亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        菌株JB12影響鉛鎘脅迫下菊苣黃酮合成的轉(zhuǎn)錄組分析

        2023-12-29 00:00:00金忠民李春月劉本松劉博齊欣解琳劉麗杰張艷馥潘林
        草地學(xué)報(bào) 2023年6期

        摘要:為探究菌株JB12對(duì)菊苣(Cichorium intybus)幼苗鉛鎘抗性和黃酮生物合成的影響,將菌株JB12接種于鉛鎘復(fù)合(Pb-Cd)濃度為400~40 mg·kg-1的土壤中,測(cè)定幼苗生長(zhǎng)指標(biāo)、鉛鎘含量、抗氧化酶活性、總黃酮含量和黃酮生物合成相關(guān)酶活性,并對(duì)葉片轉(zhuǎn)錄組數(shù)據(jù)進(jìn)行分析。結(jié)果表明,接種菌株JB12后,葉片過(guò)氧化氫(H2O2)、丙二醛(Malondialdehyde,MDA)及地上部和根部鉛鎘含量均低于脅迫處理組,植株干重、抗氧化酶活性、總黃酮含量及黃酮生物合成相關(guān)酶活性均高于脅迫處理組。對(duì)葉片轉(zhuǎn)錄組數(shù)據(jù)和RT-qPCR驗(yàn)證分析表明,苯丙素和黃酮生物合成途徑相關(guān)基因表達(dá)上調(diào)可能是菌株JB12提高菊苣幼苗鉛鎘抗性的重要機(jī)制。綜上所述,菌株JB12在減少菊苣幼苗鉛鎘積累的同時(shí),還可以通過(guò)增強(qiáng)抗氧化酶活性及調(diào)控葉片黃酮生物合成相關(guān)基因的表達(dá),提高菊苣幼苗的鉛鎘抗性和總黃酮的積累。

        關(guān)鍵詞:鉛鎘脅迫;洋蔥伯克霍爾德氏菌;菊苣;轉(zhuǎn)錄組;黃酮生物合成

        中圖分類號(hào):S476

        文獻(xiàn)標(biāo)識(shí)碼:A

        文章編號(hào):1007-0435(2023)06-1648-08

        Analysis on the Effect of Strain JB12 on Transcriptome for Flavonoids Synthesis of Chicory (Cichorium intybus) under Lead and Cadmium Stress

        JIN Zhong-min1,2*, LI Chun-yue1, LIU Ben-song1, LIU Bo1, QI Xin1, XIE Lin1, LIU Li-jie1,2, ZHANG Yan-fu1,2, PAN Lin1,2

        (1. College of Life Science and Agriculture and Forestry, Qiqihar University, Qiqihar, Heilongjiang Province 161006, China;2. Heilongjiang Provincial Key Laboratory of Resistance Gene Engineering and Protection of Biodiversity in Cold Areas, Qiqihar University, Qiqihar, Heilongjiang Procince 161006, China)

        Abstract:To investigate the effect of strain JB12 on the lead (Pb) and cadmium (Cd) resistance and flavonoid biosynthesis of chicory (Cichorium intybus) seedlings,strain JB12 was inoculated into soil with Pb-Cd concentrations of 400 and 40 mg·kg-1. Seedling growth indicators,Pb and Cd content,antioxidant enzyme activity,total flavonoid content and enzyme activities related to the flavonoid biosynthesis were measured,and leaf transcriptome data were analyzed. The results showed that after inoculation with strain JB12,the levels of hydrogen peroxide (H2O2),malondialdehyde (MDA),Pb and Cd contents in the leaves and roots were significant lower than those of the only stressed group. The plant dry weight,antioxidant enzyme activity,total flavonoid content,and enzyme activities related to the flavonoid biosynthesis were higher than those of the only stressed group. The analysis of leaf transcriptome data and RT-qPCR validation showed that the up-regulation of phenylpropanoid and flavonoid biosynthesis pathway related genes expression might be an important mechanism for strain JB12 to improve the lead and cadmium resistance of chicory seedlings. In summary,the strain JB12 not only reduces the accumulation of Pb and Cd in chicory seedlings,but also enhances the activity of antioxidant enzymes and regulates the expression of genes related to flavonoid biosynthesis in leaves,therefore improving the Pb and Cd resistance and total flavonoid accumulation in chicory seedlings.

