適應(yīng)逆境環(huán)境,其中CIPK24作用顯著。為探究禾本科草坪草CIPK家族基因的作用,本研究以草地早熟禾(Poa pratensis L.)為試驗(yàn)材料,采用RT-PCR技術(shù)對(duì)草地早熟禾CIPK24基因進(jìn)行克隆,并應(yīng)用生物信息學(xué)及qRT-PCR技術(shù),對(duì)非生物脅迫條件下該基因的表達(dá)方式及組織特異性進(jìn)行研究。研究結(jié)果顯示,草地早熟禾CIPK24包含典型的結(jié)構(gòu)域CIPK_C,其屬于AMPKA_Clike superfamily,與黑麥草(Lolium perenne L.),大麥(Hordeum vulgare L.),二粒小麥(Triticum turgidum L.)CIPK24同源性高達(dá)94.20%,90.62%,88.62%。草地早熟禾CIPK24基因的表達(dá)水平存在組織特異性,葉>莖>根。CIPK24基因積極響應(yīng)干旱、氮素、磷素、鹽脅迫,其中,無(wú)氮、低氮、無(wú)磷、高鹽環(huán)境顯著促進(jìn)其表達(dá)。本研究為豐富草地早熟禾CIPK家族在非生物脅迫下的調(diào)節(jié)機(jī)制提供了理論基礎(chǔ)。
關(guān)鍵詞:草地早熟禾;蛋白激酶;CIPK24;非生物脅迫;表達(dá)分析
中圖分類號(hào):Q344+.13
文獻(xiàn)標(biāo)識(shí)碼:A
文章編號(hào):1007-0435(2023)06-1693-09
Cloning of Protein Kinase CIPK24 Gene from
Poa pratensis L. and Its Response to Abiotic Stresses
CHEN Yang1,2, YOU Xue1, LIU Wen-xuan1, GAO Yan-song1,
ZHAO Qing-feng1, XIONG Yi1,2, JIN Yi-feng1,2*
(1.College of Life Science and Agro-Forestry, Qiqihar Univesity, Qiqihar, Heilongjiang Province 161006, China; 2. Heilongjiang Province
Key Laboratory of Resistance Gene Engineering and Preservation of Biodiversity in Cold Areas, Qiqihar, Heilongjiang Province 161006, China)
Abstract:The CBL-interacting protein kinase (CIPK) family is a key protein family in the Ca2+-mediated signaling pathway in plants. Under stresses,plants can adapt to the environmental stresses by regulating the ion transport by the CBL-CIPK network,of which CIPK24 takes a significant role. To explore the role of the CIPK gene family in Poaceae turfgrasses,Poa pratensis L. was used as the experimental material in this study. The CIPK24 gene of P. pratensis L. was cloned using RT-PCR,and its expression pattern and tissue specificity under abiotic stresses were investigated by bioinformatics and qRT-PCR. The results showed the CIPK24 from Poa pratensis L. contained a typical structural domain CIPK_C and belonged to the AMPKA_Clike superfamily,with the homology of 94.20%,90.62% and 88.62% of the CIPK24 from Lolium perenne L.,Hordeum vulgare L. and Triticum turgidum L.,respectively. The expression level of the CIPK24 gene in P. pratensis L. was tissue-specific:leaves gt; stems gt; roots. The CIPK24 gene in P. pratensis took active responses to the drought,nitrogen,phosphorus and salt stresses. Nitrogen-free,low-nitrogen,phosphorus-free and high-salt environments significantly promoted its expression. This study may provide a theoretical basis for the regulatory mechanism of the CIPK family in Poa pratensis L. under abiotic stresses.
