亚洲免费av电影一区二区三区,日韩爱爱视频,51精品视频一区二区三区,91视频爱爱,日韩欧美在线播放视频,中文字幕少妇AV,亚洲电影中文字幕,久久久久亚洲av成人网址,久久综合视频网站,国产在线不卡免费播放

        ?

        農(nóng)作物洪澇災(zāi)害致災(zāi)機理與評估方法研究進展與展望

        2023-12-29 00:00:00秦鵬程閆彩霞周月華夏智宏
        暴雨災(zāi)害 2023年1期

        摘要:洪澇災(zāi)害是影響農(nóng)業(yè)生產(chǎn)的主要自然災(zāi)害之一,開展農(nóng)作物洪澇災(zāi)害損失評估是指導(dǎo)農(nóng)業(yè)防災(zāi)減災(zāi)的重要依據(jù),對穩(wěn)定農(nóng)業(yè)生產(chǎn)和保障糧食安全具有重要意義。首先,簡要回顧了近30 a農(nóng)作物洪澇災(zāi)害致災(zāi)機理的研究進展,分類梳理農(nóng)作物洪澇災(zāi)害損失評估的主要方法,指出相關(guān)方法在不同應(yīng)用場景中的優(yōu)勢和局限性;在此基礎(chǔ)上,提出以多源數(shù)據(jù)為支撐、以水動力模型為引擎、基于數(shù)值模擬與機器學(xué)習(xí)相結(jié)合、面向致災(zāi)過程的農(nóng)作物洪澇災(zāi)害損失動態(tài)模擬框架,并展望提出未來重點研究的3個方向:(1)構(gòu)建多致災(zāi)參數(shù)脆弱性模型,完善針對不同孕災(zāi)環(huán)境和承災(zāi)體的模型庫;(2)加強多源數(shù)據(jù)融合應(yīng)用以提高評估精度,發(fā)展并行計算和人工智能算法以提高計算效率;(3)加強洪澇災(zāi)害評估綜合平臺建設(shè),向深度智能化場景應(yīng)用轉(zhuǎn)變。

        關(guān)鍵詞:洪澇災(zāi)害;農(nóng)作物損失;災(zāi)前預(yù)評估;災(zāi)中實時評估;災(zāi)后綜合評估

        中圖法分類號:P426.616" 文獻標(biāo)志碼:A"" DOI:10.12406/byzh.2022-184

        Advances and perspectives in research about mechanism and assessment methods of crop flood disaster

        QIN Pengcheng1, YAN Caixia2, ZHOU Yuehua1, XIA Zhihong1

        (1. Wuhan Regional Climate center, Wuhan 430074;2. Xiangyang Meteorological Observatory of Hubei Province, Xiangyang 441021)

        Abstract: Flooding is one of the main natural disasters that affect agricultural production. The loss assessment of crop flood damage is an im- portant basis for guiding the prevention and mitigation of agricultural disaster, which is of great significance for maintaining the stability of agricultural production and ensuring food security. Firstly, we briefly reviewed the research advances on the formative mechanism in crop flood damage, sorted out the main methods of loss assessment of crop flood damage, and pointed out the advantages and limitations of these methods in various application scenarios. Secondly, based on the comments above, we proposed an integrated framework for dynamic assess- ment of crop flood damage. This framework is supported by multi-source data, powered by hydrodynamic model, based on the combination of numerical simulation and machine learning, and oriented towards disaster events. Finally, we proposed some practical suggestions and re- search directions for further study, including (1) constructing multi-parameter loss function and model libraries for different exposures and vulnerability environments, (2) strengthening the application of multi-source data to improve assessment accuracy, and developing parallel computing and artificial intelligence algorithms to improve computational efficiency, (3) constructing comprehensive platform for flood disas- ter assessment and changing to intelligent applications.

        Key words: flood disaster; crop loss; pre-disaster assessment; real-time assessment; post-disaster assessmen

        引言

        農(nóng)作物,如水稻、玉米等糧食作物以及棉花、蔬菜等經(jīng)濟作物,其生長發(fā)育需要適宜的水分條件,水分過少或過多都會抑制其生長甚至致其死亡;即使是喜水耐淹的水稻作物,其正常生長所需要的水層深度也有適宜范圍,長期水層過高或沒頂淹水下,其光合作用和呼吸作用會受到抑制,從而造成減產(chǎn)甚至絕收(夏石頭等,2000)。然而,受極端天氣和下墊面自然環(huán)境因素影響,洪澇災(zāi)害時有發(fā)生。由于農(nóng)作物通常種植在沖積平原土壤肥沃或沿河水源豐富地區(qū),因而極易遭受洪澇災(zāi)害影響(Hirabayashi et al.,2013;Rahman and Di,2020)。據(jù)統(tǒng)計,2003—2013年全球每年因洪澇災(zāi)害造成的作物產(chǎn)量損失占自然災(zāi)害導(dǎo)致的總損失的一半以上(FAO,2016)。近50 a來,在全球氣候變暖背景下,極端強降水事件增多,伴隨人口增長和社會經(jīng)濟快速發(fā)展,以及防洪工程設(shè)施老化和湖泊調(diào)蓄能力下降,洪澇災(zāi)害損失呈顯著上升趨勢(李茂松等,2004;霍治國等,2017;Kundzewicz et al.,2019;Kreibi- ch et al.,2022)。