        Key words:Pb-Cd stress;Burkholderia cepacian;Chicory;Transcriptome;Flavonoid biosynthesis

        菊苣(Cichorium intybus)是菊科菊苣屬多年生草本植物,作為藥食兩用植物含有酚類化合物、黃酮類化合物、碳水化合物、倍半萜內(nèi)酯、維生素和礦物質(zhì)[1,其提取物能夠抗高尿酸血癥、抗炎、抗氧化、保肝、抗菌、抗瘧原蟲(chóng)2。從菊苣植株不同部位的總黃酮含量來(lái)看,菊苣葉是很有前途的黃酮來(lái)源3。重金屬在自然界中分布廣泛,其中鉛(Pb)和鎘(Cd)污染最為嚴(yán)重,且很多地區(qū)存在復(fù)合污染[4。重金屬含量是評(píng)價(jià)藥用植物內(nèi)在品質(zhì)的重要指標(biāo)之一,減少Pb,Cd等重金屬?gòu)奈廴就寥老蛩幱弥参锏倪w移,提高藥用植物的抗重金屬能力,為促進(jìn)藥用植物可持續(xù)發(fā)展具有重要意義[5。Pb和Cd除了抑制植物抗氧化保護(hù)機(jī)制,使植物過(guò)量產(chǎn)生活性氧(Reactive oxygen species,ROS)外[6,還抑制植物次級(jí)代謝產(chǎn)物的合成7。黃酮類化合物能夠增強(qiáng)金屬螯合作用降低植物細(xì)胞有害羥基自由基的水平8。黃酮生物合成受合成相關(guān)酶活性的影響,酶性能的增強(qiáng)還伴隨著編碼合成酶基因如苯丙氨酸解氨酶基因(Phenylalanine ammonia-lyase,PAL)、肉桂酸4-羥化酶基因(Cinnamate-4-hydroxylase,C4H)、4-香豆酰-CoA連接酶基因(4-coumaryl-CoA ligase,4CL)、查爾酮合酶基因(Chalcone synthase,CHS)和查爾酮異構(gòu)酶基因(Chalconeisomerase,CHI)等轉(zhuǎn)錄水平的上調(diào)[9。劉曉慶等10研究表明,Cd脅迫使大豆(Glycine max)PAL,C4H,4CL,CHS和CHI的表達(dá)上調(diào),增加了根系中黃酮類化合物的積累。

        耐重金屬細(xì)菌可促進(jìn)植物生長(zhǎng),減少土壤重金屬有效性和在植物中的積累[11。接種芽孢桿菌(Bacillus megaterium)H3和根瘤菌(Neorhizobium huautlense)T117的水稻(Oryza sativa)根系、籽粒以及土壤有效Cd含量顯著降低[12。耐重金屬細(xì)菌還通過(guò)調(diào)節(jié)植物抗氧化系統(tǒng)和次級(jí)代謝產(chǎn)物的含量,緩解由重金屬脅迫引起的氧化損傷[13-15。接種銅綠假單胞菌(Pseudomonas aeruginosa)增加了Pb和Cd脅迫下小麥(Triticum aestivum)黃酮類化合物的含量和鋅、氮和鈣的養(yǎng)分動(dòng)員及吸收,降低了氧化損傷指標(biāo)(H2O2和O.-2)和膜脂過(guò)氧化水平14。

        伯克霍爾德菌屬(Burkholderia)廣泛存在于水和土壤中,本屬的一些細(xì)菌具有生物防治、促進(jìn)植物生長(zhǎng)和生物修復(fù)等功能[16。本實(shí)驗(yàn)室篩選得到一株耐Pb和Cd菌株JB12,鑒定為洋蔥伯克霍爾德氏菌(Burkholderia cepacia)。試驗(yàn)表明,菌株JB12能有效吸附溶液中Pb2+和Cd2+,可促進(jìn)高羊茅和紅三葉等植物的生長(zhǎng),增強(qiáng)植物對(duì)Pb和Cd的耐受性[17。本研究根據(jù)表型和生理研究菌株JB12調(diào)控菊苣的抗Pb和Cd能力,并通過(guò)轉(zhuǎn)錄組分析和RT-qPCR試驗(yàn)探究菌株JB12調(diào)控菊苣抗Pb和Cd能力的相關(guān)機(jī)制。為抗重金屬細(xì)菌增強(qiáng)藥用植物重金屬抗性及藥材品質(zhì)提供理論基礎(chǔ)。