Key words:Kentucky bluegrass;Protein Kinase;CIPK24;Abiotic stress;Expression analysis
草地早熟禾(Poa pratensis L.)是一種冷季型草坪草,其植株姿態(tài)優(yōu)美且有較強(qiáng)的耐寒性[1]及耐踐踏特點(diǎn)[2],常用于北方城市園林綠化的草坪建植。但是,草坪草易受到干旱、鹽等逆境的影響[3-4],影響其生長(zhǎng)及觀賞價(jià)值。蛋白激酶CIPK(Calcineurin B-like protein interacting protein kinase)主要參與鈣離子的信號(hào)傳導(dǎo),在多種應(yīng)激反應(yīng)中起到重要作用[5]。研究發(fā)現(xiàn),過(guò)表達(dá)OsCIPK23可提高水稻(Oryza sativa L.)抗旱性[6],CIPK23也是硝酸鹽高親和力反應(yīng)的負(fù)調(diào)節(jié)因子,可與CIPK8起到拮抗作用[7]。Sun等[8]發(fā)現(xiàn),過(guò)表達(dá)TaCIPK24可以提高擬南芥(Arabidopsis thaliana)耐鹽性。鐵皮石斛(Dendrobium catenatum)蛋白激酶DcCIPK24能夠同時(shí)提高其耐旱及耐鹽性[9]。CIPK成員在植物生長(zhǎng)發(fā)育過(guò)程中也起到一定作用,CIPK12和CIPK19是植物花粉管頂端生長(zhǎng)的關(guān)鍵調(diào)節(jié)因子[10]。
隨著對(duì)CIPK家族基因的深入研究,發(fā)現(xiàn)當(dāng)植物遭受逆境脅迫時(shí),會(huì)激活相應(yīng)的CBL-CIPK(鈣調(diào)神經(jīng)素B樣蛋白-相互作用蛋白激酶)網(wǎng)絡(luò)傳導(dǎo)脅迫信號(hào)[5]。根據(jù)功能位點(diǎn)的特點(diǎn),CBL-CIPK網(wǎng)絡(luò)信號(hào)通路分為質(zhì)膜靶向通路和液泡膜靶向通路,質(zhì)膜靶向CBL-CIPK通路通過(guò)調(diào)節(jié)離子運(yùn)輸使植物能夠適應(yīng)各種逆境環(huán)境[11]。液泡膜靶向CBL-CIPK通路通過(guò)將有害離子螯合到液泡中,以免植物發(fā)生離子中毒,從而維持植物的正常生長(zhǎng)發(fā)育[12]。近年來(lái),研究發(fā)現(xiàn)CBL-CIPK網(wǎng)絡(luò)可以積極響應(yīng)多種逆境脅迫過(guò)程[13]。鹽脅迫時(shí)SOS3(CBL4)可與SOS2(CIPK24)相互作用,SOS2/SOS3復(fù)合物磷酸化并激活定位在質(zhì)膜的Na+/H+反轉(zhuǎn)運(yùn)蛋白(SOS1)以促進(jìn)植株的耐鹽性[14]。Kim等[15-16]研究發(fā)現(xiàn),擬南芥CBL10可與CIPK24相互作用,CBL10-CIPK24復(fù)合物與液泡室相關(guān),并且能夠增強(qiáng)植株芽部耐受鹽脅迫的能力。Xu等[17-18]研究表明,在擬南芥的正向遺傳篩選中,在控制K+濃度的條件下,對(duì)低鉀敏感的突變體顯示,CIPK23(LKS1)功能喪失會(huì)損傷植物生長(zhǎng),而CBL1或CBL9與CIPK23的相互作用會(huì)將其重新引入質(zhì)膜,在質(zhì)膜中磷酸化并激活K+通道AKT1(擬南芥內(nèi)向整流鉀通道)以增強(qiáng)對(duì)K+的吸收。目前,對(duì)于禾本科草坪草CIPK蛋白激酶在非生物脅迫下響應(yīng)機(jī)制的報(bào)道甚少,研究其相關(guān)功能,對(duì)草坪草抗逆性研究十分重要。
本研究以草地早熟禾(Poa pratensis L.)為研究對(duì)象,通過(guò)RT-PCR克隆得到CIPK24基因,對(duì)其進(jìn)行生物信息學(xué)分析,了解內(nèi)部結(jié)合位點(diǎn)和信號(hào)結(jié)合區(qū)的特征,通過(guò)qRT-PCR方法分析其組織特異性以及在非生物脅迫下該基因的表達(dá)機(jī)制。這為后續(xù)草地早熟禾在逆境脅迫下的相關(guān)研究奠定基礎(chǔ)。
1 材料與方法
1.1 試驗(yàn)材料及處理方法
試驗(yàn)于2022年3月開始在齊齊哈爾大學(xué)園林遺傳育種研究室進(jìn)行,以草地早熟禾‘午夜Ⅱ號(hào)’品種為試驗(yàn)材料,培養(yǎng)方法參照金一鋒等[19]進(jìn)行操作。選取長(zhǎng)勢(shì)優(yōu)良的草地早熟禾植株,將其根部清洗干凈后進(jìn)行水培處理,用1/2 Hoagland營(yíng)養(yǎng)液每天澆灌一次,待14 d后再進(jìn)行脅迫處理。具體脅迫處理為:(1)干旱脅迫:將10%PEG6000溶入1/2 Hoagland營(yíng)養(yǎng)液中模擬干旱脅迫0,2,16,24 h。(2)氮素脅迫及磷素脅迫處理方法參照金一鋒等[19]進(jìn)行處理,選用NaNO3為氮源,濃度為:0 mmol·L-1,1.5 mmol·L-1,15 mmol·L-1 NaNO3,選用KH2PO4為磷源,濃度為0 mmol·L-1,0.01 mmol·L-1,1 mmol·L-1 KH2PO4。(3)鹽脅迫:將濃度為0 mmol·L-1,30 mmol·L-1,100 mmol·L-1,200 mmol·L-1 NaCl溶液分別溶入1/2 Hoagland營(yíng)養(yǎng)液中,每日定時(shí)更換營(yíng)養(yǎng)液,處理21 d后取樣。以上所取樣本均為葉部,保存于-80℃環(huán)境中且每個(gè)處理取樣均為3次生物學(xué)重復(fù)。