        對農(nóng)作物洪澇災(zāi)害損失進行評估是自然災(zāi)害災(zāi)情統(tǒng)計和應(yīng)急管理工作的重要內(nèi)容(袁藝,2010;李京,2012)。準(zhǔn)確、及時的洪澇災(zāi)害損失評估或預(yù)估也是防災(zāi)備災(zāi)、應(yīng)急處置和恢復(fù)重建等決策制訂的重要依據(jù)(丁志雄,2004;周月華等,2019)。同時,開展年度糧食產(chǎn)量預(yù)測和中長期災(zāi)害風(fēng)險評估與防災(zāi)減災(zāi)規(guī)劃也需要以客觀、定量的洪澇災(zāi)害損失評估作為基礎(chǔ)(秦鵬程等,2016;霍治國等,2017)。因而,開展農(nóng)作物洪澇災(zāi)害損失評估方法研究,對洪澇災(zāi)害風(fēng)險管理和保障農(nóng)業(yè)生產(chǎn)穩(wěn)定具有重要意義。近30 a來,隨著植物生理學(xué)理論和實驗技術(shù)的發(fā)展、氣象水文和遙感監(jiān)測能力的提升,以及計算機技術(shù)的快速發(fā)展和應(yīng)用有關(guān)農(nóng)作物洪澇災(zāi)害評估演技的成果激增,本文系統(tǒng)綜述了農(nóng)作物洪澇災(zāi)害致災(zāi)機理的最新認知,梳理了農(nóng)作物洪澇災(zāi)害評估技術(shù)方法,指出了當(dāng)前研究的不足,并對未來發(fā)展方向進行了展望,以期為農(nóng)作物洪澇災(zāi)害損失評估業(yè)務(wù)和相關(guān)研究提供參考。

        1農(nóng)作物洪澇致災(zāi)機理研究進展

        認識農(nóng)作物洪澇災(zāi)害的形成機理是開展洪澇損失評估的重要基礎(chǔ)。近30 a來,農(nóng)作物洪澇致災(zāi)機理研究主要集中在作物淹澇脅迫的生理生態(tài)機制和自然界區(qū)域洪澇災(zāi)害致災(zāi)機理兩個方面。

        1.1農(nóng)作物淹澇脅迫機理研究

        對農(nóng)作物生長發(fā)育不利的環(huán)境因子,稱為逆境脅迫(李玉昌等,1998)。淹澇脅迫是農(nóng)作物生長發(fā)育面臨的主要的逆境脅迫之一,相關(guān)學(xué)者從生理特性、形態(tài)和生長發(fā)育、產(chǎn)量因素等方面對淹澇脅迫機制開展了深入系統(tǒng)的研究(Ito et al.,1999;Engelaar et al.,2000)。生理特性方面,夏石頭等(2000)研究揭示了大部分農(nóng)作物在受淹一定時期后會在根系環(huán)境中誘導(dǎo)產(chǎn)生有害氣體和微生物代謝產(chǎn)物等脅迫,從而降低根系從土壤礦物質(zhì)中吸收養(yǎng)分的能力。同時,淹澇脅迫造成的弱光環(huán)境可導(dǎo)致葉綠素合成能力下降,進而造成呼吸作用減弱和光合速率下降(Engelaar et al.,2000;潘瀾和薛立,2012)。在形態(tài)和生長發(fā)育方面,淹澇脅迫的主要表現(xiàn)有根系變細、活力下降、生長發(fā)育延遲、植株高度受限和干物質(zhì)減少等(Engelaar et al.,2000)。在產(chǎn)量因素方面,研究顯示淹澇脅迫可造成作物空殼率增加、穗結(jié)實粒數(shù)減少和千粒重下降,并最終導(dǎo)致經(jīng)濟產(chǎn)量降低(藺萬煌等,1997)。但不同作物及其不同發(fā)育期對淹澇脅迫的敏感性存在明顯差異,水稻在淹沒水深達到株高的1/4以上且持續(xù)3 d以上時,可對產(chǎn)量造成明顯影響,產(chǎn)量損失率隨淹沒水深和持續(xù)時間的增加而增加,不同生育期對淹澇的敏感性從高到低依次是抽穗期gt;孕穗期gt;乳熟期gt;分蘗期gt;秧苗期(王洪春和羅宗雅,1956;Reddy and Mittra,1985;殷劍敏等,2009;邵長秀等,2019)。玉米、棉花等旱作物在土壤濕度超過田間持水量的80%時即可產(chǎn)生澇漬害,澇害損失隨持續(xù)時間的增長而增加,玉米不同生育期對淹澇的敏感性依次是苗期gt;拔節(jié)期gt;抽雄吐絲期gt;乳熟期,棉花不同生育期的敏感性依次是花鈴期gt;蕾期gt;苗期gt;吐絮期(周新國等,2014;王曉森等,2017;劉小飛等,2021)。