        1 材料與方法

        1.1 試驗(yàn)材料

        土壤(理化性質(zhì):有機(jī)質(zhì)含量為(17.5±0.96) g·kg-1,土壤pH值(7.0±0.04)、含氮(3.6±0.01) g·kg-1、磷(9.8±0.09) mg·kg-1、鉀(6.4±0.21) mg·kg-1)。供試菌株為抗Pb(1 500 mg·L-1)和Cd(200 mg·L-1)的菌株JB12[17。將菌株JB12在LB液體培養(yǎng)基中30℃,150 r·min-1培養(yǎng)16 h。將培養(yǎng)物離心后用滅菌水稀釋至最終密度為108 CFU·mL-1

        1.2 試驗(yàn)處理

        菊苣種子(河南華豐草業(yè))表面進(jìn)行消毒和沖洗,均勻播于土壤,置于光照培養(yǎng)箱中,溫度:25℃/15℃(晝/夜),光照時(shí)長(zhǎng):12 h/12 h(晝/夜)。對(duì)照(CK)為正常土壤,Pb-Cd復(fù)合濃度為400 mg·kg-1 amp; 40 mg·kg-1(A1)。待植株生長(zhǎng)2周后在脅迫處理的根部周圍接種菌液(108 CFU·mL-1,2 mL)(A2),接種3周后收獲。從每個(gè)處理中隨機(jī)抽取10株用凍存管收集后迅速置于液氮中快速冷凍,保存于-80℃冰箱。

        1.3 生物量和Pb,Cd含量的測(cè)定

        將植物分為地上部和根部,置于烘箱105℃殺青30 min,70℃烘干至恒重。采用電感耦合等離子質(zhì)譜法(ICP-MS)測(cè)定Pb和Cd含量[17。

        1.4 生理指標(biāo)測(cè)定

        葉片過(guò)氧化氫(H2O2)含量采用氧化還原法測(cè)定,丙二醛(Malondialdehyde,MDA)含量測(cè)定采用硫代巴比妥酸比色法測(cè)定,超氧化物歧化酶(Superoxide dismutase,SOD)活性測(cè)定采用氮藍(lán)四唑(Nitrotetrazolium Blue chloride,NBT)還原法測(cè)定,抗壞血酸過(guò)氧化物酶(Ascorbic acid peroxidase,APX)的活性測(cè)定參照Wang等[18的方法。

        1.5 轉(zhuǎn)錄組測(cè)序

        將對(duì)照(CK)、Pb和Cd脅迫處理(A1)和Pb和Cd脅迫下接種菌株JB12(A2)處理的葉片在Illumina測(cè)序平臺(tái)(基迪奧生物技術(shù)有限公司)按照從頭組裝方法獲得3個(gè)生物學(xué)重復(fù)的cDNA文庫(kù)。所有單基因序列通過(guò)BLAST搜索(E-valuelt;1e-5)與GO和KEGG數(shù)據(jù)庫(kù)進(jìn)行比對(duì)。

        1.6 RT-qPCR分析

        使用植物總RNA提取試劑盒(天根,DP432)分離CK,A1和A2處理的葉片總RNA。使用超微量熒光全功能分光光度計(jì)(DeNovix,USA)對(duì)總RNA濃度、純度進(jìn)行檢測(cè),用2%瓊脂糖凝膠電泳鑒定其完整性。cDNA第1條鏈的合成參照HiScript III 1 st Strand cDNA Synthesis Kit試劑盒(諾維贊,R312-01)說(shuō)明書(shū)進(jìn)行操作。使用ChamQTM Universal SYBR qPCR Master Mix試劑盒(諾維贊,Q711-02)進(jìn)行RT-qPCR。各處理3次生物學(xué)重復(fù),利用2-ΔΔCt18處理相關(guān)數(shù)據(jù)。特異性引物列于表1,以植物18SrRNA作為內(nèi)部對(duì)照,將測(cè)定的基因表達(dá)水平進(jìn)行歸一化。

