摘" 要" 近年來, 研究者們將“治療聯(lián)盟” (Therapeutic Alliance, TA)的概念與在線自助干預(yù)(Internet-based Self-help Interventions, ISIs)相結(jié)合, 以解決ISIs中用戶參與度較低的問題。這種在數(shù)字環(huán)境中形成的TA, 被稱之為“數(shù)字治療聯(lián)盟” (Digital Therapeutic Alliance, DTA)。隨著人工智能的迅速發(fā)展, 聊天機(jī)器人可模擬人類指導(dǎo), 相對于傳統(tǒng)ISIs程序更易于與用戶建立關(guān)系, 可通過友好、尊重、傾聽、鼓勵(lì)、真誠、理解、信任這幾個(gè)關(guān)系線索來促進(jìn)DTA的發(fā)展, 為解決用戶低參與度的問題提供了一種新思路。未來的研究可從影響因素、ISIs技術(shù)迭代、測量規(guī)范、實(shí)驗(yàn)操縱等方面對DTA作進(jìn)一步的探索。
關(guān)鍵詞" 數(shù)字治療聯(lián)盟, 聊天機(jī)器人, 關(guān)系線索
分類號" B849
1" 引言
目前, 在線自助干預(yù)(Internet-based Self-help Interventions, ISIs)的可行、有效性已得到廣泛驗(yàn)證(Izzaty et al., 2021; Johansson et al., 2021; Sun et al., 2021; Taylor et al., 2021; Weisel et al., 2019), 或可成為面對面治療的有力補(bǔ)充(Berry et al., 2019), 但高脫落率、低參與度仍是其眾所周知的困境, 對于無指導(dǎo)ISI, 此問題則更為凸顯(Linardon et al., 2019; Pratap et al., 2020; Zhang et al., 2021)。隨著人工智能(Artificial Intelligence, AI)技術(shù)的迅猛發(fā)展, 能模擬人類對話的聊天機(jī)器人(Chatbot)可讓無指導(dǎo)ISI在自動(dòng)化后兼顧效率及成本效益(Luo et al., 2022)。具體而言, 在聊天機(jī)器人的設(shè)計(jì)中引入關(guān)系線索(Relational Cues), 如自我披露、真誠、理解、幽默等(Gallen et al., 2018), 可在認(rèn)知、情感兩個(gè)維度上滿足用戶的需要(Abd- alrazaq et al., 2019; Provoost et al., 2017; Wiese et al., 2022), 并與用戶建立數(shù)字治療聯(lián)盟(Digital Therapeutic Alliance, DTA), 進(jìn)而促進(jìn)用戶的參與度及治療效果(Goldberg et al., 2021; Liu et al., 2022; Provoost, 2021)。縱觀既有研究, 國外相關(guān)成果盡管豐富但較為零散, 而國內(nèi)關(guān)于ISIs的研究進(jìn)展尚處初期階段(Henson et al., 2019; Grekin et al., 2019; Yao et al., 2020; Zhang et al., 2021)。鑒于此, 文章集中探討聊天機(jī)器人在無指導(dǎo)ISI中通過關(guān)系線索對DTA產(chǎn)生的可能影響, 以引發(fā)同行們對該領(lǐng)域的研究興趣, 為進(jìn)一步的研究提供參考。
2" DTA的發(fā)展
治療聯(lián)盟(Therapeutic Alliance, TA), 也稱工作同盟(Working Alliance, WA), 是來訪者和咨詢師之間為實(shí)現(xiàn)治療目標(biāo)而合作的關(guān)系的質(zhì)量與強(qiáng)度(朱旭, 江光榮, 2011a)。上世紀(jì)70年代, Bordin (1979)將TA分為三個(gè)成分——情感紐帶、對治療任務(wù)達(dá)成共識、就治療目標(biāo)達(dá)成一致, 并成為TA最流行之定義。而后, Horvath與Greenberg (1989)基于Bordin的定義編制了首個(gè)TA量表——工作同盟量表(Working Alliance Inventory, WAI)。近年來, 隨著WAI開始逐漸被用于數(shù)字心理健康的研究(Andersson et al., 2012), DTA一詞也由此誕生。在諸如以電子郵件、在線聊天、視頻會(huì)議、ISIs程序等干預(yù)形式所建立的TA均可稱為DTA (D’Alfonso et al., 2020; Henson et al., 2019; Lederman amp; D’Alfonso, 2021)。
DTA之所以得到發(fā)展, 可能的原因有三:第一, 新冠疫情加速了社會(huì)的數(shù)字化進(jìn)程, 虛擬現(xiàn)實(shí)(Virtual Reality)、元宇宙(Metaverse)等概念也得到了發(fā)展(張夏恒, 李想, 2022)。從哲學(xué)的創(chuàng)世觀看, 人類雖生活在既定的宇宙中且被排除于創(chuàng)世者之外, 但人類一直有超越自然的夢想, 而數(shù)字化的發(fā)展則為人類提供了造世的機(jī)會(huì)(黃欣榮, 曹賢平, 2022)。因此, 未來現(xiàn)實(shí)生活的數(shù)字化將成為客觀趨勢, 人機(jī)關(guān)系也變得越來越重要。第二, ISIs正朝著效益最大化的方向發(fā)展, 但更高水平的自動(dòng)化也伴隨著用戶參與度低、脫落率高的問題, 基于此, 在面對面心理咨詢/心理治療中占有重要地位的TA也自然受到研究者們的關(guān)注。第三, 基于自我決定理論(Self-determination Theory, SDT), 自主、勝任、關(guān)系這三個(gè)基本需求的滿足, 能促進(jìn)個(gè)體的外在動(dòng)機(jī)向內(nèi)在動(dòng)機(jī)轉(zhuǎn)化, 進(jìn)而保證其心理健康成長(Deci amp; Ryan, 1985)。與之相應(yīng), ISIs程序可輔助用戶解決問題, 提高用戶的自主感、勝任感, 進(jìn)而有助于培養(yǎng)TA中的情感紐帶。同時(shí), TA中“在目標(biāo)和任務(wù)上達(dá)成一致”與用戶使用ISIs程序時(shí)的目標(biāo)確立及所獲得的階段性反饋有關(guān)。因此, DTA在可行性、有效性方面具有一定的理論支撐。
有一系列研究表明, 在ISIs中建立的DTA與面對面心理咨詢/心理治療中建立的TA水平相接近(Andersson et al., 2012; Heim et al., 2018; Klasen et al., 2013; Pihlaja et al., 2018; Tremain et al., 2020)。同時(shí), DTA與參與度呈正相關(guān)(Baumel amp; Kane, 2018; Goldberg et al., 2021; Hargreaves et al., 2018; Heim et al., 2018; Perski et al., 2017; Rodrigues et al., 2021), 而參與度則是改善ISIs治療效果的關(guān)鍵因素(Arndt et al., 2020; Asaeikheybari et al., 2021; Fuhr et al., 2018; Puls et al., 2020)。另一項(xiàng)元分析還指出, DTA與治療效果也存在相關(guān), 且總體效應(yīng)量中等, 但實(shí)際的研究結(jié)果好壞參半(Probst et al., 2019), 這與測量工具的發(fā)展及選用不無關(guān)系。DTA測量需針對數(shù)字環(huán)境具體考量, 若簡單改編傳統(tǒng)WAI, 可能無法解釋數(shù)字干預(yù)中TA的復(fù)雜性。研究者們逐漸認(rèn)識到這一點(diǎn), 并著手將傳統(tǒng)WAI基于數(shù)字環(huán)境進(jìn)行改編(Tremain et al., 2020)。例如, Berger等人(2014)在WAI-SR的基礎(chǔ)上進(jìn)行改編, 使之適應(yīng)有指導(dǎo)ISI。最初, Kiluk等人(2014)提出基于原版WAI的數(shù)字改編版(WAI-Tech), 用于無指導(dǎo)ISI中DTA的測量, 但其僅僅只將量表中的“咨詢師”換成了“應(yīng)用程序”。隨著對DTA的進(jìn)一步探究, Meyer等人(2015)在研究中發(fā)現(xiàn), 被試和ISIs程序之間的TA并不等同于和人類咨詢師之間的TA。因此, 他們對幫助聯(lián)盟問卷(Helping Alliance Questionnaire, HAQ)進(jìn)行了改編, 以評估被試在多大程度上認(rèn)為程序有所助益。在實(shí)證研究中, 被試在干預(yù)后第3周的HAQ得分即可成功預(yù)測其3個(gè)月后的治療效果。最近, Berry等人(2018)考慮了無指導(dǎo)ISI的特點(diǎn), 在阿格紐關(guān)系量表(Agnew Relationship Measure, ARM)的基礎(chǔ)上編制了移動(dòng)版阿格紐關(guān)系量表(Mobile Agnew Relationship Measure, mARM)。隨后, Henson等人(2019)在WAI-SR的基礎(chǔ)上編制了D-WAI, 以專門評估無指導(dǎo)ISI的DTA。Gómez Penedo等人(2020)也為更好地測量有指導(dǎo)ISI中的DTA, 在Berger等(2014)的基礎(chǔ)上編制了WAI-I, 并在大樣本中驗(yàn)證了此量表的可靠性。為進(jìn)一步使DTA測量適應(yīng)數(shù)字干預(yù)場景, D’Alfonso等人(2020)在mARM的基礎(chǔ)上, 將人機(jī)交互(Human- Computer Interaction, HCI)理論與TA理論結(jié)合, 并嘗試開發(fā)一種能更可靠地在無指導(dǎo)ISI中評估DTA的量表。時(shí)下, 聊天機(jī)器人技術(shù)正不斷地改變傳統(tǒng)無指導(dǎo)ISI程序的交互體驗(yàn), 其既提供了類似于人類的指導(dǎo), 但又實(shí)現(xiàn)了全自動(dòng)化。因此, 未來DTA測量的發(fā)展或?qū)⑴c新興AI技術(shù)的迭代趨勢相適應(yīng)。
3" 關(guān)系線索或是影響DTA的重要因素
目前, ISIs多是基于認(rèn)知行為療法(Cognitive Behavioral Therapy, CBT)進(jìn)行設(shè)計(jì), 且對壓力、抑郁、焦慮、煙癮、酒癮、失眠及創(chuàng)傷后應(yīng)激障礙等問題均有顯著的療效(Weisel et al., 2019)。根據(jù)Bielinski和Berger (2020)的劃分, ISIs的常見類型有三:一是無指導(dǎo)干預(yù)(Unguided Interventions), 指在線干預(yù)的過程中無咨詢師介入, 用戶僅通過程序自助; 二是有指導(dǎo)干預(yù)(Guided Interventions), 指將用戶自助與定期、簡短的在線輔導(dǎo)(同步或異步)相結(jié)合; 三是混合干預(yù)(Blended Interventions), 指將在線干預(yù)與面對面心理咨詢/心理治療相結(jié)合, 以前者作為后者的補(bǔ)充。