        目前,關(guān)于大宗作物(如水稻、玉米、小麥、棉花等)淹澇機理的研究和認識已比較深入,最新研究主要集中在作物耐淹基因篩選以及新育品種的耐淹性鑒定方面(孫志廣等,2021),國外學(xué)者開始探索基于試驗研究定量化描述產(chǎn)量損失與淹澇脅迫因子之間的關(guān)系,即農(nóng)作物洪澇脆弱性曲線(損失函數(shù)),以期建立作物耐淹能力脆弱性屬性與自然界洪澇災(zāi)害之間的橋梁(Ganji et al.,2012;Shrestha et al.,2016;Win et al.,2018)。圖1是利用國內(nèi)外大量試驗研究報道的結(jié)果(王洪春和羅宗雅,1956;Reddy and Mittra,1985;言鴿等,1992;Sharma et al.,1999;陳永華等,2006;Kotera et al.,2007;王守立等,2008;殷劍敏等,2009;馮躍華等,2013;劉祖貴等,2013;寧金花等,2013;王斌等,2014;吳啟俠等,2014;余衛(wèi)東等,2014;周新國等,2014;彭勤生等,2015;王礦等,2015;俞建河,2016;王曉森等,2017;邵長秀等,2019;劉小飛等,2021),通過曲線擬合繪制的主要農(nóng)作物受淹產(chǎn)量損失與持續(xù)時間及淹沒水深的響應(yīng)曲線,該曲線可為基于淹沒水深估算作物損失提供技術(shù)參考。但目前關(guān)于不同作物品種洪澇脆弱性的差異化表達及其在不同地區(qū)的適用性研究仍十分欠缺,脆弱性模型考慮的致災(zāi)因子仍較單一(主要考慮淹沒水深和持續(xù)時間),淹澇脅迫與其它脅迫(如高溫)相隨的復(fù)合型災(zāi)害及災(zāi)后補救措施干預(yù)后的影響尚缺少系統(tǒng)的試驗觀察和實證研究,有關(guān)經(jīng)濟作物(如蔬菜、林果等)淹澇脅迫的實驗研究與大宗作物相比尚不夠系統(tǒng)。

        1.2區(qū)域洪澇災(zāi)害形成機理研究

        區(qū)域洪澇災(zāi)害指發(fā)生在特定區(qū)域,由自然界降水或洪水致災(zāi)因子作用于承災(zāi)體對象造成的人員和財產(chǎn)損失,具有突發(fā)性、隨機性和季節(jié)性等特點。丁志雄(2004)和霍治國等(2017)綜合國內(nèi)外相關(guān)研究成果總結(jié)認為,自然界農(nóng)作物洪澇災(zāi)害的形成是由暴雨或持續(xù)性降雨、風(fēng)暴潮、急驟融冰融雪等自然因素或水庫垮壩、漫溢等人為因素引起江河水位陡漲,洪水進入農(nóng)田,對農(nóng)作物造成機械損傷等物理性破壞、能量代謝和呼吸受阻等生理性損傷以及土壤結(jié)構(gòu)改變等生態(tài)性危害,最終導(dǎo)致經(jīng)濟產(chǎn)量降低或絕收。我國學(xué)者根據(jù)洪澇災(zāi)害的形成機理和成災(zāi)環(huán)境特點,將其劃分為山洪型、內(nèi)澇型、潰決型、漫溢型、行蓄洪型和風(fēng)暴潮型等不同類型(丁志雄,2004)。霍治國等(2017)結(jié)合農(nóng)作物的成災(zāi)特性,將農(nóng)業(yè)洪澇災(zāi)害分為洪災(zāi)、澇災(zāi)和濕(漬)害3種,并指出澇災(zāi)和濕害是影響農(nóng)業(yè)生產(chǎn)的主要類型,且在實際中具有同時或連續(xù)發(fā)生的特性。由于農(nóng)作物通常種植在沖積平原土壤肥沃的地區(qū)或沿江沿河水源豐富的地區(qū),平原農(nóng)田內(nèi)澇是全球尤其是季風(fēng)氣候區(qū)農(nóng)作物洪澇災(zāi)害發(fā)生頻率最高、范圍最廣的類型,約占全球農(nóng)作物洪澇災(zāi)害事件的90%以上(Hirabayashi et al.,2013;Rahman and Di,2020)。田小海等(2000)、Hirabayashi等(2013)通過調(diào)查和試驗研究表明,內(nèi)澇型洪澇災(zāi)害的災(zāi)情程度與淹沒水深和持續(xù)時間密切相關(guān),致災(zāi)過程通常持續(xù)數(shù)天以上。此外,降雨強度、環(huán)境溫度、風(fēng)速及洪水流速、濁度、pH值、O2濃度等理化特性對受害程度也有一定影響(潘瀾和薛立,2012;楊威等,2015;Kaur et al.,2020)。在丘陵山區(qū)和峽谷地帶,由暴雨、冰雪融化或攔洪設(shè)施潰決等原因造成的山洪災(zāi)害,具有來勢猛、退水快的特性,并可能伴隨滑坡、崩塌、泥石流災(zāi)害,可對沿途農(nóng)田造成嚴(yán)重破壞,該類災(zāi)害歷時短,持續(xù)時間僅數(shù)小時,但沖擊力強,小時雨強和流速是其致災(zāi)的主要因子(Chen et al.,2019)。在沿海地區(qū),因臺風(fēng)和風(fēng)暴潮降水造成的洪澇災(zāi)害往往伴隨著強風(fēng)造成作物倒伏,從而加重洪澇災(zāi)害的后果,婁偉平等(2010)通過歷史災(zāi)情資料分析表明浙江地區(qū)水稻洪澇災(zāi)害損失程度除與降雨強度有關(guān)外還與風(fēng)力密切相關(guān)。