        1.7 總黃酮含量和黃酮生物合成相關(guān)酶活測(cè)定

        采用亞硝酸鈉-硝酸鋁比色法20測(cè)定樣品葉片總黃酮含量。參照Z(yǔ)ucker等[21和Lister等[22的方法測(cè)定苯丙氨酸解氨酶(Phenylalnineammonialyase,PAL)和查爾酮異構(gòu)酶(Chalcone isomerase,CHI)活性。肉桂酸4-羥化酶(Cinnamate-4-hydroxylase,C4H)和4-香豆酰-CoA連接酶(4-coumarate coenzyme A ligase,4CL)活性參照Lamb等[23和Knobloch等[24的方法。

        1.8 統(tǒng)計(jì)分析

        試驗(yàn)數(shù)據(jù)分析采用SPSS 20.0完成,采用單因素方差分析(ANOVA)對(duì)數(shù)據(jù)進(jìn)行顯著性差異分析(Plt;0.05)。用Origin 2021完成數(shù)據(jù)可視化。

        2 結(jié)果與分析

        2.1 菌株JB12對(duì)菊苣幼苗生長(zhǎng)和Pb,Cd含量的影響

        A1處理抑制菊苣幼苗的生長(zhǎng)(圖1),降低了植株地上部和根部干重(圖2)。A2處理的植株較CK和A1處理表現(xiàn)出更好的生長(zhǎng),且植株地上部和根部干重高于CK和A1處理組。植株根部Pb和Cd含量遠(yuǎn)大于地上部(圖2),說(shuō)明Pb和Cd主要在根部積累。A2處理降低了植株的Pb和Cd含量(Plt;0.05)。菌株JB12降低了植株P(guān)b和Cd含量,緩解了Pb和Cd脅迫對(duì)植株生長(zhǎng)的抑制作用。

        2.2 菌株JB12對(duì)菊苣幼苗抗氧化系統(tǒng)的影響

        A1處理增加了菊苣幼苗H2O2和MDA含量(圖3),A2處理的植株H2O2和MDA含量與A1處理的植株相比顯著降低(Plt;0.05),但仍高于CK組。A1處理的植株抗氧化酶活性明顯高于CK組植株。A2處理后SOD和APX活性進(jìn)一步增強(qiáng)。菌株JB12增強(qiáng)抗氧化酶活性,減輕了ROS和膜脂過(guò)氧化水平,緩解了Pb和Cd脅迫造成的氧化損傷。

        2.3 菊苣幼苗葉片的轉(zhuǎn)錄組分析

        菊苣葉片轉(zhuǎn)錄組數(shù)據(jù)共建立了9個(gè)cDNA文庫(kù),得到437 066 346個(gè)raw reads,去掉接頭和低質(zhì)量的reads后,共獲得436 265 308個(gè)clean reads,總clean bases為65.08 Gb。樣品測(cè)序錯(cuò)誤率小于0.05%,GC值介于43.81%~45.07%,且Q30gt;93.18%,樣品的轉(zhuǎn)錄組測(cè)序質(zhì)量較高?;虻谋磉_(dá)量用RPKM值表征,設(shè)置FDRlt;0.05且|log2FC|gt;1的基因?yàn)轱@著差異基因(DEGs)進(jìn)行下一步的分析,在CK和A1處理中,共計(jì)2 748個(gè)差異表達(dá)基因,其中有919個(gè)上調(diào)基因和1 829個(gè)下調(diào)基因(圖4A)。在A1和A2處理中,共計(jì)2 721個(gè)差異表達(dá)基因,其中有1 039個(gè)上調(diào)基因和1 682個(gè)下調(diào)基因(圖4B)。

        2.4 差異表達(dá)基因的KEGG富集分析

        依托KEGG基因組信息數(shù)據(jù)庫(kù),對(duì)檢測(cè)到的DEGs所參與的代謝途徑進(jìn)行富集分析。結(jié)果表明,在CK vs A1和A1 vs A2對(duì)比中分別有625個(gè)差異基因富集到117個(gè)通路和633個(gè)差異基因富集到119個(gè)通路。其中,苯丙素生物合成(Phenylpropanoid biosynthesis)通路和黃酮生物合成(Flavonoid biosynthesis)通路的P值均小于0.05。