在ISIs的情境中, 若有咨詢師的支持, TA則相對更容易建立。有研究指出, 有指導(dǎo)ISI與面對面治療所建立的TA水平并無顯著差異, TA不但預(yù)測了參與度, 也預(yù)測了治療效果(Anderson et al., 2012; Kaiser et al., 2021)。盡管有指導(dǎo)ISI的整體效果往往優(yōu)于無指導(dǎo)ISI (Baumeister et al., 2014), 但也有研究表明, 在低強(qiáng)度的有指導(dǎo)ISI中, 被試在干預(yù)初期的情感紐帶得分較低且增速緩慢(Jasper et al., 2014), 而被試在參與度、治療效果上的得分也與無指導(dǎo)ISI上的對應(yīng)得分無顯著差異(Chen et al., 2020), 這說明人類介入的缺乏限制了TA的發(fā)展。不過, Berry等人(2018)指出, 被試實(shí)際上也能與傳統(tǒng)的無指導(dǎo)ISI程序發(fā)展虛擬關(guān)系, 這有助于彌補(bǔ)缺乏人類指導(dǎo)帶來的影響。Holter等人(2020)以扎根理論(Grounded Theory)建立的人機(jī)關(guān)系模型也認(rèn)為, 個(gè)體與無指導(dǎo)ISI程序能夠建立情感紐帶, 但前提是要使個(gè)體對程序的感知在社會(huì)行動(dòng)者與無生命的程序之間交替轉(zhuǎn)換。基于此, 研究者們開始嘗試在無指導(dǎo)ISI程序中加入基于傳統(tǒng)編程的虛擬化身(Avatar), 以縮小其與有指導(dǎo)ISI效果的差距。例如, 在Heim等人(2018)的研究中, 被試的情感紐帶得分因虛擬化身的加入而穩(wěn)定發(fā)展, 并與失眠改善相關(guān)。但是, 一些被試卻表示他們更想與人類咨詢師交流, 此意愿也預(yù)測了療效。類似的, Fenski等人(2021)指出, 若虛擬化身不能對被試的負(fù)面情緒準(zhǔn)確識別并給予恰當(dāng)回應(yīng), 則很有可能起到反作用。總的來說, 嵌入于無指導(dǎo)ISI程序中的虛擬化身有希望與人類建立類似于有指導(dǎo)ISI中的DTA, 且DTA可正向影響參與度及治療效果, 但如何設(shè)計(jì)虛擬化身以保障療效仍需進(jìn)一步討論。
人類線索(Human Cues), 是計(jì)算機(jī)程序因模擬人類形象、言語、行為等條件而具有的特征, 能讓與之交互的個(gè)體產(chǎn)生往往只有與真人交互時(shí)才特有的感受(Rodrigues et al., 2021)。社會(huì)行動(dòng)者范式(Computers as Social Actors, CASA)也指出, 人類往往會(huì)下意識地對計(jì)算機(jī)程序呈現(xiàn)的人類線索做出反應(yīng), 且無論這些線索有多么初級(Nass et al., 1994)。為將人類線索具體化, Gallen等人(2018)將其分為4類:視覺線索(Visual Cues), 如年齡、性別、外貌、表情、動(dòng)作等; 言語線索(Verbal Cues), 如文字、語音、語調(diào)、語速等; 準(zhǔn)非言語線索(Quasi-Nonverbal Cues), 如表情符號; 關(guān)系線索(Relational Cues), 如自我披露、理解、幽默等。這些線索都可能對情感紐帶及整個(gè)DTA的建立、發(fā)展造成影響, 可作為指導(dǎo)虛擬化身設(shè)計(jì)的起點(diǎn)。
由上文可知, 被試往往對虛擬化身存有更高的情感期待, 而這種情感期待是否能得到滿足也會(huì)影響情感紐帶的發(fā)展。若情感紐帶建立的不夠牢固, 則可能會(huì)限制DTA的發(fā)展, 進(jìn)而導(dǎo)致較差的參與度及治療效果。然而, 要形成情感紐帶, 前提則是虛擬化身向被試傳遞了溫暖、安全和信任等關(guān)系線索(Negri et al., 2019)。在早期的研究中, 研究者就已發(fā)現(xiàn)在虛擬化身的對話設(shè)計(jì)中引入寒暄、幽默、同理心等關(guān)系線索對情感紐帶的影響相對目標(biāo)、任務(wù)維度更大(Bickmore et al., 2005)。在最近的研究中, ter Stal等人(2020)也指出, 富有同理心的話語是影響人機(jī)關(guān)系的關(guān)鍵因素。因此, 賦予虛擬化身恰當(dāng)?shù)年P(guān)系線索對其與用戶發(fā)展DTA可能有重要的作用。
4" 如何設(shè)計(jì)關(guān)系線索來促進(jìn)DTA的發(fā)展
若關(guān)系線索對DTA的發(fā)展可能起到重要的作用, 那么, 如何設(shè)計(jì)關(guān)系線索, 并讓其更高效地介入自然也變得重要(Müssener, 2021)。此時(shí), 基于AI自然語言處理(Natural Language Processing, NLP)技術(shù)的聊天機(jī)器人就展現(xiàn)出了優(yōu)勢, 其不但能呈現(xiàn)豐富的人類線索, 還能基于用戶的行為數(shù)據(jù)進(jìn)行持續(xù)的“學(xué)習(xí)” (Zhang et al., 2020), 并給予用戶個(gè)性化的反饋(Laranjo et al., 2018; Zhang et al., 2020), 比基于傳統(tǒng)編程的虛擬化身更高效、靈活且人性化, 無疑是更活躍的社會(huì)行動(dòng)者(Alkhaldi et al., 2016; Ames et al., 2019; Hardeman et al., 2019; Tremain et al., 2020)。
自1966年世界上第一個(gè)真正意義上的聊天機(jī)器人ELIZA誕生以來(Weizenbaum, 1983), 聊天機(jī)器人的技術(shù)就一直在持續(xù)迭代, 并逐步融入到數(shù)字心理健康之中(Elmasri amp; Maeder, 2016; Fitzpatrick et al., 2017; Gaffney et al., 2014)。目前, 聊天機(jī)器人通常作為單獨(dú)的功能模塊嵌入ISIs程序之中, 以語音用戶界面(Voice User Interface, VUI)的形式為用戶提供幫助, 可替代人類咨詢師的指導(dǎo)而使程序成為一種新型的無指導(dǎo)ISI (如MYLO, Woebot), 或是配合人類咨詢師作為一個(gè)輔助的功能(如dll心聆“小天”)。此外, 根據(jù)回復(fù)生成機(jī)制, 聊天機(jī)器人可分為兩類:一是檢索式(Retrieval-based), 聊天機(jī)器人將從靜態(tài)的知識庫中檢索預(yù)定義的規(guī)則來進(jìn)行回復(fù); 二是生成式(Generation-based), 聊天機(jī)器人將通過學(xué)習(xí)及推理機(jī)制來動(dòng)態(tài)生成回復(fù)(Song et al., 2018)。在形態(tài)方面, 聊天機(jī)器人還可大致分為兩類:一是具有虛擬化身, 這是一種將聊天機(jī)器人和交互式化身(計(jì)算機(jī)生成的數(shù)字角色, 其外觀可能為人類或卡通人物)結(jié)合在一起的程序形態(tài), 可通過眼神、表情、動(dòng)作、語音、文本等方式與人類交互(如Replika); 二是僅以語音、文本與人類交互(如Siri, 微軟“小冰”)。
近年來, 聊天機(jī)器人在ISIs中的應(yīng)用逐漸增多, 有研究發(fā)現(xiàn)其不但比傳統(tǒng)的無指導(dǎo)ISI程序更能促進(jìn)被試的參與度(Perski et al., 2019; Vaidyam et al., 2019), 且其與被試所建立的TA水平也與人類相當(dāng)(Darcy et al., 2021)。盡管如此, 若要問聊天機(jī)器人為何有效, 研究者們卻知之甚少。本文假設(shè), 可能的原因有四:第一, 心智感知理論(Mind Perception Theory; Waytz et al., 2010)指出, 個(gè)體可感知到其他對象具有心理能力, 并對其作擬人化的信息加工。因此, 聊天機(jī)器人的關(guān)系線索越豐富, 就越可能提升社會(huì)存在(Social Presence), 使個(gè)體產(chǎn)生與真實(shí)人類交互的感知(Lee et al., 2020; Sundar, 2008)。同時(shí), 擬人化的聊天機(jī)器人通常比人類更可靠、易得, 個(gè)體與其交互也容易獲得更多安全感(Wanser et al., 2019), 從而更傾向與其合作(Wiese et al., 2022)。第二, 基于社會(huì)線索減少理論(Reduced Social Cues, RSC), 在網(wǎng)絡(luò)文本信息交互的過程中, 由于思想和情感必須轉(zhuǎn)化為文字以彌補(bǔ)非言語信息的缺乏(Kiesler et al., 1984)。因此, 個(gè)體在信息加工的過程中可能會(huì)產(chǎn)生網(wǎng)絡(luò)去抑制效應(yīng)(Online Disinhibition Effect, ODE), 進(jìn)而表現(xiàn)出不同于面對面交流時(shí)的行為, 包括放松、較少的約束感以及較開放的情感表達(dá)等(Suler, 2004), 這可能會(huì)使人機(jī)關(guān)系變得更為緊密、牢固。第三, 聊天機(jī)器人天然具有人類線索, 能擬人化地輔助個(gè)體解決問題, 滿足了SDT原則, 進(jìn)而促進(jìn)情感紐帶的發(fā)展。第四, 由人際投資模型(The Investment Model of Personal Relationships)可知, 聊天機(jī)器人提供的情感支持及有價(jià)值的信息, 可使個(gè)體的感知獲益及感知投入持續(xù)增加、認(rèn)知成本及疑慮持續(xù)降低, 進(jìn)而逐漸建立信任感, 提升對ISIs程序的參與度(Rusbult et al., 1994)。
歸納上述, 具備關(guān)系線索且更為靈活的聊天機(jī)器人更利于從認(rèn)知及情感的角度切入, 在無指導(dǎo)ISI中促進(jìn)DTA的快速發(fā)展, 解決用戶參與度低的問題。然而, 盡管已有少部分研究者針對此問題進(jìn)行了探索, 但目前尚未有研究者歸納出確實(shí)、有效的關(guān)系線索以指導(dǎo)聊天機(jī)器人的設(shè)計(jì)。例如, Rodrigues等人(2021)發(fā)現(xiàn), 與僅具有視覺線索的聊天機(jī)器人相比, 僅具有關(guān)系線索的聊天機(jī)器人更能與被試建立DTA, 且參與度也更高。但是, 此研究只探討了視覺線索與關(guān)系線索在DTA上的差異, 而并未檢驗(yàn)不同關(guān)系線索對DTA的影響。為將聊天機(jī)器人的作用具體化, 應(yīng)對可能更為關(guān)鍵的關(guān)系線索作深入的探討。因此, 下文將在前人研究的基礎(chǔ)之上提出幾種ISIs中可能會(huì)對DTA帶來積極影響的關(guān)系線索(Bordin, 1979; Horvath amp; Greenberg, 1989; Norcross, 2002), 以幫助聊天機(jī)器人發(fā)展人工智慧(Artificial Wisdom)。
4.1" 友好尊重