1.2 草地早熟禾CIPK24基因克隆及生物信息學(xué)分析
采用天根植物總RNA提取試劑盒獲得總RNA,并對(duì)其完整性和濃度進(jìn)行檢測(cè),將檢測(cè)合格RNA放置—80℃?zhèn)溆谩DNA第一條鏈的合成參照HiFiScript cDNA Synthesis Kit試劑盒中的說(shuō)明書,反應(yīng)體系總體積為20 μL,制備完成后將產(chǎn)物置于—80℃保存?;谡n題組獲得的草地早熟禾轉(zhuǎn)錄組數(shù)據(jù)為基礎(chǔ)(PRJNA517968),再結(jié)合小麥(Triticum aestivum L.)CIPK24(XM_044583376.1)、二穗短柄草(Brachypodium distachyon L.)CIPK24(XM_003563607.4)序列數(shù)據(jù),設(shè)計(jì)草地早熟禾CIPK24特異性引物,見(jiàn)表1。RT-PCR反應(yīng)總體系為25 μL:12.5 μL 2×Es Taq MasterMix,1 μL cDNA,1 μL CIPK24-F/R,9.5 μL dd H2O。反應(yīng)程序?yàn)椋?5℃預(yù)變性2 min,94℃變性30 s,58℃退火30 s,72℃延伸30 s,共30個(gè)循環(huán),最終72℃延伸2 min,獲得草地早熟禾CIPK24基因序列。
1.3 草地早熟禾CIPK24基因生物信息學(xué)分析
利用NCBI-ORF Finder及CD-search對(duì)CIPK24進(jìn)行分析,該蛋白氨基酸組成以及理化性質(zhì)利用ExPASy-ProtParam工具在線分析,對(duì)磷酸化位點(diǎn)利用Netphos進(jìn)行預(yù)測(cè)分析,利用SOPMA在線工具完成蛋白二級(jí)結(jié)構(gòu)的預(yù)測(cè),蛋白三級(jí)結(jié)構(gòu)的預(yù)測(cè)利用SWISS-MODEL軟件進(jìn)行分析。利用MEME在線軟件以及TBtools構(gòu)建系統(tǒng)進(jìn)化樹,在MEME中Motif參數(shù)設(shè)定為13。利用Clustal Omega在線軟件進(jìn)行多序列比對(duì)分析。
1.4 草地早熟禾CIPK24基因組織特異性及非生物脅迫分析
本研究提取植株的根部、莖部、葉部三個(gè)部位的RNA,提取干旱、鹽、氮、磷脅迫的植株葉部RNA,將上述樣本RNA模板反轉(zhuǎn)錄獲得第一條cDNA。實(shí)時(shí)熒光定量的體系為25 μL:2 μL cDNA,1 μL Q-CIPK24-F/R,12.5 μL TB Green Premix Ex Taq II(Takara),9.5 μL ddH2O。反應(yīng)程序?yàn)?0個(gè)循環(huán):95℃預(yù)變性30 s,95℃ 5 s,60℃ 30 s,以UBQ為內(nèi)參基因,qRT-PCR引物見(jiàn)表1,該試驗(yàn)生物學(xué)、試驗(yàn)重復(fù)各3次,采用2-ΔΔCt法處理數(shù)據(jù)。
2 結(jié)果與分析
2.1 草地早熟禾CIPK24基因的獲得及生物信息學(xué)分析
本研究通過(guò)RT-PCR擴(kuò)增得到1 396 bp CIPK24基因序列(圖1),其中包含開放閱讀框1 347 bp,共編碼448個(gè)氨基酸。利用NCBI-CD search在線分析結(jié)果表明,其包含典型的結(jié)構(gòu)域CIPK_C,其屬于AMPKA_C like superfamily(圖2)。通過(guò)對(duì)CIPK24基因編碼的氨基酸序列進(jìn)行理化性質(zhì)分析,CIPK24蛋白分子量為50.10 KD,理論等電點(diǎn)為7.60,蛋白質(zhì)分子式為C2239H3573N605O660S18,為不穩(wěn)定蛋白。CIPK24蛋白的氨基酸進(jìn)行預(yù)測(cè)分析,其中含有較高含量亮氨酸(Leu),其占比達(dá)到9.8%。其中,帶負(fù)電荷的有天冬氨酸(Asp)和谷氨酸(Glu),氨基酸殘基總數(shù)(Asp + Glu)為56個(gè),帶正電荷的有精氨酸(Arg)和賴氨酸(Lys),氨基酸殘基總數(shù)(Arg + Lys)為57個(gè)。磷酸化位點(diǎn)分析見(jiàn)圖3,草地早熟禾CIPK24氨基酸磷酸化位點(diǎn)含有酪氨酸(Tyrosine)、蘇氨酸(Threonine)、絲氨酸(Serine),其所包含數(shù)量分別為4,12和18個(gè)。