        2.5 RT-qPCR分析

        從苯丙素-黃酮生物合成通路中挑選4個(gè)基因(PAL,Unigene0062163、C4H,Unigene0034836、4CL,Unigene0088344和CHI3,Unigene0059987)進(jìn)行RT-qPCR驗(yàn)證分析。由圖6可知,A1處理下PAL基因表達(dá)量高于CK組。A1處理下C4H基因,4CL基因和CHI3基因表達(dá)量低于CK組,A2處理后C4H基因和4CL基因表達(dá)量高于A1處理組,但仍低于CK處理組(Plt;0.05)。A2處理后CHI3基因表達(dá)量高于CK組和A1處理組。RT-qPCR結(jié)果與轉(zhuǎn)錄組的變化趨勢(shì)一致,初步驗(yàn)證轉(zhuǎn)錄組數(shù)據(jù)的準(zhǔn)確性。

        2.6 菌株JB12對(duì)菊苣總黃酮含量和黃酮生物合成相關(guān)酶活性的影響

        A1處理降低了菊苣幼苗總黃酮含量,A2處理后植株總黃酮含量增加(Plt;0.05),但仍低于CK組(表2)。菌株JB12處理能有效抑制植株總黃酮含量的下降。PAL活性在A1處理下增加,A2處理進(jìn)一步提高了PAL活性。C4H,4CL和CHI活性均在A1處理后顯著下降(Plt;0.05),A2處理提高了C4H,4CL和CHI活性,但C4H和4CL活性仍低于對(duì)照。CHI活性經(jīng)A2處理后高于CK和A1處理。

        3 討論

        重金屬脅迫干擾了植物根系對(duì)營(yíng)養(yǎng)素的吸收、分配和代謝功能,對(duì)植物的生長(zhǎng)發(fā)育產(chǎn)生不利影響[25。接種伯克霍爾德氏菌(Burkholderia phytofirmans)PsJN可促進(jìn)植物生長(zhǎng),減少綠豆(Vigna radiata)根、莖和籽粒對(duì)Pb的吸收[26。本研究中,Pb和Cd脅迫降低了植株的干重,增加了植株H2O2,MDA含量以及Pb,Cd含量。接種菌株JB12增加了植株的干重,降低了植株H2O2,MDA含量以及Pb,Cd積累。重金屬通常作為催化劑在植物中形成活性氧類(ROS),通過(guò)破壞細(xì)胞膜完整性及大量細(xì)胞分子內(nèi)的重要功能基團(tuán),誘導(dǎo)植物產(chǎn)生氧化損傷[27。重金屬抗性菌株可增強(qiáng)植物抗氧化酶活,改善植物抗氧化系統(tǒng)14。腸桿菌(Enterobacter sp.)FM-1誘導(dǎo)抗氧化酶(SOD,POD和APX)活性增加可改善小白菜(Brassica campestris)由Pb和Cd脅迫誘導(dǎo)的氧化應(yīng)激[28。本研究中,Pb和Cd脅迫下植株SOD和APX活性增加,接種菌株JB12進(jìn)一步增加了SOD和APX的活性。SOD和APX活性的提高可以進(jìn)一步催化H2O2生成分子氧和水,降低了植株ROS含量。

        本研究中菊苣幼苗苯丙素和黃酮生物合成途徑受Pb和Cd脅迫以及菌株JB12的調(diào)節(jié)。PAL是苯丙素生物合成中第一個(gè)限速酶,催化苯丙氨酸轉(zhuǎn)化為肉桂酸,包括黃酮類化合物在內(nèi)的各種酚類化合物由此途徑衍生[8。Khanna等[15研究發(fā)現(xiàn),Cd脅迫下接種劍蘭伯克霍爾德氏菌(Burkholderia gladioli)的番茄(Solanum lycopersicum)PAL基因相對(duì)表達(dá)量上調(diào)50%。本研究中,Pb和Cd脅迫以及菌株JB12均上調(diào)了PAL基因的表達(dá)。苯丙素生物合成途徑中不同步驟的蛋白編碼基因,如C4H基因和4CL基因,在菌株JB12作用下也上調(diào)表達(dá),但仍低于CK組。此外,PAL酶,C4H酶和4CL酶活性均受到Pb和Cd脅迫以及菌株JB12的影響,相關(guān)酶活性與酶基因表達(dá)水平變化趨勢(shì)一致。因此,苯丙素生物合成過(guò)程在Pb和Cd脅迫以及菌株JB12處理中被激活,菌株JB12對(duì)Pb和Cd脅迫下苯丙素生物合成抑制有緩解作用。