        20世紀(jì)90年代以來,隨著對自然災(zāi)害系統(tǒng)理論研究的不斷深入,學(xué)者們一致認為,包括洪澇災(zāi)害在內(nèi)的自然災(zāi)害,是致災(zāi)因子、孕災(zāi)環(huán)境、承災(zāi)體及防災(zāi)減災(zāi)能力等自然和社會因素相互耦合、綜合作用的結(jié)果(史培軍,1996)。由于洪澇災(zāi)害的致災(zāi)因子(如降水)、孕災(zāi)環(huán)境(地形、水系等)和承災(zāi)體(作物的分布)等均具有顯著的空間屬性特征,降水和洪水演進過程以及農(nóng)作物的生長季還同時具有時間變異特性,因而,農(nóng)作物洪澇災(zāi)害具有明顯的時空變異特征,且災(zāi)害鏈復(fù)雜(丁志雄,2014)。近幾十年來,農(nóng)作物洪澇災(zāi)害研究涉及到氣象、水文、地理、農(nóng)學(xué)和社會學(xué)等多學(xué)科領(lǐng)域(霍治國等,2017)。早期的研究(李玉昌等,1998;秦鵬程等,2016)重點關(guān)注致災(zāi)因子特征及田間尺度作物淹澇脅迫的機理,并以孤立、靜態(tài)的視角研究災(zāi)害過程。近年來,國內(nèi)外農(nóng)作物洪澇災(zāi)害研究更加注重對承災(zāi)體脆弱性特征和防災(zāi)能力等社會屬性的分析(吳先華等,2016;Kreibich et al.,2022),并著重從系統(tǒng)、動態(tài)的角度對災(zāi)害過程進行刻畫,在以遙感、GIS、機器學(xué)習(xí)和水文水動力學(xué)模型等技術(shù)的支撐下,對災(zāi)害過程的認識和模擬正在逐步深化。

        2農(nóng)作物洪澇損失評估方法研究進展

        按照應(yīng)用場景的時間順序,洪澇災(zāi)害評估可分為災(zāi)前預(yù)評估、災(zāi)中應(yīng)急評估和災(zāi)后綜合評估(趙阿興和馬宗晉,1993;袁藝,2010;Alfieri et al.,2018;周月華等,2019;Rahman and Di,2020)。災(zāi)前預(yù)評估是在災(zāi)害發(fā)生前,根據(jù)災(zāi)害風(fēng)險理論,結(jié)合短臨天氣預(yù)報對可能出現(xiàn)的災(zāi)害及其影響進行預(yù)估,其目標(biāo)是確定災(zāi)害可能發(fā)生的時間、范圍和程度,從而為防災(zāi)備災(zāi)提供前期參考。災(zāi)中應(yīng)急評估是在災(zāi)害發(fā)生后一定時間內(nèi)快速研判災(zāi)情發(fā)展,為災(zāi)害處置提供決策依據(jù)。災(zāi)后綜合評估是在災(zāi)情穩(wěn)定或災(zāi)害過程結(jié)束后,對災(zāi)害損失進行分類、分項和分區(qū)評估,為恢復(fù)重建和遠期災(zāi)害防御規(guī)劃提供依據(jù)。不同階段由于可獲取的數(shù)據(jù)和評估目標(biāo)不同,評估內(nèi)容和方法存在一定差異,圖2是對洪澇災(zāi)害過程不同階段災(zāi)害評估內(nèi)容、可用數(shù)據(jù)和方法的總結(jié)(Alfieri et al.,2018;Rahman and Di,2020)。隨著洪澇災(zāi)害過程的發(fā)展,洪澇災(zāi)情逐步顯現(xiàn)和穩(wěn)定,可用于災(zāi)害評估的數(shù)據(jù)和手段越來越豐富,災(zāi)害評估的內(nèi)容更加具體和明確??傮w上,適合洪澇災(zāi)害發(fā)生發(fā)展過程不同階段損失評估的方法可以概括為六類:實地調(diào)查評估;歷史相似分析;氣象統(tǒng)計模型;遙感監(jiān)測估算;數(shù)值模擬;機器學(xué)習(xí)方法。在具體應(yīng)用中,多種方法可結(jié)合使用。