利用MEME以及TBtools軟件把草地早熟禾CIPK24與多物種CIPK24氨基酸進(jìn)行同源比對(duì)分析和構(gòu)建進(jìn)化樹分析(圖4),發(fā)現(xiàn)草地早熟禾CIPK24同黑麥草(Lolium perenne L.)CIPK24(XP_047078959.1)、大麥(Hordeum vulgare L.)CIPK24(KAE8785981.1)、二粒小麥(Triticum turgidum L.)CIPK24(XP_037465674.1)同源性較高,同源性分別達(dá)到了94.20%,90.62%,88.62%。圖4可知,草地早熟禾、黑麥草、節(jié)節(jié)麥(Aegilops tauschii)等禾本科植物CIPK24與花生(Arachis hypogaea)、葡萄(Vitis vinifera)、可可(Theobroma cacao L.)等非禾本科植物CIPK24相比,禾本科植物多了一個(gè)保守基序Motif13,其他保守基序相同。草地早熟禾與小麥、節(jié)節(jié)麥、大麥、黑麥草CIPK24氨基酸序列進(jìn)行多序列比對(duì)(圖5),發(fā)現(xiàn)其包含5個(gè)CBL互作位點(diǎn);4個(gè)N-肉豆蔻?;稽c(diǎn),2個(gè)蛋白激酶C磷酸化位點(diǎn),1個(gè)蛋白激酶ATP結(jié)合區(qū),1個(gè)絲氨酸/蘇氨酸蛋白激酶活性位點(diǎn),1個(gè)PP2C結(jié)合位點(diǎn),1個(gè)酰胺化位點(diǎn)等。CIPK24蛋白質(zhì)二級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果表明,該蛋白質(zhì)的二級(jí)結(jié)構(gòu)由β-轉(zhuǎn)角和延伸鏈、不規(guī)則卷曲、α-螺旋共同構(gòu)成,其占比分別為:9.60%,18.08%,34.15%,38.17%。進(jìn)一步對(duì)CIPK24蛋白三級(jí)結(jié)構(gòu)進(jìn)行構(gòu)建,其與二級(jí)結(jié)構(gòu)預(yù)測(cè)結(jié)果一致(圖6)。
2.2 草地早熟禾CIPK24基因的組織特異性
通過(guò)qRT-PCR技術(shù)分析草地早熟禾CIPK24基因在不同組織部位中相對(duì)表達(dá)量,結(jié)果表明草地早熟禾CIPK24基因表達(dá)水平存在組織特異性(圖7)。其中,CIPK24基因在草地早熟禾植株中表達(dá)水平排序?yàn)槿~>莖>根(P<0.05),且葉部相對(duì)表達(dá)量為根2.5倍。
2.2 草地早熟禾CIPK24基因在干旱、氮、磷和鹽脅迫下的表達(dá)水平分析
利用10%PEG6000溶液進(jìn)行模擬干旱環(huán)境,通過(guò)qRT-PCR分析干旱脅迫對(duì)草地早熟禾葉部CIPK24基因的表達(dá)水平,結(jié)果表明,干旱脅迫期間,處理16 h時(shí)草地早熟禾CIPK24基因表達(dá)水平最高,處理2 h時(shí)表達(dá)水平最低,其中16 h的CIPK24基因相對(duì)表達(dá)量是2 h的12.4倍(圖8A)。利用不同濃度的NaNO3溶液對(duì)草地早熟禾進(jìn)行氮脅迫處理,qRT-PCR結(jié)果顯示(圖8B):隨著NaNO3溶液濃度的增加,CIPK24基因的表達(dá)水平持續(xù)降低,其在0 mmol·L-1 NaNO3時(shí)的表達(dá)量是15 mmol·L-1 NaNO3時(shí)的2.2倍。利用不同濃度的KH2PO4溶液進(jìn)行磷脅迫處理(圖8C),隨著KH2PO4溶液濃度上升,CIPK24基因的表達(dá)水平呈先下降后上升的趨勢(shì),0.1 mmol·L-1 KH2PO4時(shí)的表達(dá)量最低,在0 mmol·L-1 KH2PO4時(shí)的表達(dá)量是0.1 mmol·L-1 KH2PO4時(shí)的5.7倍。利用不同濃度梯度的NaCl溶液對(duì)草地早熟禾植株進(jìn)行鹽脅迫處理,qRT-PCR結(jié)果顯示(圖8D):0~100 mmol·L-1 NaCl處理組的草地早熟禾CIPK24基因表達(dá)水平差異不顯著,而200 mmol·L-1 NaCl時(shí)CIPK24相對(duì)表達(dá)量明顯升高,是0 mmol·L-1 NaCl的2倍,高鹽環(huán)境促進(jìn)其表達(dá)。綜上,草地早熟禾CIPK24基因積極響應(yīng)干旱、氮、磷和鹽脅迫。
3 討論