        重金屬脅迫下黃酮類化合物不僅能螯合重金屬離子,還能抑制芬頓反應(yīng)生成的ROS[29。通過(guò)調(diào)節(jié)黃酮類化合物的水平作為ROS清除的活性介質(zhì)來(lái)減輕重金屬毒性[32。黃酮生物合成過(guò)程是由一組編碼CHSs,CHIs,F(xiàn)LSs和F3’H的關(guān)鍵酶基因完成的,關(guān)鍵酶基因的高表達(dá)能夠提高關(guān)鍵酶的活性,增加黃酮類化合物的合成。例如,柱花草(Stybsanthes guianensis)中CHS基因,CHI基因和FLS基因受金屬錳的調(diào)節(jié),使黃酮、總酚、單寧和花青素等次級(jí)代謝產(chǎn)物含量顯著增加來(lái)增強(qiáng)錳抗性9。CHS基因表達(dá)上調(diào)導(dǎo)致Pb脅迫下番茄(Solanum lycopersicum)中酚類、黃酮類化合物和花青素含量的增加[30。在Cd脅迫的大豆(Glycine max)中發(fā)現(xiàn)黃酮生物合成相關(guān)酶的氧化聚合改變細(xì)胞壁的通透性,進(jìn)而增強(qiáng)了植株總黃酮在葉和根中積累[31。在Cd脅迫下接種洋蔥伯克霍爾德氏菌(Burkholderia cepacia)CS8的長(zhǎng)春花(Catharanthus roseus)中酚類和黃酮類化合物含量增加,接種銅綠假單胞菌(Pseudomonas aeruginosa)和劍蘭伯克霍爾德氏菌(Burkholderia gladioli)的番茄(Solanum lycopersicum)中酚類化合物水平和滲透劑水平提高可減輕Cd誘導(dǎo)的毒性,其中CHS基因,PAL基因和CHI3基因表達(dá)上調(diào)15。本研究發(fā)現(xiàn)CHI3基因和CHI酶活經(jīng)Pb和Cd脅迫后降低,接種菌株JB12后CHI3基因表達(dá)和CHI酶活性增加,且均高于對(duì)照水平。表明CHI3基因?qū)闖B12非常敏感,促進(jìn)菊苣幼苗總黃酮的積累。

        4 結(jié)論

        綜上所述,根據(jù)植株干重、Pb和Cd含量以及抗氧化酶活等指標(biāo)發(fā)現(xiàn)菌株JB12可提高菊苣Pb、Cd抗性。對(duì)其抗性機(jī)制進(jìn)行研究發(fā)現(xiàn)苯丙素和黃酮生物合成途徑可能是菌株JB12提高菊苣Pb,Cd抗性的一個(gè)重要的機(jī)制。對(duì)苯丙素-黃酮生物合成途徑相關(guān)基因進(jìn)行RT-qPCR分析表明C4H基因,4CL基因和CHI3基因在Pb和Cd脅迫中表達(dá)下調(diào),經(jīng)菌株JB12處理后上調(diào),菌株JB12促進(jìn)黃酮類化合物的合成和積累,在菊苣Pb,Cd抗性機(jī)制中起著重要作用。本研究對(duì)抗重金屬細(xì)菌增強(qiáng)藥用植物重金屬抗性及藥用活性成分具有重要意義。

        參考文獻(xiàn)

        [1] P EROVI J,APONJAC V T,KOJI J,et al. Chicory (Cichorium intybus L.) as a food ingredient - Nutritional composition,bioactivity,safety,and health claims:A review [J]. Food Chemistry,2021(336):127676

        [2] JANDA K,GUTOWSKA I,GESZKE-MORITZ M,et al. The common chicory (Cichorium intybus L.) as a source of extracts with health-promoting properties-A review [J]. Molecules,2021,26(6):1814

        [3] LIN J Y,TANG C Y. Determination of total phenolic and flavonoid contents inselected fruits and vegetables,as well as their stimulatory effects on mouse splenocyte proliferation [J]. Food Chemistry,2007,101(1):140-147

        [4] LI S,WU J L,HUO Y L,et al. Profiling multiple heavy metal contamination and bacterial communities surrounding an iron tailing pond in Northwest China [J]. Science of the Total Environment,2021,752(2):141827

        [5] MOHD I,YAP C K,NURUL M Z. Effect of Cadmium and Copper exposure on growth,secondary metabolites and antioxidant activity in the medicinal plant Sambung nyawa (Gynura procumbens (Lour.) Merr) [J]. Molecules,2017,22(10):1623