在面對面咨詢中, 溫暖、和諧、寬松、自由且安全的談話氛圍以及咨訪雙方的相互尊重都是TA的助長因素(Luborsky, 1976)。同樣, 在過往的ISIs研究中, 友好與尊重也被認(rèn)為是程序中必備的基礎(chǔ)性設(shè)計(jì), 其中ISIs程序所傳遞信息的語氣、語調(diào)都會(huì)對干預(yù)的可信度、參與度、有效性造成影響(Ames et al., 2019; Bock et al., 2015)。盡管被試的偏好各不相同, 但禮貌、尊重、友好、幽默、積極等友好的對話語氣相對更受其青睞, 反之, 被試普遍對壓力、教訓(xùn)、羞辱等較為排斥(Ames et al., 2019; Müssener, 2021)。在使用聊天機(jī)器人時(shí), 這種影響還可能被實(shí)時(shí)的對話交流強(qiáng)化。例如, 當(dāng)聊天機(jī)器人直呼被試的名字, 并在適當(dāng)?shù)臅r(shí)候使用幽默, 也能增進(jìn)雙方的友好關(guān)系(Bickmore et al., 2009)。原因在于, 聊天機(jī)器人的“人格”特征會(huì)影響被試情緒反應(yīng)的強(qiáng)度(Medhi Thies et al., 2017), 若被試因聊天機(jī)器人的互動(dòng)反饋而將其歸因?yàn)槎Y貌、友好、尊重的, 即便被試知曉這是虛擬交互, 也仍會(huì)將這種類社會(huì)互動(dòng)(Parasocial Interaction)視作一種親密的社交互動(dòng)(Horton amp; Wohl, 1956), 并將對應(yīng)的社會(huì)化規(guī)范應(yīng)用于與聊天機(jī)器人的交互中。而當(dāng)聊天機(jī)器人具有虛擬形象時(shí), 由于其呈現(xiàn)出更為豐富的非言語信息(如表情、姿勢、動(dòng)作、唇同步等), 還可通過人工情緒傳染(Artificial Emotional Contagion)的機(jī)制(如模仿及情緒鏡像), 使被試更容易感受到其友好、尊重之特征(Nofz amp; Vendy, 2002)。例如, 在面對面咨詢的場景之中, 來訪者往往能夠敏感地捕捉咨詢師的微表情, 以評估咨詢師的價(jià)值觀及評判意圖(Datz et al., 2019)。而在ISIs的情境之中, 若賦予虛擬化身較高的模型面數(shù)(Tris)并精細(xì)化其骨骼(Bone)設(shè)計(jì), 化身不但能模擬生動(dòng)的宏表情, 甚至也可能模擬出積極的微表情以進(jìn)一步促進(jìn)真實(shí)且融洽的交談氛圍。
4.2" 傾聽鼓勵(lì)
咨詢師對咨詢工作的投入通常被認(rèn)為是TA的預(yù)測因素, 通常包含了積極地傾聽與適時(shí)鼓勵(lì)(朱旭, 江光榮, 2011b)。而在無指導(dǎo)ISI的研究中, 研究者也發(fā)現(xiàn)無論被試傾訴的對象是真人還是聊天機(jī)器人, 情緒宣泄所達(dá)到的效果并無顯著差異(Ho et al., 2018)。不過, ISIs程序往往需要與服務(wù)器通訊, 因此以純文本聊天機(jī)器人進(jìn)行傾聽與回應(yīng)時(shí), 其回復(fù)速度也會(huì)影響其社交吸引力(Lew amp; Walther, 2022), 而基于上下文的動(dòng)態(tài)回復(fù)相對于過于即時(shí)或延遲的效果更好(Samsudin, 2020)。此外, 聊天機(jī)器人在動(dòng)態(tài)回復(fù)時(shí)若能模擬“正在輸入”狀態(tài), 用戶可更明顯地感知到其適時(shí)的停頓與猶豫, 并產(chǎn)生其正在“思考”的印象。對于鼓勵(lì), Chikersal等人(2020)也指出, 在ISIs中, 那些帶來更積極影響的支持信息, 不但更為簡短, 而且也包含更多積極、肯定、鼓勵(lì)等詞匯?;诖?, 聊天機(jī)器人除了直接鼓勵(lì)用戶之外, 在多輪對話中通過關(guān)鍵詞復(fù)述也能給予用戶間接鼓勵(lì), 并提升其傾訴體驗(yàn)。當(dāng)聊天機(jī)器人具有虛擬形象時(shí), 則可在用戶表達(dá)時(shí), 針對對應(yīng)的內(nèi)容, 回應(yīng)以適當(dāng)?shù)难凵衲?、積極的面部表情、點(diǎn)頭以及開放的手勢等作為言語鼓勵(lì)的補(bǔ)充, 這能有效地使用戶產(chǎn)生人際互動(dòng)的感知(Cummins amp; Cui, 2014), 進(jìn)而將關(guān)系線索歸因于聊天機(jī)器人(Hortensius amp; Cross, 2018), 并進(jìn)一步提升傾聽、鼓勵(lì)的效果。然而, 鼓勵(lì)可能并不適用于所有群體(Arndt et al., 2020)。因此, 聊天機(jī)器人可先甄別出哪些人群更容易受鼓勵(lì)的積極影響后再做反應(yīng)。
4.3" 真誠理解
心理咨詢的效果往往取決于咨訪關(guān)系的質(zhì)量——若咨詢師善解人意、真誠一致并無條件積極地關(guān)注著來訪者, 咨詢效果則更好(Rogers, 1957)。而在無指導(dǎo)ISI的情境中, 若聊天機(jī)器人能經(jīng)常對被試的話語進(jìn)行關(guān)注, 并以誠實(shí)、謙虛的態(tài)度對被試進(jìn)行請教, 被試對它的積極評價(jià)也會(huì)更多(Zhou et al., 2019), 這不僅會(huì)讓被試更具有參與感, 而且還會(huì)幫助聊天機(jī)器人“學(xué)習(xí)”新概念。此外, 若聊天機(jī)器人能主動(dòng)向被試披露其“個(gè)人信息”, 也有可能讓被試感受到它的“真誠”, 進(jìn)而作更多的自我暴露(Kang amp; Gratch, 2014)。對于理解, 共情技術(shù)在傳統(tǒng)咨詢中較為常用, 而在ISIs的情境中, 聊天機(jī)器人基于真實(shí)的咨詢語料來進(jìn)行訓(xùn)練, 亦可具備復(fù)述的能力來做到一定程度的“共情”。然而, 復(fù)述并非鸚鵡學(xué)舌即可, 而是需要用“自己的話”加上來訪者話中的重要詞語來提煉內(nèi)容。目前, 基于先進(jìn)的自然語言生成模型GPT-3 (General Pre-trained Transformer-3)就可使聊天機(jī)器人做到長話短說、取其精要(Sezgin et al., 2022)。但若要推測來訪者的言外之意來達(dá)到更高級的“共情”且能兼顧對話歷史來保持咨詢的連貫性, 則仍需技術(shù)的進(jìn)一步迭代。此外, 聊天機(jī)器人還可基于個(gè)性化技術(shù)對用戶獨(dú)特的需求、偏好、情緒進(jìn)行積極、精準(zhǔn)的響應(yīng)(Valentine et al., 2022), 進(jìn)而使用戶體驗(yàn)到一種區(qū)別于傳統(tǒng)咨詢的一種獨(dú)特“理解”。例如, Liu-Thompkins等人(2022)嘗試將一個(gè)個(gè)性化的系統(tǒng)框架融入于真實(shí)的營銷場景中, 使聊天機(jī)器人通過偏好分析、人格評估、目標(biāo)推理三個(gè)步驟, 來具備換位思考的“共情”能力。有研究發(fā)現(xiàn), 引入個(gè)性化的設(shè)計(jì)有利于被試與ISIs程序在治療任務(wù)及目標(biāo)上達(dá)成一致(Penedo et al., 2020), 進(jìn)而加強(qiáng)參與動(dòng)機(jī)(Liu et al., 2013)及DTA (Oinas-Kukkonen amp; Harjumaa, 2009; Tremain et al., 2020; Valentine et al., 2022)。
4.4" 相互信賴
在一段咨訪關(guān)系中, 若來訪者認(rèn)為咨詢師可信, 他們才會(huì)作更多自我暴露, 進(jìn)而促進(jìn)TA的發(fā)展(Bachelor, 2013; 朱旭, 江光榮, 2011b)。同樣,"可信度與DTA的質(zhì)量也高度相關(guān), ISIs程序的低可信度可能會(huì)導(dǎo)致被試參與度低甚至脫落(Mackie et al., 2017)。反之, 若被試覺得ISIs程序可信, 其繼續(xù)使用的意愿(Radomski et al., 2019)及其對被治愈的期望也會(huì)更高(Sauer-Zavala et al., 2018)。在無指導(dǎo)ISI中, 聊天機(jī)器人所營造的擬人的第一印象會(huì)影響其可信度(Kelders et al., 2012; Neuberg, 1989; Oinas-Kukkonen amp; Harjumaa, 2009), 而外在刺激特征則是最關(guān)鍵的預(yù)測因素(Kim et al., 2021; Richards et al., 2020; Tremain et al., 2020)。但不同于傳統(tǒng)咨詢的是, 在ISIs的情境中可讓用戶自主設(shè)計(jì)、搭配, 或基于用戶畫像來賦予聊天機(jī)器人特定的種族、形象、年齡、性別、個(gè)性、聲音(Brown et al., 2013), 并基于用戶反饋迭代、調(diào)整, 因此更具靈活性。此外, 類同于復(fù)述, 包含了情感詞語的情感反映技術(shù)也值得探究。在干預(yù)早期, 通過基于深度學(xué)習(xí)的情感預(yù)測技術(shù)(Kumar, 2021), 聊天機(jī)器人能以簡短的情感反映(如“我感到你現(xiàn)在很焦慮”)與用戶迅速建立信任。隨著DTA水平的逐步提升, 聊天機(jī)器人還可進(jìn)一步將更為關(guān)鍵的情感反饋給用戶, 并通過詢問以澄清其情感體驗(yàn), 促使其作更深入的暴露。但由于情感通常以隱喻、明喻、舉例等方式表達(dá), 因此, 聊天機(jī)器人在不明其意時(shí)可靈活運(yùn)用主動(dòng)提問來進(jìn)行確認(rèn)及“學(xué)習(xí)”, 以豐富知識圖譜(Yin et al., 2017)。最后, 并非所有用戶都對情感反映表示歡迎, 因此聊天機(jī)器人在作情感反映前, 需綜合評估個(gè)人知識圖譜、DTA水平及上下文情感詞出現(xiàn)的頻率、強(qiáng)度等因素來確定回復(fù)的時(shí)機(jī)及內(nèi)容, 并結(jié)合用戶的后續(xù)反饋來習(xí)得其偏好。
綜上所述, 文章對現(xiàn)有研究結(jié)果進(jìn)行了歸納, 并梳理了DTA的前因、后果。基于此, 文章將提出一個(gè)模型(見圖1)。并假設(shè), DTA對治療效果有直接影響; DTA對參與度有直接影響; 參與度對治療效果有直接影響。同時(shí), 友好尊重、傾聽鼓勵(lì)、真誠理解、相互信賴等關(guān)系線索或可對DTA造成影響, 進(jìn)而帶來更優(yōu)的參與度及治療效果。
5" 存在問題及未來展望
5.1" 需進(jìn)一步探索DTA的影響因素
盡管人類線索的效用顯著(Rietz et al., 2019), 但目前關(guān)于聊天機(jī)器人的研究多集中于言語、視覺線索, 將關(guān)系線索與不同線索比較的研究相對較少(Bao et al., 2022; Grekin et al., 2019; ter Stal et al., 2020)。然而, 在傳統(tǒng)咨詢領(lǐng)域中, 研究者會(huì)將關(guān)系線索與其他變量對比, 以確定不同變量對療效的貢獻(xiàn)大小, 但文章僅涉及可能影響DTA的部分關(guān)系線索(Gallen et al., 2018)。因此, 究竟是哪一個(gè)變量在發(fā)揮關(guān)鍵作用, 仍不得而知(Heim et al., 2018)。在基于聊天機(jī)器人的無指導(dǎo)ISI程序中, 除人類線索之外還包括用戶體驗(yàn)、AI對話水平、用戶期望等影響因素。首先, 基于Hentati等人(2021)的發(fā)現(xiàn), 程序用戶界面(User Interface, UI)的易用與否對被試的參與度有顯著的影響。因此, 這一額外變量可能會(huì)導(dǎo)致研究者錯(cuò)誤地評估聊天機(jī)器人的作用。其次, 有研究發(fā)現(xiàn)人類線索之間存在交互作用, 當(dāng)聊天機(jī)器人呈現(xiàn)強(qiáng)視覺線索(人類照片)時(shí), AI對話水平與被試態(tài)度無關(guān), 但呈現(xiàn)弱視覺線索(氣泡圖)時(shí), 強(qiáng)AI對話水平補(bǔ)償了弱視覺線索的低擬人化效果。最后, 此研究還指出身份線索設(shè)定了被試對聊天機(jī)器人性能的期望, 當(dāng)聊天機(jī)器人被識別為人類時(shí)被試對其有更高的期望, 而低AI對話水平則會(huì)導(dǎo)致更多負(fù)面評價(jià)(Go amp; Sundar, 2019)。因此, 聊天機(jī)器人呈現(xiàn)的人類線索并非越多越好, 不同線索的影響不同且內(nèi)在關(guān)系復(fù)雜。在未來的研究中, 研究者可評估更多的TA助長因素, 并將其它人類線索及變量與之對比或組合, 探索不同變量之間可能存在的交互作用。