CIPK家族成員可以與鈣傳感器鈣調(diào)神經(jīng)磷酸酶B樣蛋白(CBL)相互作用,形成一個(gè)復(fù)雜的網(wǎng)絡(luò),以響應(yīng)鈣信號(hào)和一系列復(fù)雜的環(huán)境刺激[20]。研究表明,高粱(Sorghum bicolor)CIPK蛋白包含蛋白激酶結(jié)構(gòu)域、ATP結(jié)合區(qū)、Ser/Thr活性位點(diǎn)、跨膜結(jié)構(gòu)域、一個(gè)或多個(gè)潛在的N-肉豆蔻酰化位點(diǎn)以及家族特異的NAF結(jié)構(gòu)域[21]。這與本研究結(jié)果相似,草地早熟禾CIPK24包含典型的蛋白激酶結(jié)構(gòu)域CIPK_C,也存在Ser/Thr活性位點(diǎn)以及N-肉豆蔻?;稽c(diǎn)等生物活性位點(diǎn)。本研究發(fā)現(xiàn),多個(gè)禾本科植物CIPK24保守基序一致,且比非禾本科植物CIPK24保守基序多一個(gè)“MAGAARKK”,可見(jiàn),禾本科CIPK24蛋白保守序列特征高度相似。
植物CIPK家族基因在植株不同組織器官中表達(dá)水平存在差異,這可能是由于植物發(fā)育和信號(hào)傳遞過(guò)程中基因的功能多樣性所導(dǎo)致[22-23]。研究發(fā)現(xiàn),菜用大豆(Glycine max)GmCIPK24基因的表達(dá)量在根毛組織中最高,高于莖部與葉部[24]。陳小晶等[25]研究中發(fā)現(xiàn),玉米(Zea mays L.)ZmCIPK24基因在花絲組織中表達(dá)量最低,在冠根組織中表達(dá)量最高。小麥TaCIPK24基因在開花前的花苞片中表達(dá)量高于其他組織部位[8]。本研究中,草地早熟禾CIPK24基因在葉部高度表達(dá),顯著高于莖部與根部??梢?jiàn),多種植物的CIPK24基因的表達(dá)存在組織特異性,且高度表達(dá)的組織部位差異較大。
近年來(lái),對(duì)于擬南芥,水稻等CBL-CIPK信號(hào)的研究較為深入[26-27],CBL-CIPK信號(hào)通過(guò)膜系統(tǒng)參與鈉、鉀和硝酸鹽等離子的運(yùn)輸[23,28]。在擬南芥中,兩條通路參與鉀信號(hào)級(jí)聯(lián):AtCBL1/9-AtCIPK23-擬南芥K+轉(zhuǎn)運(yùn)蛋白1(AKT1)和AtCBL1-AtCIPK23高親和力K+轉(zhuǎn)運(yùn)肽5(AtHAK5)[8,29-30],同樣,水稻中也存在OsCBL1-OsCIPK23-OsAKT1通路[31]。若外部NO3-濃度過(guò)高AtCBL1/9-AtCIPK23-AtNRT1.1通道和AtCBL9-AtCIPK23-AtNRT2.1通道會(huì)抑制NO3-的轉(zhuǎn)運(yùn)[17,32]。在本研究中,隨著NaNO3濃度的減少,CIPK24基因相對(duì)表達(dá)量會(huì)隨之增加,而隨著KH2PO4濃度的減少,CIPK24基因相對(duì)表達(dá)量呈現(xiàn)先下調(diào)后上調(diào)的趨勢(shì),氮素、磷素的濃度會(huì)影響該基因的表達(dá)。
CBL-CIPK網(wǎng)絡(luò)積極響應(yīng)鹽[12]、干旱[33]等非生物脅迫。CIPK不僅與CBL交互,還通過(guò)PPI(蛋白質(zhì)-磷酸酶相互作用)域與PP2C(2C型蛋白磷酸酶)交互,在擬南芥中AtCIPK24與PP2CABI2相關(guān),以調(diào)節(jié)植株對(duì)鹽和ABA的抗性[34]。Kim等[22]在研究中發(fā)現(xiàn),擬南芥中CIPK3基因在干旱和鹽處理后表達(dá)量均升高。OsCIPK12基因在水稻中的過(guò)度表達(dá)可以提高其耐旱性[35]。PEG處理可以誘導(dǎo)水稻OsCIPK24[35]及木薯(Manihot esculenta)MeCIPK24基因的上調(diào)表達(dá)[36],這與本研究結(jié)果相似,干旱脅迫顯著影響草地早熟禾CIPK24基因的表達(dá)水平。Zhang等[37]研究發(fā)現(xiàn),胡楊(Populus euphratica)CBL1與CIPK24、CIPK25和CIPK26相互作用,可調(diào)節(jié)其Na+/K+離子平衡。研究發(fā)現(xiàn),與野生型番茄(Solanum lycopersicum)相比,過(guò)表達(dá)番茄SlCIPK24可顯著增強(qiáng)植株對(duì)鹽的耐受性[38]。隨著NaCl處理時(shí)間的增加,小麥TaCIPK24上調(diào)表達(dá)[8]。這與本研究結(jié)果相似,高鹽脅迫下草地早熟禾CIPK24基因顯著上調(diào),但是,鹽脅迫顯著抑制木薯MeCIPK24的表達(dá)??梢?jiàn),不同植物CIPK24基因可能在響應(yīng)鹽脅迫中具有不同的作用。
4 結(jié)論
本研究通過(guò)RT-PCR克隆得到草地早熟禾CIPK24基因,其包含典型的結(jié)構(gòu)域CIPK_C,屬于AMPKA_Clike superfamily。該基因與黑麥草、大麥、二粒小麥同源性最高且具有較高的保守性。草地早熟禾CIPK24基因的表達(dá)存在著明顯的組織特異性,在干旱、氮、磷和鹽處理下,能積極響應(yīng)多種非生物脅迫。
參考文獻(xiàn)