        [6] BALALI-MOOD M,NASERI K,TAHERGORABI Z,et al. Toxic mechanisms of five heavy metals:Mercury,Lead,Chromium,Cadmium,and Arsenic[J]. Frontiers in Pharmacology,2021(12):643972

        [7] 王慶,楊云成,李丹丹,等. 生態(tài)因子對(duì)中藥材品質(zhì)影響的研究進(jìn)展[J]. 特產(chǎn)研究,2022(2):44

        [8] HANDA N,KOHLI S K,SHARMA A,et al. Selenium modulates dynamics of antioxidative defence expression,photosynthetic attributes and secondary metabolites to mitigate chromium toxicity in Brassica juncea L. plants [J]. Environmental and Experimental Botany,2019(161):180-192

        [9] JIA Y D,LI X Y,LIU Q,et al. Physiological and transcriptomic analyses reveal the roles of secondary metabolism in the adaptive responses of stylosanthes to manganese toxicity [J]. BMC Genomics,2020,21(1):861

        [10]劉曉慶,張大勇,徐照龍,等. Cd脅迫對(duì)大豆幼苗異黃酮合成關(guān)鍵酶基因表達(dá)的影響[J]. 江蘇農(nóng)業(yè)學(xué)報(bào),2013,29(5):5

        [11]MALLICK I,BHATTACHARYYA C,MUKHERJI S,et al. Effective rhizoinoculation and biofilm formation by arsenic immobilizing halophilic plant growth promoting bacteria (PGPB) isolated from mangrove rhizosphere:A step towards arsenic rhizoremediation [J]. Science of the Total Environment,2018(610):1239-1250

        [12]LI Y,PANG H D,HE L Y,et al. Cd immobilization and reduced tissue Cd accumulation of rice (Oryza sativa wuyun-23) in the presence of heavy metal-resistant bacteria [J]. Ecotoxicology and Environmental Safety,2017(138):56-63

        [13]DAI S,CHEN Q,JIANG M,et al. Colonized extremophile Deinococcus radiodurans alleviates toxicity of Cadmium and Lead by suppressing heavy metal accumulation and improving antioxidant system in rice [J]. Environmental Pollution,2021,284(1):117127

        [14]ISLAM F,YASMEEN T,ALI Q,et al. Influence of Pseudomonas aeruginosa as PGPR on oxidative stress tolerance in wheat under Zn stress [J]. Ecotoxicology and Environmental Safety,2014(104):285-293

        [15]KHANNA K,JAMWAL V L,SHARMA A,et al. Supplementation with plant growth promoting rhizobacteria (PGPR) alleviates Cadmium toxicity in Solanum lycopersicum by modulating the expression of secondary metabolites [J]. Chemosphere,2019(230):628-639

        [16]吳麗娟,韓聰,王惠梅,等. 伯克霍爾德氏菌JP2-270抗水稻紋枯病菌機(jī)理的初步研究[J]. 中國(guó)生物防治學(xué)報(bào),2022(1):38

        [17]JIN Z M,SHA W,ZHANG Y F,et al. Isolation of Burkholderia cepacia JB12 from Lead- and Cadmium-contaminated soil and its potential in promoting phytoremediation with tall fescue and red clover [J]. Canadian Journal of Microbiology,2013,59(7):449-455

        [18]WANG Q,GE C F,XU S A,et al. The endophytic bacterium Sphingomonas SaMR12 alleviates Cd stress in oilseed rape through regulation of the GSH-AsA cycle and antioxidative enzymes [J]. BMC Plant Biology,2020,20(1):63

        [19]LIVAK K J,SCHMITTGEN T D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(T) (-Delta Delta C) method [J]. Methods,2001,25(4):402-408

        [20]文培華,顏怡冰,王文君,等. 虎耳草總黃酮含量測(cè)定及其抗氧化性[J]. 食品工業(yè),2022,43(2):315-319

        [21]ZUCKER M. Sequential induction of phenylalanine ammonia-lyase and a Lyase-inactivating system in potato tuber disks [J]. Plant Physiology,1968,43(3):365-374

        [22]LISTER C E,LANCASTER J,WALKER J. Developmental changes in enzymes of flavonoid biosynthesis in the skins of red and green apple cultivars [J]. Journal of the Science of Food and Agriculture,1996,71(3):313-320