        2.1實地調(diào)查評估

        實地調(diào)查評估是指按照規(guī)定的程序和方法,深入洪澇災(zāi)害現(xiàn)場對農(nóng)作物損失以及地形、地勢孕災(zāi)環(huán)境和氣象水文情況等開展現(xiàn)場調(diào)查,并對災(zāi)情做出綜合分析和評定,主要適用于洪澇災(zāi)害發(fā)生后的災(zāi)情核查和定損。如謝彥等(2011)通過典型地塊實地調(diào)查和跟蹤觀測,獲得了2010年6—8月江西省峽江縣洪澇災(zāi)害對早、中、晚稻生長性狀和產(chǎn)量影響災(zāi)情數(shù)據(jù),并據(jù)此提出了有針對性的補救措施。代輝等(2014)采用地面調(diào)查結(jié)合無人機和衛(wèi)星遙感,對內(nèi)蒙古巴彥淖爾市約4000 km2區(qū)域農(nóng)作物洪澇災(zāi)害損失進行了勘查評估,準(zhǔn)確率達90%以上。實地調(diào)查是客觀、準(zhǔn)確了解洪澇災(zāi)害情況不可或缺的手段,并可為開展大范圍災(zāi)害損失的估算提供必要的基礎(chǔ)參數(shù)和驗證數(shù)據(jù),其不足之處是工作量大、費時費力、覆蓋范圍有限。近年來,隨著現(xiàn)代信息技術(shù)的發(fā)展,為實地災(zāi)情調(diào)查提供了高精度定位、影像識別、多元數(shù)據(jù)采集和即時通訊傳輸?shù)燃夹g(shù)支撐,有效提高了災(zāi)害現(xiàn)場調(diào)查的便攜性、科學(xué)性和覆蓋范圍。如,梁益同等(2017)設(shè)計了基于智能手機的暴雨洪澇災(zāi)情采集APP,實現(xiàn)了調(diào)查路線規(guī)劃、現(xiàn)場定位、一體化采集和災(zāi)情直報等全鏈條的災(zāi)情調(diào)查業(yè)務(wù)流程;代輝等(2014)基于衛(wèi)星遙感、無人機航空遙感和人工地面現(xiàn)場調(diào)查相結(jié)合,建立了天空地一體化災(zāi)情查勘技術(shù)?,F(xiàn)代災(zāi)情調(diào)查正在從傳統(tǒng)的人工現(xiàn)場調(diào)查向“空天地人”四位一體綜合、動態(tài)、連續(xù)和智能監(jiān)測模式發(fā)展。

        2.2歷史相似分析

        歷史相似分析是以已發(fā)生的農(nóng)作物洪澇災(zāi)害個例為基礎(chǔ),通過分析當(dāng)前災(zāi)害事件與歷史災(zāi)害個例的相似性,將歷史相似個例的災(zāi)害影響結(jié)果作為評估當(dāng)前災(zāi)害影響的依據(jù)(李京,2012)。其成本低、效率高、時效性強,尤其適用于僅獲取有限災(zāi)害數(shù)據(jù)的情況,因而在氣象災(zāi)害評估業(yè)務(wù)中獲得了廣泛應(yīng)用。如,李艷旗(2000)通過對遙感植被指數(shù)與歷史同期的相似性分析,利用歷史典型年災(zāi)情數(shù)據(jù)確定出當(dāng)年農(nóng)作物受災(zāi)地區(qū)及受旱程度;黃治勇等(2011)構(gòu)建了區(qū)域性暴雨強度評價模型,通過與歷史暴雨個例類比建立了湖北省5—9月暴雨災(zāi)害損失預(yù)估模型,農(nóng)作物受災(zāi)面積預(yù)估正確率達73%。然而,已有的多數(shù)研究和應(yīng)用中相似分析僅針對致災(zāi)因子強度進行比較,而忽略了致災(zāi)因子的空間分布差異以及承災(zāi)體、孕災(zāi)環(huán)境和防災(zāi)減災(zāi)能力隨時間的變化,導(dǎo)致評估結(jié)果與實際存在一定偏差(趙鐵松等,2022)。夏興生等(2016)從災(zāi)害種類、發(fā)生位置、發(fā)生時間、災(zāi)害強度、致災(zāi)因子、孕災(zāi)環(huán)境和承災(zāi)體七個方面構(gòu)建災(zāi)害事件指標(biāo)體系,進一步發(fā)展和完善了歷史相似分析法的理論體系,提高了該方法的科學(xué)性和客觀性,以河南省農(nóng)作物受旱面積評估為例,評估精度達90%以上。但綜合致災(zāi)因子和災(zāi)情特征的歷史相似分析應(yīng)用案例甚少,缺乏完備的歷史災(zāi)情個例庫是限制其應(yīng)用的主要原因。隨著大數(shù)據(jù)技術(shù)的發(fā)展和歷史災(zāi)情個例的積累,歷史相似分析法有望得到進一步的應(yīng)用和發(fā)展。