[1] 張玉娟,郭睿,張兆恒,等. 冷等離子體處理對(duì)草地早熟禾幼苗抗鹽性的影響[J]. 草地學(xué)報(bào),2022,30(9):2365-2374
[2] 錢文武,黃志超,朱慧森,等. KNO3和抗壞血酸對(duì)老化草地早熟禾種子活力的影響[J]. 草地學(xué)報(bào),2022,30(1):69-75
[3] SHI H T,YE T T,CHANG Z L,et al. Exogenous application of hydrogen sulfide donor sodium hydrosulfide enhanced multiple abiotic stress tolerance in bermuda grass (Cynodon dactylon (L). Pers.) [J]. Plant Physiology and Biochemistry,2013,71:226-234
[4] REINERT J A,CHANDRA A,ENGELKE M C,et al. Susceptibility of genera and cultivars of turfgrass to southern chinch bug Blissus insularis (Hemiptera:Blissidae) [J]. Florida Entomologist,2011,94(2):158-163
[5] MENG D,DONG B Y,NIU L L,et al. The pigeon pea CcCIPK14-CcCBL1 pair positively modulates drought tolerance by enhancing flavonoid biosynthesis [J]. The Plant Journal,2021,106(5):1278-1297
[6] YANG W Q,KONG Z S,XU W Y,et al. Calcineurin B-like interacting protein kinase OsCIPK23 functions in pollination and drought stress responses in rice (Oryza sativa L.) [J]. Journal of Genetics and Genomics,2008,35(9):531-543
[7] WANG C,ZHANG W J,LI Z H,et al. FIP1 Plays an important role in nitrate signaling and regulates CIPK8 and CIPK23 expression in Arabidopsis [J]. Frontiers in Plant Science,2018,9:593
[8] SUN T,WANG Y,WANG M,et al. Identification and comprehensive analyses of the CBL and CIPK gene families in wheat (Triticum aestivum L.) [J]. BMC Plant Biology,2015,15:269
[9] ZHANG T T,LI Y X,KANG Y Q,et al. The Dendrobium catenatum DcCIPK24 increases drought and salt tolerance of transgenic Arabidopsis [J]. Industrial Crops and Products,2022,187(A):115375
[10]ZHOU L M,LAN W Z,CHEN B Q,et al. A calcium sensor-regulated protein kinase,CALCINEURIN B-LIKE PROTEIN-INTERACTING PROTEIN KINASE19,is required for pollen tube growth and polarity [J]. Plant Physiology,2015,167(4):1351-1360
[11]MAO J J,MANIK S M N,SHI S J,et al. Mechanisms and physiological roles of the CBL-CIPK networking system in Arabidopsis thaliana [J]. Genes,2016,7(9):62
[12]TANG R J,ZHAO F G,GARCIA V J,et al. Tonoplast CBL–CIPK calcium signaling network regulates magnesium homeostasis in Arabidopsis [J]. Proceedings of the National Academy of Sciences of the United States of America,2015,112(10):3134-3139