        [23]LAMB C J,RUBERY P H. A spectrophotometric assay for trans-cinnamic acid 4-hydroxylase activity [J]. Analytical Biochemistry,1975,68(2):554-561

        [24]KNOBLOCH H,HAHLBROCK K. 4 coumarate:CoA ligase from cell suspension cultures of Petroselinum hortenseHoffm [J]. Archives of Biochemistry and Biophysics,1977,184(1):237-248

        [25]GHORI N H,GHORI T,HAYAT M Q,et al. Heavy metal stress and responses in plants [J]. International Journal of Environmental Science and Technology,2019,16(3):1807-1828

        [26]NAVEED M,MUSTAFA A,AZHAR S,et al. Burkholderia phytofirmans PsJN and tree twigs derived biochar together retrieved Pb-induced growth,physiological and biochemical disturbances by minimizing its uptake and translocation in mung bean (Vigna radiata L.) [J]. Journal of Environmental Management,2020(257):109974

        [27]KUPPER H,ANDRESEN E. Mechanisms of metal toxicity in plants [J]. Metallomics,2016,8(3):269-285

        [28]YU F M,YAO Y W,F(xiàn)ENG J P,et al. Enterobacter sp. FM-1 inoculation influenced heavy metal-induced oxidative stress in pakchoi (Brassica campestris L. ssp. Chinensis Makino) and water spinach (Ipomoea aquatic F.) cultivated in Cadmium and Lead co-contaminated soils [J]. Plant and Soil,2021,459(1-2):155-171

        [29]JUNG C,MAEDER V,F(xiàn)UNK F,et al. Release of phenols from Lupinus albus L. roots exposed to Cu and their possible role in Cu detoxification [J]. Plant and Soil,2003,252(2):301-312

        [30]BALI S,JAMWAL V L,KOHLI S K,et al. Jasmonic acid application triggers detoxification of Lead (Pb) toxicity in tomato through the modifications of secondary metabolites and gene expression [J]. Chemosphere,2019(235):734-748

        [31]ZAETS I,KRAMAREV S,KOZYROVSKA N. Inoculation with a bacterial consortium alleviates the effect of cadmium overdose in soybean plants [J]. Central European Journal of Biology,2010,5(4):481-490

        [32]SINGH S K,SINGH P P,GUPTA A,et al. Chapter 12,tolerance of heavy metal toxicity using PGPR strains of Pseudomonas species [M]. In:Singh A K,A Kumar,P K Singh (eds.),PGPR Amelioration in Sustainable Agriculture:Food Security and Environmental Management,Woodhead Publishing,2019:239-252

        [33]KHAN W U,YASIN N A,AHMAD S R,et al. Role of Burkholderia cepacia CS8 in Cd-stress alleviation and phytoremediation by Catharanthus roseus [J]. International Journal of Phytoremediation,2018,20(6):581-592

        (責(zé)任編輯 劉婷婷)

        亚洲av无码一区二区三区在线| 国产传媒在线视频| 超碰Av一区=区三区| 国产精品国产自线拍免费| 粉色蜜桃视频完整版免费观看在线| 中文字幕乱码亚洲三区| 亚洲国产美女精品久久久久∴| 亚洲一区二区三区成人网站| 国产区精品| 色欲AV成人无码精品无码| 一区二区三区视频免费观看在线| 肥老熟女性强欲五十路| 狠狠97人人婷婷五月| 夜鲁很鲁在线视频| 久久久久久久综合狠狠综合| 国产美熟女乱又伦av果冻传媒| 丰满熟妇人妻av无码区 | 日本熟女视频一区二区三区| 亚洲中文久久精品字幕| 亚洲av无码久久| av香港经典三级级 在线| 国产最新一区二区三区天堂| 精品国产一区二区av麻豆不卡| 男男亚洲av无一区二区三区久久| 欧美性xxxx极品高清| 无码中文字幕加勒比一本二本| 免费一级国产大片| 亚洲精品国产第一区三区| 伊人青青草综合在线视频免费播放| 99无码精品二区在线视频| 国产亚洲av片在线观看18女人| 色综合久久久久综合999| 国产美女高潮流白浆免费观看| 国产一级黄色片在线播放| 天堂а在线中文在线新版| 18禁美女裸身无遮挡免费网站| 亚洲欧美日韩在线中文一| 99久久精品人妻少妇一| 国产伦理一区二区| 十八岁以下禁止观看黄下载链接| 亚洲最大av免费观看|