5.2" ISIs需作進(jìn)一步的技術(shù)迭代
時(shí)下, ISIs多是將傳統(tǒng)心理療法數(shù)字化, 而計(jì)算機(jī)科學(xué)領(lǐng)域仍有諸多成果可促進(jìn)ISIs的技術(shù)迭代。首先, 可將其他成熟的結(jié)構(gòu)化技術(shù)與ISIs程序結(jié)合, 使之進(jìn)一步體系化。例如, 以說服性系統(tǒng)設(shè)計(jì)(Persuasive System Design, PSD)來構(gòu)建ISIs程序, 程序?qū)⒁愿嗟刂С?、提醒、安排來提高參與度(Baumel amp; Yom-Tov, 2018)。此外, 使用動(dòng)機(jī)性訪談(Motivational Interviewing, MI)這種結(jié)構(gòu)化的對話技術(shù), 也可提升用戶改變的動(dòng)機(jī)(Rollnick et al., 2010), 進(jìn)而快速且有效地提升其參與度(Malins et al., 2020)。其次, 可使用較先進(jìn)的算法模型來進(jìn)一步提升ISIs程序的性能。例如, 以創(chuàng)新的BERT (Bidirectional Encoder Representation from Transformers)或GPT-3模型來替代依賴人力、拓展性較差的LIWC (Linguistic Inquiry and Word Count)模型(Tanana et al., 2021)。如此, 聊天機(jī)器人不但能動(dòng)態(tài)評估用戶的情緒及DTA水平, 其情感識別/交互能力也能得到極大的加強(qiáng)(Rajagopal et al., 2021)。然而, 當(dāng)聊天機(jī)器人的回復(fù)生成更具靈活性且富有創(chuàng)意時(shí), 其生成內(nèi)容的不確定性也是一把雙刃劍。因此, 在咨詢情境中將檢索式與生成式結(jié)合, 開發(fā)聯(lián)合型的聊天機(jī)器人, 或許更有利于實(shí)際的應(yīng)用(Song et al., 2018)。最后, 未來也可將NLP及計(jì)算機(jī)視覺(Computational Vision, CV)相結(jié)合的多模態(tài)技術(shù)運(yùn)用于ISIs中。例如, 通過深度學(xué)習(xí)模型對語音、語調(diào)、語速、宏表情、微表情、肢體動(dòng)作、瞳孔擴(kuò)張等因素進(jìn)行綜合分析, 以進(jìn)一步提升聊天機(jī)器人對用戶意圖、情緒推斷的準(zhǔn)確度(Hu et al., 2018; Jonell, 2019; Kuo et al., 2021; Lee et al., 2020; Liu amp; Yang, 2021), 并提供諸如文字、圖像、選項(xiàng)、語音等交互形式, 以適應(yīng)不同群體的習(xí)慣。此外, 還可結(jié)合虛擬現(xiàn)實(shí)(Virtual Reality, VR)技術(shù)來彌補(bǔ)虛擬與真實(shí)交互的差距, 強(qiáng)化沉浸感及社會(huì)存在(Donker et al., 2019; Miloff et al, . 2020)。
5.3" 開發(fā)適應(yīng)ISIs的DTA測量工具并結(jié)合客觀數(shù)據(jù)進(jìn)行報(bào)告
具備有效的測量工具, 是推進(jìn)領(lǐng)域研究發(fā)展的重要條件, 但在現(xiàn)階段, 研究者們對于如何衡量DTA卻幾乎沒有共識(Gómez Penedo et al., 2020)。例如, 研究者們要么直接使用WAI量表, 要么只對WAI量表進(jìn)行最小程度的微調(diào)(Ellis- Brush, 2020), 但簡單地將“咨詢師”替換為“應(yīng)用程序”可能有失偏頗。一方面, 將ISIs程序定位為人時(shí), 被試可能產(chǎn)生更高的預(yù)期并提高評價(jià)標(biāo)準(zhǔn)(Go amp; Sundar, 2019)。另一方面, 面對面治療中的重要因素在ISIs中可能并非同等重要, ISIs具有其自身的特殊性及復(fù)雜性(Clarke et al., 2016), 而在基于聊天機(jī)器人的ISIs中, 研究者不但要考量程序的交互體驗(yàn), 還需要對其中的人類線索進(jìn)行評估。因此, 研究者未來可在傳統(tǒng)TA理論的基礎(chǔ)上, 還考慮如社會(huì)行動(dòng)者范式(CASA)、恐怖谷效應(yīng)(UVE)等HCI理論(Smelser amp; Baltes, 2001; Zhang et al., 2020), 針對ISIs情境及干預(yù)形式來設(shè)計(jì)專門的DTA量表(D’Alfonso et al., 2020; Heim et al., 2018)。此外, 越來越多關(guān)于TA的研究強(qiáng)調(diào), 需要更準(zhǔn)確地識別TA的建立以及破裂的發(fā)生(Colli et al., 2019), 但時(shí)下DTA的測量幾乎都依賴被試的自我報(bào)告(Berger, 2017), 而沒有結(jié)合行為、生理數(shù)據(jù)等進(jìn)行更為客觀的量化分析。因此, 未來可結(jié)合更詳盡的客觀數(shù)據(jù)(Nof et al., 2021), 對被試的聲學(xué)特征、行為軌跡、文本及視聽數(shù)據(jù)進(jìn)行建模, 并動(dòng)態(tài)分析當(dāng)下的DTA質(zhì)量, 監(jiān)測聊天機(jī)器人與被試的DTA在何時(shí)建立、破裂, 進(jìn)而為聊天機(jī)器人的行為決策提供更優(yōu)的指導(dǎo)。最后, 研究者還可綜合評估量化數(shù)據(jù)及咨詢師、觀察者的主觀數(shù)據(jù), 以加強(qiáng)研究結(jié)果的嚴(yán)謹(jǐn)性。
5.4" 關(guān)注在ISIs中不同療法及不同群體于DTA上所呈現(xiàn)出的新問題
目前, DTA研究中所使用的ISIs程序多是基于CBT設(shè)計(jì)的, 盡管在線CBT的可行、有效性均得到驗(yàn)證(Newby et al., 2017; Titov et al., 2015),"但仍有部分群體并未充分受益于此(Rozental et al., 2019; Sunderland et al., 2012)。因此, 在ISIs中仍要開發(fā)和測試更多的替代療法。例如, 正念干預(yù)(Mindfulness-based Interventions, MBIs)就被認(rèn)為是CBT的有效替代(Li et al., 2021)。有研究表明, 被試不但在MBIs中的TA得分高于CBT (Jazaieri et al., 2018), 且狀態(tài)正念也與TA存在高度的相關(guān)(Johnson, 2018)。但是, MBIs與TA關(guān)系的研究仍然較少, 在ISIs環(huán)境中的類似證據(jù)則更是缺乏。因此, 未來的研究可在DTA的研究中使用正念減壓療法(Mindfulness-based Stress Reduction, MBSR)、正念認(rèn)知療法(Mindfulness-based Cognitive Therapy, MBCT)、接納與承諾療法(Acceptance and Commitment Therapy, ACT)等MBIs, 并嘗試以聊天機(jī)器人模擬正念教練, 優(yōu)化現(xiàn)有在線MBIs的體驗(yàn)。此外, 基于一種療法的ISIs在不同心理問題(如抑郁、焦慮、恐懼、成癮等)、群體(如青少年、成年人、老年人或男性、女性等)中所建立的DTA水平可能存在差異, 但現(xiàn)有研究對此少有討論(Darcy et al., 2021; Ellis-Brush, 2020; Werz et al., 2021)。因此, 未來的研究在探討DTA與某一癥狀的關(guān)系時(shí), 還可將被試劃分為更多的亞組, 以檢驗(yàn)不同特征人群的結(jié)果差異, 進(jìn)而加深對DTA作用機(jī)制的理解。
參考文獻(xiàn)
黃欣榮, 曹賢平. (2022). 元宇宙的技術(shù)本質(zhì)與哲學(xué)意義. 新疆師范大學(xué)學(xué)報(bào)(哲學(xué)社會(huì)科學(xué)版), 43(3), 119–126.
張夏恒, 李想. (2022). 國外元宇宙領(lǐng)域研究現(xiàn)狀、熱點(diǎn)及啟示. 產(chǎn)業(yè)經(jīng)濟(jì)評論, 10(2), 199–214.
朱旭, 江光榮. (2011a). 工作同盟的概念. 中國臨床心理學(xué)雜志, 19(2), 275–280.
朱旭, 江光榮. (2011b). 當(dāng)事人眼里的工作同盟:質(zhì)的分析. 心理學(xué)報(bào), 43(4), 420–431.
Abd-alrazaq, A. A., Alajlani, M., Alalwan, A. A., Bewick, B. M., Gardner, P., amp; Househ, M. (2019). An overview of the features of chatbots in mental health: A scoping review. International Journal of Medical Informatics, 132, 103978. https://doi.org/10.1016/j.ijmedinf.2019.103978
Alkhaldi, G., Hamilton, F. L., Lau, R., Webster, R., Michie, S., amp; Murray, E. (2016). The effectiveness of prompts to promote engagement with digital interventions: A systematic review. Journal of Medical Internet Research, 18(1), e6. https://doi.org/10.2196/jmir.4790
Ames, H. M., Glenton, C., Lewin, S., Tamrat, T., Akama, E., amp; Leon, N. (2019). Clients’ perceptions and experiences of targeted digital communication accessible via mobile devices for reproductive, maternal, newborn, child, and adolescent health: A qualitative evidence synthesis. Cochrane Database Systematic Reviews, 10(10), CD013447. https://doi.org/10.1002/14651858.cd013447