        2.3氣象統(tǒng)計模型

        由于多數(shù)洪澇災(zāi)害是由暴雨天氣造成的,利用氣象因子構(gòu)建致災(zāi)因子指標(biāo),并與實際災(zāi)情進行匹配,得到致災(zāi)因子與災(zāi)害損失的對應(yīng)關(guān)系或定量化的數(shù)學(xué)表達式,在農(nóng)業(yè)氣象災(zāi)害監(jiān)測和預(yù)警評估業(yè)務(wù)中具有廣泛的應(yīng)用(高超等,2016;霍治國等,2017)。如楊建瑩等(2015)通過歷史災(zāi)情與降水過程匹配,以不同持續(xù)日數(shù)過程降水量為指標(biāo),建立了西南地區(qū)一季稻洪澇災(zāi)害等級評價指標(biāo),張桂香等(2018)基于過程降水量分生育期構(gòu)建了長江中下游地區(qū)一季稻洪澇災(zāi)害等級指標(biāo),秦鵬程等(2016)基于有效降水指數(shù)構(gòu)建了湖北省洪澇災(zāi)害監(jiān)測評估指標(biāo)。氣象指標(biāo)模型計算簡便,物理意義清晰,非常適用于洪澇災(zāi)害歷史排位、災(zāi)情預(yù)評估、年景評價、風(fēng)險區(qū)劃及作物產(chǎn)量預(yù)測等業(yè)務(wù)場景,但其定量化程度不足。為此,李巧媛等(2013)以暴雨、大暴雨日及累積暴雨量等指標(biāo)為致災(zāi)因子,建立了湖南省水稻洪澇受災(zāi)率與氣象因子的主成分回歸模型;婁偉平等(2010)以暴雨雨強和風(fēng)力為因子,建立了浙江地區(qū)水稻暴雨洪澇災(zāi)害減產(chǎn)率模型;陳家金等(2010)引入效力暴雨量,建立了福建省水稻單產(chǎn)暴雨洪澇災(zāi)損模型。這些研究利用災(zāi)情數(shù)據(jù)和氣象因子建立數(shù)學(xué)關(guān)系模型,為開展區(qū)域尺度洪澇災(zāi)害損失的定量化評估邁出了重要一步。但農(nóng)業(yè)氣象指標(biāo)和災(zāi)損統(tǒng)計模型具有較強的地域性和經(jīng)驗性,在其它地區(qū)推廣應(yīng)用需進行評估檢驗和必要的修訂。

        2.4遙感監(jiān)測估算

        隨著3S技術(shù)的發(fā)展,近年來 GIS和衛(wèi)星遙感在洪澇監(jiān)測和評估中的應(yīng)用越來越多。GIS是開展洪澇風(fēng)險分區(qū)和洪水演進模擬的重要工具(Alfieri et al.,2018;Samela et al.,2018;王艷艷等,2019),在實時洪水災(zāi)害監(jiān)測中通過與遙感影像結(jié)合可輔助獲取淹沒范圍、水深等洪水特征參數(shù)(Sanyal and Lu,2004;Oddo et al.,2018)?;?GIS和遙感影像提取洪澇水體信息已有許多成熟的算法和應(yīng)用(Jain et al.,2006;Xu,2006;Ticehurst et al.,2014;Cohen et al.,2018;Shen et al.,2019;Lazin et al.,2021;郭山川等,2021),如劉志明等(2001)利用 NOAA 衛(wèi)星資料提取淹沒水體,結(jié)合農(nóng)作物分布數(shù)據(jù),估算了1998年吉林省西部洪澇災(zāi)害農(nóng)田受災(zāi)面積,Shen等(2019)基于主動微波遙感Sentinel-1結(jié)合地形地貌指數(shù)建立了近實時洪水淹沒范圍提取方法。遙感是第一時間獲取大范圍災(zāi)情信息的重要手段,可以有效減少實地調(diào)查的工作量,但光學(xué)遙感易受洪澇災(zāi)害時期陰雨天氣影響,微波遙感雖不受天氣條件影響但重訪周期較長,時間分辨率上難以滿足災(zāi)情評估的需要。為此,部分研究嘗試融合微波遙感和光學(xué)遙感影像提取洪澇水體,一定程度上提高了洪澇災(zāi)害監(jiān)測的動態(tài)跟蹤能力和評估精度(DeVries et al.,2020;Psomiadis et al.,2020)。

        遙感在農(nóng)作物洪澇損失評估中的另一類應(yīng)用是利用植被光譜信息反映的作物生長狀況直接對作物損失進行估算。如,Kotera等(2016)利用多時相MODIS 增強植被指數(shù)EVI,通過比較洪澇年份與正常年份收獲時間的差異,評估了2011年湄南河三角洲水稻洪澇受災(zāi)面積,Chen等(2019)基于多時相 EVI序列對洪澇災(zāi)害造成的植被指數(shù)異常進行檢測,結(jié)合地形地貌、河網(wǎng)水系等因子,建立了洪澇對農(nóng)作物影響程度的定性評估方法。類似地,Rahman等(2021)基于洪澇發(fā)生前后作物條件植被指數(shù)VCI的差值,建立了作物洪澇受災(zāi)程度的分級評估方法,徐鵬等(2014)利用多時相 HJ衛(wèi)星影像,通過建立水稻產(chǎn)量與垂直植被指數(shù)PVI 的線性回歸模型,定量評估了2012年遼寧省洪澇災(zāi)害水稻減產(chǎn)率。此類研究針對受災(zāi)對象直接進行評估,可以避免對致災(zāi)因子監(jiān)測和分析的繁瑣程序,不足之處是需要多時相的遙感影像且評估時效存在一定滯后性,同時,評估精度還可能受到天氣條件、作物類別及其它災(zāi)害脅迫的影響。在建模過程中結(jié)合地形河網(wǎng)、氣象水文、作物類別以及實地調(diào)查信息是提高評估效果的有效途徑(Rahman and Di,2020)。