[13]LUAN S,KUDLA J,YALOCSKY S,et al. Calmodulins and calcineurin B-like proteins:calcium sensors for specific signal response coupling in plants [J]. Plant Cell,2002,14:S389-S400
[14]QIU Q S,GUO Y,DIETRICH M A,et al. Regulation of SOS1 as plasma membrane Na+/H+ exchanger in Arabidopsis thaliana,by SOS2 and SOS3 [J]. Proceedings of the National Academy of Sciences of the United States of America,2002,99(12):8346-8441
[15]KIM B G,WAADT R,CHEONG Y H,et al. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis [J]. Plant Journal,2007,52(3):473-484
[16]QUAN R D,LIN H X,MENDOZA I,et al. SCABP8/CBL10,a putative calcium sensor,interacts with the protein kinase SOS2 to protect Arabidopsis shoots from salt stress [J]. Plant Cell,2007,19(4):1415-1431
[17]XU J,LI H D,CHEN L Q,et al. A protein kinase,interacting with two calcineurin B-like proteins,regulates K+ transporter AKT1 in Arabidopsis [J]. Cell,2006,125(7):1347-1360
[18]CHEONG Y H,PANDEY G K,GRANT J J,et al. Two calcineurin B-like calcium sensors,interacting with protein kinase CIPK23,regulate leaf transpiration and root potassium uptake in Arabidopsis [J]. Plant Journal,2007,52(2):223-239
[19]金一鋒,陳陽(yáng),高巖松,等. 草地早熟禾SnRK2.2基因克隆及非生物脅迫響應(yīng)分析[J]. 草地學(xué)報(bào),2022,30(7):1659-1667
[20]SU W H,REN Y J,WANG D J,et al. New insights into the evolution and functional divergence of the CIPK gene family in Saccharum [J]. BMC Genomics,2020,21(1):868
[21]LERAN S,EDEL K H,PERVENT M,et al. Nitrate sensing and uptake in Arabidopsis are enhanced by ABI2,a phosphatase inactivated by the stress hormone abscisic acid [J]. Science Signalling,2015,8(375):ra43
[22]KIM K N,CHEONG Y H,GRANT J J,et al. CIPK3,a calcium sensor-associated protein kinase that regulates abscisic acid and cold signal transduction in Arabidopsis [J]. Plant Cell,2015,15(2):411-423
[23]KUDLA J,XU Q,HARTER K,et al. Genes for calcineurin B-like proteins in Arabidopsis are differentially regulated by stress signals [J]. Proceedings of The National Academy of Sciences of the United States of America,1999,96(8):4718-4723
[24]馮志娟,徐盛春,劉娜,等. 菜用大豆CIPK基因?qū)δ婢趁{迫及激素的響應(yīng)特征[J]. 植物遺傳資源學(xué)報(bào),2017,18(6):1168-1178
[25]陳小晶,王東梅,關(guān)紅輝,等.玉米CIPK基因家族的鑒定及ZmCIPK3的抗旱性功能研究[J].植物遺傳資源學(xué)報(bào),2022,23(4):1064-1075
[26]HRABAK E M,CHAN C W M,GRIBSKOV M,et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases [J]. Plant Physiology,2003,132(2):666-680