Anderson, R. E. E., Spence, S. H., Donovan, C. L., March, S., Prosser, S., amp; Kenardy, J. (2012). Working alliance in online cognitive behavior therapy for anxiety disorders in youth: Comparison with clinic delivery and its role in predicting outcome. Journal of Medical Internet Research, 14(3), e88. https://doi.org/10.2196/jmir.1848
Andersson, G., Paxling, B., Wiwe, M., Vernmark, K., Felix, C. B., Lundborg, L., … Carlbring, P. (2012). Therapeutic alliance in guided internet-delivered cognitive behavioural treatment of depression, generalized anxiety disorder and social anxiety disorder. Behaviour Research and Therapy, 50(9), 544–550.
Arndt, A., Rubel, J., Berger, T., amp; Lutz, W. (2020). Outpatient and self-referred participants: Adherence to treatment components and outcome in an internet intervention targeting anxiety disorders. Internet Interventions, Advance online publication. https://doi.org/10.1016/j.invent.2020.100319
Asaeikheybari, G., Hooper, M. W., amp; Huang, M.C. (2021). A context-adaptive smoking cessation system using videos. Smart Health, 19, 100148. https://doi.org/10.1016/j.smhl. 2020.100148
Bachelor, A. (2013). Clients’ and therapists’ views of the therapeutic alliance: Similarities, differences and relationship to therapy outcome. Clinical Psychology and Psychotherapy, 20(2), 118–135.
Bao, Z., Chen, J., Luo, Y., amp; Reani, M. (2022, July). Convincing or odd: Anthropomorphic design cues in chatbots. Paper presented at the meeting of the pacific asia conference on information systems, Sydney, AUS.
Baumeister, H., Reichler, L., Munzinger, M., amp; Lin, J. (2014). The impact of guidance on Internet-based mental health interventions: A systematic review. Internet Interventions, 1(4), 205–215.
Baumel, A., amp; Kane, J. M. (2018). Examining predictors of real-world user engagement with self-guided eHealth interventions: Analysis of mobile apps and websites using a novel dataset. Journal of Medical Internet Research, 20(12), e11491. https://doi.org/10.2196/11491
Baumel, A., amp; Yom-Tov, E. (2018). Predicting user adherence to behavioral eHealth interventions in the real world: Examining which aspects of intervention design matter most. Translational Behavioral Medicine, 8(5), 793–798.
Berger, T. (2017). The therapeutic alliance in internet interventions: A narrative review and suggestions for future research. Psychotherapy Research, 27(5), 511–524.
Berger, T., Boettcher, J., amp; Caspar, F. (2014). Internet-based guided self-help for several anxiety disorders: A randomized controlled trial comparing a tailored with a standardized disorder-specific approach. Psychotherapy, 51(2), 207–219.
Berry, K., Salter, A., Morris, R., James, S., amp; Bucci, S. (2018). Assessing therapeutic alliance in the context of mHealth interventions for mental health problems: Development of the mobile agnew relationship measure (mARM) questionnaire. Journal of Medical Internet Research, 20(4), e90. https://doi.org/10.2196/jmir.8252
Berry, N., Lobban, F., amp; Bucci, S. (2019). A qualitative exploration of service user views about using digital health interventions for self-management in severe mental health problems. BMC Psychiatry, 19(1), 35.
Bickmore, T., Gruber, A., amp; Picard, R. (2005). Establishing the computer-patient working alliance in automated health behavior change interventions. Patient Education and Counseling, 59(1), 21–30.
Bickmore, T. W., Pfeifer, L. M., amp; Jack, B. W. (2009). Taking the time to care: Empowering low health literacy hospital patients with virtual nurse agents. In Proceedings of the SIGCHI Conference on Human Factors in Computing Systems (pp. 1265–1274). New York, NY: Association for Computing Machinery.
Bielinski, L. L., amp; Berger, T. (2020). Internet interventions for mental health: Current state of research, lessons learned and future directions. Counseling Psychology and Psychotherapy, 28(3), 65–83.
Bock, B. C., Rosen, R. K., Barnett, N. P., Thind, H., Walaska, K., Foster, R., … Traficante, R. (2015). Translating behavioral interventions onto mhealth platforms: Developing text message interventions for smoking and alcohol. JMIR MHealth and UHealth, 3(1), e22. https://doi.org/10.2196/mhealth.3779
Bordin, E. S. (1979). The generalizability of the psychoanalytic concept of the working alliance. Psychotherapy: Theory, Research amp; Practice, 16(3), 252–260.
Brown, A., Mountford, V. A., amp; Waller, G. (2013). Is the therapeutic alliance overvalued in the treatment of eating disorders? International Journal of Eating Disorders, 46(8), 779–782.
Chen, H., Rodriguez, M. A., Qian, M., Kishimoto, T., Lin, M., amp; Berger, T. (2020). Predictors of treatment outcomes and adherence in internet-based cognitive behavioral therapy for social anxiety in China. Behavioural and Cognitive Psychotherapy, 48(3), 291–303.
Chikersal, P., Belgrave, D., Doherty, G., Enrique, A., Palacios, J. E., Richards, D., amp; Thieme, A. (2020). Understanding client support strategies to improve clinical outcomes in an online mental health intervention. In Proceedings of the 2020 CHI Conference on Human Factors in Computing Systems (pp. 1–16). New York, NY: Association for Computing Machinery.