        2.5數(shù)值模擬

        分布式水文和水動力學(xué)模型在反映洪澇致災(zāi)因子的時空動態(tài)特征方面具有顯著的優(yōu)勢,隨著計算機技術(shù)的發(fā)展,近年來重新受到學(xué)界的重視并在洪澇評估中得到了廣泛應(yīng)用。水文學(xué)或水動力模型可以綜合利用地形、土壤、土地利用和氣象數(shù)據(jù)等,對地表產(chǎn)匯流過程進行逐網(wǎng)格模擬,輸出任意網(wǎng)格淹沒水深動態(tài)和流速等變量(Teng et al.,2017),通過與農(nóng)作物的脆弱性模型耦合,可以實現(xiàn)格點尺度作物產(chǎn)量損失的動態(tài)評估(Dutta et al.,2003;張朝等,2010)。如夏智宏等(2014)設(shè)計了基于蓄滿產(chǎn)流和 D8匯流算法的暴雨洪澇淹沒模型,并應(yīng)用于湖北省暴雨洪澇災(zāi)害個例分析和風(fēng)險評估,Wang等(2011)建立了基于蓄滿產(chǎn)流和運動波匯流的分布式水文模型CREST,并在中國和全球洪澇監(jiān)測與預(yù)警業(yè)務(wù)中應(yīng)用,國際水災(zāi)與風(fēng)險管理中心基于二維擴散波方程構(gòu)建了降雨-徑流-淹沒模擬模型RRI,并將模型輸出的淹沒水深與農(nóng)作物、建筑物等的損失函數(shù)耦合,為日本和東南亞國家洪澇災(zāi)害評估提供了重要工具(Shrestha et al.,2016;Sayama et al.,2017;Shokoohi et al.,2018)。然而,水文或水動力模型需要較高精度的地形數(shù)據(jù)及其它需要率定的參數(shù),且多數(shù)模型不能準(zhǔn)確模擬流域外的客水及流域內(nèi)排澇設(shè)施對洪水的影響,因而在平原河網(wǎng)和排澇設(shè)施較完備的地區(qū)對洪澇過程的模擬存在較大誤差(Wang et al.,2011;Kan et al.,2017;熊勤學(xué)等,2017)。此外,針對大范圍的洪澇模擬,分布式的水文或水動力模型仍存在費時過長等計算時效問題(Manfreda et al.,2015;Czajkowski et al.,2016;Alfieri et al.,2018)。

        為了克服直接使用水動力模型模擬結(jié)果存在的不足,一些學(xué)者嘗試與其它方法結(jié)合以改善評估效果。如,Ticehurst 等(2015)利用水動力模型輸出結(jié)果來改進MODIS水體提取算法,發(fā)現(xiàn)可以有效降低閾值選擇的不確定性,Chen等(2017)通過將遙感植被指數(shù)與作物產(chǎn)量關(guān)聯(lián),結(jié)合二維水動力模型輸出的淹沒水深和流速等參數(shù),建立了融合遙感和水動力模型的作物洪澇損失評估方法,表明利用水動力模型有助于提高對洪澇空間分布細節(jié)的認識和作物損失評估效果,但該方法僅在山區(qū)環(huán)境下進行了應(yīng)用檢驗,且有關(guān)水動力模型對洪水分布模擬的不確定性還有待評估。Psomiadis等(2020)基于多源遙感提取多時相洪澇淹沒信息與水動力模型模擬的不同淹沒情景進行匹配,有效提高了農(nóng)作物洪澇損失評估的時間和空間分辨率,為洪澇災(zāi)害評估中實現(xiàn) GIS、遙感和水文模型的結(jié)合提供了一種思路,但其應(yīng)用效果僅在小范圍地域得到了部分檢驗,在較大尺度上的應(yīng)用潛力尚待檢驗。