[27]PANDEY G K. Emergence of a novel calcium signaling pathway in plants:CBL-CIPK signaling network [J]. Physiology and Molecular Biology of Plants,2008,14(1):51-68
[28]LI L B,ZHANG Y R,LIU K C,et al. Identification and bioinformatics analysis of SnRK2 and CIPK family genes in Sorghum [J]. Agricultural Sciences in China,2010,9(1):19-30
[29]CHEN X F,GU Z M,XIN D D,et al. Identification and characterization of putative CIPK genes in maize [J]. Journal of Genetics and Genomics,2011,38(2):77-87
[30]ZHU K K,CHEN F,LIU J Y,et al. Evolution of an intron-poor cluster of the CIPK gene family and expression in response to drought stress in soybean [J]. Scientific Reports,2016,6:28225
[31]ALEMAN F,NIEVES-CORDONES M,MARTINEZ V,et al. Root K+ acquisition in plants:The Arabidopsis thaliana model [J]. Plant and Cell Physiology,2011,52(9):1603-1612
[32]RAGEL P,RODENAS R,GARCIA-MARTIN E,et al. The CBL-interacting protein kinase CIPK23 regulates HAK5-mediated high-affinity K+ uptake in Arabidopsis roots [J]. Plant Physiology,2015,169(4):2863-2873
[33]SHI J R,KIM K N,RITZ O,et al. Novel protein kinases associated with calcineurin B-like calcium sensors in Arabidopsis [J]. Plant Cell,1999,11(12):2393-2405
[34]THODAY-KENNEDY E L,JACOBS A K,ROY S J,et al. The role of the CBL-CIPK calcium signalling network in regulating ion transport in response to abiotic stress [J]. Plant Growth Regulation,2015,76(1):3-12
[35]XIANG Y,HUANG Y M,XIONG L G. Characterization of stress-responsive CIPK genes in rice for stress tolerance improvement [J]. Plant Physiology,2007,144(3):1416-1428
[36]MO C Y,WAN S M,XIA Y Q,et al. Expression patterns and identified protein-protein interactions suggest that Cassava CBL-CIPK signal networks function in responses to abiotic stresses [J]. Frontiers in Plant Science,2018,9:269
[37]ZHANG H C,LV F L,HAN X,et al. The calcium sensor PeCBL1,interacting with PeCIPK24/25 and PeCIPK26,regulates Na+/K+homeostasis in Populus euphratica [J]. Plant Cell Reports,2013,32(5):611-621
[38]HUERTAS R,OLIAS R,ELJAKAOUI Z,et al. Overexpression of SlSOS2 (SlCIPK24) confers salt tolerance to transgenic tomato [J]. Plant Cell and Environment,2012,35(8):1467-1482
(責(zé)任編輯 彭露茜)