Clarke, J., Proudfoot, J., Whitton, A., Birch, M. R., Boyd, M., Parker, G., … Fogarty, A. (2016). Therapeutic alliance with a fully automated mobile phone and web-based intervention: Secondary analysis of a randomized controlled trial. JMIR Mental Health, 3(1), e10. https://doi.org/10.2196/ mental.4656
Colli, A., Gentile, D., Condino, V., amp; Lingiardi, V. (2019). Assessing alliance ruptures and resolutions: Reliability and validity of the collaborative interactions scale-revised version. Psychotherapy Research, 29(3), 279–292.
Cummins, R. G., amp; Cui, B. (2014). Reconceptualizing address in television programming: The effect of address and affective empathy on viewer experience of parasocial interaction. Journal of Communication, 64(4), 723–742.
D’Alfonso, S., Lederman, R., Bucci, S., amp; Berry, K. (2020). The digital therapeutic alliance and human-computer interaction. JMIR Mental Health, 7(12), e21895. https:// doi.org/10.2196/21895
Darcy, A., Daniels, J., Salinger, D., Wicks, P., amp; Robinson, A. (2021). Evidence of human-level bonds established with a digital conversational agent : Cross-sectional, retrospective observational study. JMIR Formative Research, 5(5), e27868. https://doi.org/10.2196/27868
Datz, F., Wong, G., amp; L?ffler-Stastka, H. (2019). Interpretation and working through contemptuous facial micro-expressions benefits the patient-therapist relationship. International Journal of Environmental Research and Public Health, 16(24), 4901. https://doi.org/10.3390/ijerph16244901
Deci, E. L., amp; Ryan, R. M. (1985). Intrinsic motivation and self-determination in human behavior. New York, NY: Plenum.
Donker, T., Cornelisz, I., van Klaveren, C., van Straten, A., Carlbring, P., Cuijpers, P., amp; van Gelder, J. L. (2019). Effectiveness of self-guided app-based virtual reality cognitive behavior therapy for acrophobia: A randomized clinical trial. JAMA Psychiatry, 76(7), 682–690.
Ellis-Brush, K. (2020). Coaching in a digital age : Can a working alliance form between coachee and “coaching app”? (Unpublished doctorial dissertation). Oxford Brookes University.
Elmasri, D., amp; Maeder, A. (2016). A conversational agent for an online mental health intervention. In G. Ascoli, M. Hawrylycz, H. Ali, D. Khazanchi, amp; Y. Shi (Eds.), Lecture notes in computer science: Vol. 9919: Brain informatics and health (pp. 243–251). Berlin, Germany: Springer.
Fenski, F., Rozental, A., Heinrich, M., Knaevelsrud, C., Zagorscak, P., amp; Boettcher, J. (2021). Negative effects in internet-based interventions for depression: A qualitative content analysis. Internet Interventions, 26, 100469. https://doi.org/10.1016/j.invent.2021.100469
Fitzpatrick, K. K., Darcy, A., amp; Vierhile, M. (2017). Delivering cognitive behavior therapy to young adults with symptoms of depression and anxiety using a fully automated conversational agent (Woebot): A randomized controlled trial. JMIR Mental Health, 4(2), e19. https://doi.org/ 10.2196/mental.7785
Fuhr, K., Schr?der, J., Berger, T., Moritz, S., Meyer, B., Lutz, W., Hohagen, F., … Klein, J. P. (2018). The association between adherence and outcome in an Internet intervention for depression. Journal of Affective Disorders, 229, 443–449.
Gaffney, H., Mansell, W., Edwards, R., amp; Wright, J. (2014). Manage your life online (MYLO): A pilot trial of a conversational computer-based intervention for problem solving in a student sample. Behavioural and Cognitive Psychotherapy, 42(6), 731–746.
Gallen, S., Gallen, S., Zurich, E. T. H., amp; Zurich, E. T. H. (2018, June). The impact of interpersonal closeness cues in text-based healthcare chatbots on attachment bond and the desire to continue interacting: An experimental design. Paper presented at the 26th European Conference on Information Systems, Portsmouth, UK.
Go, E., amp; Sundar, S. S. (2019). Humanizing chatbots: The effects of visual, identity and conversational cues on humanness perceptions. Computers in Human Behavior, 97, 304–316.
Goldberg, S. B., Baldwin, S. A., Riordan, K. M., Torous, J., Dahl, C. J., Davidson, R. J., amp; Hirshberg, M. J. (2021). Alliance with an unguided smartphone app: Validation of the digital working alliance inventory. Assessment, 29(6), 1331–1345.
Gómez Penedo, J. M., Berger, T., Grosse Holtforth, M., Krieger, T., Schr?der, J., Hohagen, F., … Klein, J. P. (2020). The working alliance inventory for guided internet interventions (WAI-I). Journal of Clinical Psychology, 76(6), 973–986.
Grekin, E. R., Beatty, J. R., amp; Ondersma, S. J. (2019). Mobile health interventions: Exploring the use of common relationship factors. JMIR MHealth and UHealth, 7(4), e11245. https://doi.org/10.2196/11245
Hardeman, W., Houghton, J., Lane, K., Jones, A., amp; Naughton, F. (2019). A systematic review of just-in-time adaptive interventions (JITAIs) to promote physical activity. International Journal of Behavioral Nutrition and Physical Activity, 16(1), 31.
Hargreaves, A., Dillon, R., Castorina, M., Furey, E., Walsh, J., Fitzmaurice, B., … Donohoe, G. (2018). Predictors of adherence to low support, computerised, cognitive remediation training in psychosis. Psychosis, 10(4), 298–306.
Heim, E., R?tger, A., Lorenz, N., amp; Maercker, A. (2018). Working alliance with an avatar: How far can we go with internet interventions? Internet Interventions, 11, 41–46.
Henson, P., Wisniewski, H., Hollis, C., Keshavan, M., amp; Torous, J. (2019). Digital mental health apps and the therapeutic alliance: Initial review. BJPsych Open, 5(1), e15. https://doi.org/10.1192/bjo.2018.86
Hentati, A., Forsell, E., Ljótsson, B., Kaldo, V., Lindefors, N., amp; Kraepelien, M. (2021). The effect of user interface on treatment engagement in a self-guided digital problem- solving intervention: A randomized controlled trial. Internet Interventions, 26, 100448. https://doi.org/10.1016/ j.invent.2021.100448
Ho, A., Hancock, J., amp; Miner, A. S. (2018). Psychological, relational, and emotional effects of self-disclosure after conversations with a chatbot. Journal of Communication, 68(4), 712–733.
Holter, M. T. S., Ness, O., Johansen, A. B., amp; Brendryen, H. (2020). Making come-alive and keeping un-alive: How people relate to self-guided web-based health interventions. Qualitative Health Research, 30(6), 927–941.
Hortensius, R., amp; Cross, E. S. (2018). From automata to animate beings: The scope and limits of attributing socialness to artificial agents. Annals of the New York Academy of Sciences, 1426(1), 93–110.
Horton, D., amp; Wohl, R. R. (1956). Mass communication and para-social interaction: Observations on intimacy at a distance. Psychiatry, 19(3), 215–229.
Horvath, A. O., amp; Greenberg, L. S. (1989). Development and validation of the working alliance inventory. Journal of Counseling Psychology, 36(2), 223–233.
Hu, T., Xu, A., Liu, Z., You, Q., Guo, Y., Sinha, V., … Akkiraju, R. (2018, April). Touch your heart: A tone- aware chatbot for customer care on social media. Paper presented at the 2018 CHI Conference on Human Factors in Computing Systems, Montreal, Canada.
Izzaty, R. E., Astuti, B., amp; Cholimah, N. (2021). Evaluation of an online cognitive behavioural therapy, mindfulness meditation, and yoga (CBT-MY) intervention for posttraumatic stress disorder: A single arm clinical trial with psychometric and psychophysiological outcomes. Angewandte Chemie International Edition, 6(11), 951–952.
Jasper, K., Weise, C., Conrad, I., Andersson, G., Hiller, W., amp; Kleinst?uber, M. (2014). The working alliance in a randomized controlled trial comparing internet-based self-help and face-to-face cognitive behavior therapy for chronic tinnitus. Internet Interventions, 1(2), 49–57.
Jazaieri, H., Goldin, P. R., amp; Gross, J. J. (2018). The role of working alliance in CBT and MBSR for social anxiety disorder. Mindfulness, 9(5), 1381–1389.
Johansson, M., Berman, A. H., Sinadinovic, K., Lindner, P., Hermansson, U., amp; Andréasson, S. (2021). Effects of internet-based cognitive behavioral therapy for harmful alcohol use and alcohol dependence as self-help or with therapist guidance: Three-armed randomized trial. Journal of Medical Internet Research, 23(11), e29666. https://doi.org/ 10.2196/29666
Johnson, D. A. (2018). The relationship between state mindfulness and working alliance among counselors- in-training. Journal of Humanistic Counseling, 57(1), 31–50.
Jonell, P. (2019). Using social and physiological signals for user adaptation in conversational agents. In N. Agmon, M. E. Taylor, E. Elkind, amp; M. Veloso (Eds.), Proceedings of the International Joint Conference on Autonomous Agents and Multiagent Systems (pp. 2420–2422). Richland, SC: International Foundation for Autonomous Agents and Multiagent Systems.
Kaiser, J., Hanschmidt, F., amp; Kersting, A. (2021). The association between therapeutic alliance and outcome in internet-based psychological interventions: A meta-analysis. Computers in Human Behavior, 114, 106512. https:// doi.org/10.1016/j.chb.2020.106512
Kang, S. H., amp; Gratch, J. (2014). Exploring users’ social responses to computer counseling interviewers’ behavior. Computers in Human Behavior, 34, 120–130.
Kelders, S. M., Kok, R. N., Ossebaard, H. C., amp; van Gemert-Pijnen, J. E. W. C. (2012). Persuasive system design does matter: A systematic review of adherence to web-based interventions. Journal of Medical Internet Research, 14(6), e152. https://doi.org/10.2196/jmir.2104
Kiesler, S., Siegel, J., amp; McGuire, T. W. (1984). Social psychological aspects of computer-mediated communication. American Psychologist, 39(10), 1123–1134.
Kiluk, B. D., Serafini, K., Frankforter, T., Nich, C., amp; Carroll, K. M. (2014). Only connect: The working alliance in computer-based cognitive behavioral therapy. Behaviour Research and Therapy, 63, 139–146.
Kim, H. C., Cha, M. C., amp; Ji, Y. G. (2021). The impact of an agent’s voice in psychological counseling: Session evaluation and counselor rating. Applied Sciences, 11(7), 2893. https://doi.org/10.3390/app11072893
Klasen, M., Knaevelsrud, C., amp; B?ttche, M. (2013). Die therapeutische beziehung in internetbasierten therapieverfahren: Ein überblick. Nervenarzt, 84(7), 823–831.
Kumar, T. S. (2021). Construction of hybrid deep learning model for predicting children behavior based on their emotional reaction. Journal of Information Technology, 3(1), 29–43.
Kuo, P. H., Lin, S. T., Hu, J., amp; Huang, C. J. (2021). Multi- sensor context-aware based chatbot model: An application of humanoid companion robot. Sensors, 21(15), 5132.
Laranjo, L., Dunn, A. G., Tong, H. L., Kocaballi, A. B., Chen, J., Bashir, R., … Coiera, E. (2018). Conversational agents in healthcare: A systematic review. Journal of the American Medical Informatics Association, 25(9), 1248–1258.
Lederman, R., amp; D’Alfonso, S. (2021). The Digital therapeutic alliance : Prospects and considerations. JMIR Mental Health, 8(7), e31385. https://doi.org/10.2196/31385
Lee, S., Lee, N., amp; Sah, Y. J. (2020). Perceiving a mind in a chatbot: Effect of mind perception and social cues on co-presence, closeness, and intention to use. International Journal of Human-Computer Interaction, 36(10), 930–940.
Lew, Z., amp; Walther, J. B. (2022). Social scripts and expectancy violations: Evaluating communication with human or ai chatbot interactants. Media Psychology, 25(6), 1–16.
Li, J., Cai, Z., Li, X., Du, R., Shi, Z., Hua, Q., … Zhan, X. (2021). Mindfulness-based therapy versus cognitive behavioral therapy for people with anxiety symptoms: A systematic review and meta-analysis of random controlled trials. Annals of Palliative Medicine, 10(7), 7596–7612.
Linardon, J., Cuijpers, P., Carlbring, P., Messer, M., amp; Fuller-Tyszkiewicz, M. (2019). The efficacy of app- supported smartphone interventions for mental health problems: A meta-analysis of randomized controlled trials. World Psychiatry, 18(3), 325–336.
Liu, H., Peng, H., Song, X., Xu, C., amp; Zhang, M. (2022). Using AI chatbots to provide self-help depression interventions for university students : A randomized trial of effectiveness. Internet Interventions, 27, 100495. https://doi.org/10.1016/j.invent.2022.100495
Liu-Thompkins, Y., Okazaki, S., amp; Li, H. (2022). Artificial empathy in marketing interactions: Bridging the human-AI gap in affective and social customer experience. Journal of the Academy of Marketing Science, 50, 1198–1218.
Liu, X., Zhang, J., amp; Guo, C. (2013). Full-text citation analysis : A new method to enhance scholarly networks. Journal of the American Society for Information Science and Technology, 64(9), 1852–1863.
Liu, Y., amp; Yang, R. (2021). Federated learning application on depression treatment robots (DTbot). In Proceeding of the 13th International Conference on Computer Research and Development (pp. 121–124). Piscataway, NJ: IEEE.
Luborsky, L. L. (1976). Helping alliance in psychotherapy. In J. L. Cleghhorn (Ed.), Successful Psychotherapy (pp. 92–116). New York, NY: Brunner/Mazel.
Luo, B., Lau, R. Y. K., Li, C., amp; Si, Y. (2022). A critical review of state-of-the-art chatbot designs and applications. Wiley Interdisciplinary Reviews: Data Mining and Knowledge Discovery, 12(1), e1434. https://doi.org/10.1002/ widm.1434
Mackie, C., Dunn, N., Maclean, S., Testa, V., Heisel, M., amp; Hatcher, S. (2017). A qualitative study of a blended therapy using problem solving therapy with a customised smartphone app in men who present to hospital with intentional self-harm. Evidence-Based Mental Health, 20(4), 118–122.
Malins, S., Biswas, S., Rathbone, J., Vogt, W., Pye, N., Levene, J., … Russell, J. (2020). Reducing dropout in acceptance and commitment therapy, mindfulness-based cognitive therapy, and problem-solving therapy for chronic pain and cancer patients using motivational interviewing. British Journal of Clinical Psychology, 59(3), 424–438.
Medhi Thies, I., Menon, N., Magapu, S., Subramony, M., amp; O’neill, J. (2017). How do you want your chatbot? An exploratory Wizard-of-Oz study with young, urban Indians. In R. Bernaupt, G. Dalvi, A. Joshi, K. Balkrishan, J. O'Neill, amp; M. Winckler (Eds.), Proceeding of the IFIP Conference on Human-Computer Interaction (pp. 441– 459). Berlin, Germany: Springer.
Meyer, B., Bierbrodt, J., Schr?der, J., Berger, T., Beevers, C. G., Weiss, M., … Klein, J. P. (2015). Effects of an Internet intervention (Deprexis) on severe depression symptoms: Randomized controlled trial. Internet Interventions, 2(1), 48–59.
Miloff, A., Carlbring, P., Hamilton, W., Andersson, G., Reuterski?ld, L., amp; Lindner, P. (2020). Measuring alliance toward embodied virtual therapists in the era of automated treatments with the Virtual Therapist Alliance Scale (VTAS): Development and psychometric evaluation. Journal of Medical Internet Research, 22(3), e16660.
Müssener, U. (2021). Digital encounters : Human interactions in mHealth behavior change interventions. Digital Health, 7, 1–6.
Nass, C., Steuer, J., amp; Tauber, E. R. (1994, April). Computers are social actors. Paper presented at the SIGCHI Conference on Human Factors in Computing Systems, Boston, MA.
Negri, A., Christian, C., Mariani, R., Belotti, L., Andreoli, G., amp; Danskin, K. (2019). Linguistic features of the therapeutic alliance in the first session: A psychotherapy process study. Research in Psychotherapy: Psychopathology, Process and Outcome, 22(1), 71–82.
Neuberg, S. L. (1989). The goal of forming accurate impressions during social interactions: Attenuating the impact of negative expectancies. Journal of Personality and Social Psychology, 56(3), 374–386.
Newby, J. M., Mewton, L., amp; Andrews, G. (2017). Transdiagnostic versus disorder-specific internet-delivered cognitive behaviour therapy for anxiety and depression in primary care. Journal of Anxiety Disorders, 46, 25–34.
Nof, A., Amir, O., Goldstein, P., amp; Zilcha-Mano, S. (2021). What do these sounds tell us about the therapeutic alliance: Acoustic markers as predictors of alliance. Clinical Psychology and Psychotherapy, 28(4), 807–817.
Nofz, M. P., amp; Vendy, P. (2002). When computers say it with feeling: Communication and synthetic emotions in Kubrick’s 2001: A space odyssey. Journal of Communication Inquiry, 26(1), 26–45.
Norcross, J. C. (2002). Psychotherapy relationships that work: Therapist contributions and responsiveness to patients. Oxford University Press.
Oinas-Kukkonen, H., amp; Harjumaa, M. (2009). Persuasive systems design: Key issues, process model, and system features. Communications of the Association for Information Systems, 24(1), 485–500.
Penedo, J. M. G., Babl, A. M., Holtforth, M., Hohagen, F., Krieger, T., Lutz, W., … Berger, T. (2020). The association of therapeutic alliance with long-term outcome in a guided internet intervention for depression: Secondary analysis from a randomized control trial. Journal of Medical Internet Research, 22(3), e15824. https://doi.org/ 10.2196/15824
Perski, O., Blandford, A., West, R., amp; Michie, S. (2017). Conceptualising engagement with digital behaviour change interventions: A systematic review using principles from critical interpretive synthesis. Translational Behavioral Medicine, 7(2), 254–267.
Perski, O., Crane, D., Beard, E., amp; Brown, J. (2019). Does the addition of a supportive chatbot promote user engagement with a smoking cessation app? An experimental study. Digit Health, 5, 1–13.
Pihlaja, S., Stenberg, J. H., Joutsenniemi, K., Mehik, H., Ritola, V., amp; Joffe, G. (2018). Therapeutic alliance in guided internet therapy programs for depression and anxiety disorders – A systematic review. Internet Interventions, 11, 1–10.
Pratap, A., Neto, E. C., Snyder, P., Stepnowsky, C., Elhadad, N., Grant, D., … Omberg, L. (2020). Indicators of retention in remote digital health studies: A cross-study evaluation of 100, 000 participants. Npj Digital Medicine, 3(1), 1–10.
Probst, G. H., Berger, T., amp; Flückiger, C. (2019). The alliance-outcome relation in internet-based interventions for psychological disorders: A correlational meta-analysis. Verhaltenstherapie, 29(3), 182–195.
Provoost, S. (2021). Embodied Conversational Agents in Internet-Based Cognitive Behavioral Therapy for Depression Bridging the Gap Between Unguided and Guided Interventions (Unpublished doctorial dissertation). Vrije Universiteit Amsterdam.
Provoost, S., Lau, H. M., Ruwaard, J., amp; Riper, H. (2017). Embodied conversational agents in clinical psychology: A scoping review. Journal of Medical Internet Research, 19(5), e151. https://doi.org/10.2196/jmir.6553
Puls, H. C., Schmidt, R., Herpertz, S., Zipfel, S., Tuschen- Caffier, B., Friederich, H. C., … Hilbert, A. (2020). Adherence as a predictor of dropout in internet-based guided self-help for adults with binge-eating disorder and overweight or obesity. International Journal of Eating Disorders, 53(4), 555–563.
Radomski, A. D., Wozney, L., McGrath, P., Huguet, A., Hartling, L., Dyson, M. P., … Newton, A. S. (2019). Design and delivery features that may improve the use of internet-based cognitive behavioral therapy for children and adolescents with anxiety: A realist literature synthesis with a persuasive systems design perspective. Journal of Medical Internet Research, 21(2), e11128. https://doi.org/ 10.2196/11128
Rajagopal, A, Nirmala, V., Andrew, J., amp; Arun, M. (2021). Novel AI to avert the mental health crisis in COVID- 19 : Novel application of GPT2 in cognitive behaviour therapy. Research Square, Advance online publication. https://doi.org/ 10.21203/rs.3.rs-382748/v3
Richards, D., Alsharbi, B., amp; Abdulrahman, A. (2020). Can I help you? Preferences of young adults for the age, gender and ethnicity of a virtual support person based on individual differences including personality and psychological state. In Proceedings of the Australasian Computer Science Week Multiconference (pp. 1–10). New York, NY: Association for Computing Machinery.
Rietz, T., Benke, I., amp; Maedche, A. (2019). The impact of anthropomorphic and functional chatbot design features in enterprise collaboration systems on user acceptance. In Proceedings of the 14th International Conference on Wirtschaftsinformatik (pp. 1642–1656). Siegen, Germany.
Rodrigues, T. R. C., Reijnders, T., de Buisonjé, D. D., Kowatsch, T., Janssen, V. R., Kraaijenhagen, R. A., … Evers, A. W. M. (2021). Human cues in self-help lifestyle interventions : An experimental field study (Preprint). Journal of Medical Internet Research, Advance online publication. https://doi.org/10.2196/preprints.30057
Rogers, C. R. (1957). The necessary and sufficient conditions of therapeutic personality change. Journal of Consulting Psychology, 21(2), 95–103.
Rollnick, S., Butler, C. C., Kinnersley, P., Gregory, J., amp; Mash, B. (2010). Motivational interviewing. BMJ, 340, 1242–1245.
Rozental, A., Andersson, G., amp; Carlbring, P. (2019). In the absence of effects: An individual patient data meta- analysis of non-response and its predictors in internet- based cognitive behavior therapy. Frontiers in Psychology, 10, 589.
Rusbult, C. E., Drigotas, S. M., amp; Verette, J. (1994). The investment model: An interdependence analysis of commitment processes and relationship maintenance phenomena. In D. J. Canary amp; L. Stafford (Eds.), Communication and relational maintenance (pp. 115–139). Academic Press.
Samsudin, C. M. (2020). The effect of chatbots response latency on users’ trust (Unpublished doctorial dissertation). University of Oklahoma.
Sauer-Zavala, S., Boswell, J. F., Bentley, K. H., Thompson-Hollands, J., Farchione, T. J., amp; Barlow, D. H. (2018). Expectancies, working alliance, and outcome in transdiagnostic and single diagnosis treatment for anxiety disorders: An investigation of mediation. Cognitive Therapy and Research, 42(2), 135–145.
Sezgin, E., Sirrianni, J., amp; Linwood, S. L. (2022). Operationalizing and implementing pretrained, large artificial intelligence linguistic models in the US health care system: Outlook of generative pretrained transformer 3 (GPT-3) as a service model. JMIR Medical Informatics, 10(2), e32875. https:// doi.org/10.2196/32875
Smelser, N. J., amp; Baltes, P. B. (Eds). (2001). International encyclopedia of the social amp; behavioral sciences (Vol. 11). Amsterdam, Netherlands: Elsevier.
Song, Y., Yan, R., Li, C.-T., Nie, J.-Y., Zhang, M., amp; Zhao, D. (2018). An ensemble of retrieval-based and generation- based human-computer conversation systems. In Proceedings of the International Conference of Learning Representation ICLR 2018 (pp. 4382–4388). ICLR.
Suler, J. (2004). The online disinhibition effect. Cyberpsychology amp; Behavior, 7(3), 321–326.
Sun, S., Lin, D., Goldberg, S., Shen, Z., Chen, P., Qiao, S., … Operario, D. (2021). A mindfulness-based mobile health (mHealth) intervention among psychologically distressed university students in quarantine during the COVID-19 pandemic: A randomized controlled trial. Journal of Counseling Psychology, 69(2), 157–171.
Sundar, S. S. (2008). The MAIN model: A heuristic approach to understanding technology effects on credibility. In M. J. Metzger, A. J. Flanagin, D. John, amp; C. T. MacArthur (Eds.), Digital media, youth, and credibility (pp. 73–100). Cambridge, MA: MIT press.
Sunderland, M., Wong, N., Hilvert-Bruce, Z., amp; Andrews, G. (2012). Investigating trajectories of change in psychological distress amongst patients with depression and generalised anxiety disorder treated with internet cognitive behavioural therapy. Behaviour Research and Therapy, 50(6), 374–380.
Tanana, M. J., Soma, C. S., Kuo, P. B., Bertagnolli, N. M., Dembe, A., Pace, B. T., … Imel, Z. E. (2021). How do you feel? Using natural language processing to automatically rate emotion in psychotherapy. Behavior Research Methods, 53(5), 2069–2082.
Taylor, H., Strauss, C., amp; Cavanagh, K. (2021). Can a little bit of mindfulness do you good? A systematic review and meta-analyses of unguided mindfulness-based self-help interventions. Clinical Psychology Review, 89, 102078. https://doi.org/10.1016/j.cpr.2021.102078
ter Stal, S., Kramer, L. L., Tabak, M., op den Akker, H., amp; Hermens, H. (2020). Design features of embodied conversational agents in eHealth: A literature review. International Journal of Human Computer Studies, 138, 102409. https://doi.org/10.1016/j.ijhcs.2020.102409
Titov, N., Dear, B. F., Staples, L. G., Terides, M. D., Karin, E., Sheehan, J., …Wootton, B. M. (2015). Disorder- specific versus transdiagnostic and clinician-guided versus self-guided treatment for major depressive disorder and comorbid anxiety disorders: A randomized controlled trial. Journal of Anxiety Disorders, 35, 88–102.
Tremain, H., McEnery, C., Fletcher, K., amp; Murray, G. (2020). The therapeutic alliance in digital mental health interventions for serious mental illnesses: Narrative review. JMIR Mental Health, 7(8), e17204. https://doi.org/ 10.2196/17204
Vaidyam, A. N., Wisniewski, H., Halamka, J. D., Kashavan, M. S., amp; Torous, J. B. (2019). Chatbots and conversational agents in mental health: A review of the psychiatric landscape. The Canadian Journal of Psychiatry, 64(7), 456–464.
Valentine, L., D’Alfonso, S., amp; Lederman, R. (2022). Recommender systems for mental health apps: Advantages and ethical challenges. AI amp; SOCIETY, Advance online publication. https://doi.org/10.1007/s00146-021-01322-w
Wanser, S. H., Vitale, K. R., Thielke, L. E., Brubaker, L., amp; Udell, M. A. R. (2019). Spotlight on the psychological basis of childhood pet attachment and its implications. Psychology Research and Behavior Management, 12, 469–479.
Waytz, A., Gray, K., Epley, N., amp; Wegner, D. M. (2010). Causes and consequences of mind perception. Trends in Cognitive Sciences, 14(8), 383–388.
Weisel, K. K., Fuhrmann, L. M., Berking, M., Baumeister, H., Cuijpers, P., amp; Ebert, D. D. (2019). Standalone smartphone apps for mental health: A systematic review and meta-analysis. npj Digital Medicine, 2(1), 118.
Weizenbaum, J. (1983). ELIZA: A computer program for the study of natural language communication between man and machine. Communications of the ACM, 26(1), 23–28.
Werz, J., Voderholzer, U., amp; Tuschen-Caffier, B. (2021). Alliance matters: But how much? A systematic review on therapeutic alliance and outcome in patients with anorexia nervosa and bulimia nervosa. Eating and Weight Disorders - Studies on Anorexia, Bulimia and Obesity, 27, 1279–1295. https://doi.org/10.1007/s40519-021-01281-7
Wiese, E., Weis, P. P., Bigman, Y., Kapsaskis, K., amp; Gray, K. (2022). It’s a match: Task assignment in human–robot collaboration depends on mind perception. International Journal of Social Robotics, 14(1), 141–148.
Yao, H., Chen, J. H., amp; Xu, Y. F. (2020). Rethinking online mental health services in China during the COVID-19 epidemic. Asian Journal of Psychiatry, Advance online publication. https://doi.org/10.1016/j.ajp.2020.102015
Yin, Z., Chang, K., amp; Zhang, R. (2017). Deepprobe: Information directed sequence understanding and chatbot design via recurrent neural networks. In Proceedings of the 23rd ACM SIGKDD International Conference on Knowledge Discovery and Data Mining (pp. 2131–2139). New York, NY: Association for Computing Machinery.
Zhang, J., Oh, Y. J., Lange, P., Yu, Z., amp; Fukuoka, Y. (2020). Artificial intelligence chatbot behavior change model for designing artificial intelligence chatbots to promote physical activity and a healthy diet: Viewpoint. Journal of Medical Internet Research, 22(9), e22845. https://doi.org/ 10.2196/22845
Zhang, X., Lewis, S., Firth, J., Chen, X., amp; Bucci, S. (2021). Digital mental health in China: A systematic review. Psychological Medicine, 51(15), 2552–2570.
Zhou, M. X., Wang, C., Mark, G., Yang, H., amp; Xu, K. (2019). Building real-world chatbot interviewers: Lessons from a wizard-of-oz field study. In C. Trattner, D. Parra, amp; N. Riche (Eds.), Proceedings of ACM IUI 2019 Workshops (Vol. 2327, pp. 1–6). New York, NY: ACM.
Abstract: To address the issue of users’ poor engagement, researchers have recently integrated the therapeutic alliance (TA) concept with Internet-based self-help interventions (ISIs). Digital therapeutic alliance (DTA) are TAs established within a digital environment. A chatbot can replicate human guidance due to the rapid development of artificial intelligence, and it is easier to establish relationships with users than traditional ISIs. Furthermore, it may enhance DTA through amiability, respectfulness, attentiveness, encouragement, sincere comprehension, and mutual trust, which presents a novel solution to this issue. Future research can investigate DTA from the perspectives of affecting factors, technology iteration of ISIs, measurement specification, and experimental manipulation.
Keywords: digital therapeutic alliance, chatbot, relational cues