        2.6機器學(xué)習(xí)方法

        近年來隨著大數(shù)據(jù)技術(shù)的發(fā)展,將地球系統(tǒng)物理過程模型與數(shù)據(jù)驅(qū)動的機器學(xué)習(xí)模型耦合,被證明可以取得更佳的預(yù)測效果(Feng et al.,2019;Runge et al.,2019),并可以用于動力模式的降尺度(Folberth et al.,2019;Pan et al.,2019)。該方法可以充分利用物理過程模型豐富的輸出變量和動態(tài)特征,同時克服模型參數(shù)化或物理過程描述方面的不足和偏差,這為基于多源數(shù)據(jù)開展洪澇災(zāi)害的評估提供了新的思路。已有許多研究嘗試不同機器學(xué)習(xí)算法在水文預(yù)報中的應(yīng)用。如,Tokar和 Johnson (1999)基于人工神經(jīng)網(wǎng)絡(luò)(ANN)算法建立了降雨-徑流模擬的機器學(xué)習(xí)模型, Liu和Pender等(2015)基于支持向量回歸算法(SVR)建立了洪澇淹沒的機器學(xué)習(xí)預(yù)測模型,Hu等(2019)基于深度學(xué)習(xí)算法(LSTM-ROM)建立了洪水時空分布預(yù)測模型,Kabir 等(2020)基于深度學(xué)習(xí)算法(CNN)和水動力模型建立了洪水淹沒預(yù)報模型,這些案例在解決洪水模擬的計算時效問題上取得了顯著進步。在作物產(chǎn)量模擬方面,F(xiàn)eng 等(2019)將機器學(xué)習(xí)算法(RF)與作物生長模型結(jié)合有效提高了災(zāi)害脅迫的模擬能力,F(xiàn)olberth等(2019)利用機器學(xué)習(xí)算法(RF、XGBoost)和氣候、土壤、地形等空間數(shù)據(jù),將粗網(wǎng)格水平上作物生長模型輸出變量降尺度為細網(wǎng)格,Cai等(2019)基于機器學(xué)習(xí)算法(RF、SVM、ANN)建立了融合遙感和氣候數(shù)據(jù)的澳大利亞小麥產(chǎn)量預(yù)測模型,Cao等(2021)比較了傳統(tǒng)回歸模型(LASSO)、機器學(xué)習(xí)(RF)和深度學(xué)習(xí)(LSTM)算法在我國縣級水稻產(chǎn)量預(yù)測中的表現(xiàn),表明基于機器學(xué)習(xí)算法融合氣候、土壤、遙感植被指數(shù)等多源數(shù)據(jù)可以有效提高產(chǎn)量預(yù)測效果??梢?,機器學(xué)習(xí)在致災(zāi)因子特征反演和作物產(chǎn)量損失建模方面具有較大的應(yīng)用潛力,通過融合多源數(shù)據(jù)對提高災(zāi)害損失評估精度具有潛在的應(yīng)用價值,但目前相關(guān)研究的綜合性不夠,與其它評估方法結(jié)合的案例研究較少。

        2.7多種農(nóng)作物洪澇災(zāi)害損失評估方法比較

        通過對國內(nèi)外農(nóng)作物洪澇災(zāi)害損失評估方法相關(guān)文獻的總結(jié)可以發(fā)現(xiàn),不同評估方法在不同應(yīng)用場景中存在各自的優(yōu)勢和不足(表1)。在災(zāi)前預(yù)估應(yīng)用場景中,由于災(zāi)情發(fā)展的不確定性和監(jiān)測數(shù)據(jù)的不完備性,以歷史相似分析和氣象統(tǒng)計模型的應(yīng)用最廣泛,該類方法可在僅獲取部分數(shù)據(jù)資料的情況下,對災(zāi)情程度進行快速估算,滿足應(yīng)急決策服務(wù)的需求,但評估結(jié)果的準(zhǔn)確度和精細化程度偏低。隨著災(zāi)情逐漸顯現(xiàn)和穩(wěn)定,監(jiān)測數(shù)據(jù)不斷增加,如何充分利用多源數(shù)據(jù),成為提高災(zāi)害損失評估效果的關(guān)鍵。該階段可采用的評估方法有實地調(diào)查、遙感監(jiān)測以及機器學(xué)習(xí)和數(shù)值模擬等。其中,數(shù)值模擬法具有明確的物理機制,可適應(yīng)不同區(qū)域尺度和動態(tài)評估,可反映防洪設(shè)施和措施的作用,并易于與其它方法相結(jié)合充分利用多源數(shù)據(jù)。數(shù)值模擬法的關(guān)鍵制約因素是模型參數(shù)的不確定性及計算復(fù)雜性,前者可通過與遙感實時監(jiān)測信息融合,從而將遙感在空間分布信息提取和水動力模型在時間動態(tài)模擬方面的優(yōu)勢結(jié)合,后者可通過計算機硬件升級和機器學(xué)習(xí)算法提高模擬效率。隨著現(xiàn)代信息技術(shù)的發(fā)展,制約數(shù)值模擬法的因素將逐步得到克服。

        3研究展望

        近30 a來農(nóng)作物洪澇災(zāi)害致災(zāi)機理的研究表明,農(nóng)作物洪澇災(zāi)害的形成涉及極端天氣致災(zāi)因子、特定的地形和地理孕災(zāi)環(huán)境以及承災(zāi)體脆弱性等多重因素的相互作用,災(zāi)害鏈復(fù)雜,并具有較大的時空變異特征。因此,準(zhǔn)確評估一次洪澇災(zāi)害造成的農(nóng)作物損失,是一項復(fù)雜且富有挑戰(zhàn)性的工作。基于對國內(nèi)外農(nóng)作物洪澇災(zāi)害損失評估研究和應(yīng)用進展的分析表明,充分利用多源數(shù)據(jù),構(gòu)建反映致災(zāi)過程空間異質(zhì)性和時序動態(tài)變化的物理模型,是未來的重要發(fā)展方向。圖3展望了以氣象、水文、遙感、地形等多源數(shù)據(jù)為支撐,以水動力模型為計算引擎,以災(zāi)損脆弱性曲線為紐帶,基于數(shù)值模擬與機器學(xué)習(xí)相結(jié)合,面向致災(zāi)過程的農(nóng)作物洪澇災(zāi)害損失評估框架,其關(guān)鍵技術(shù)環(huán)節(jié)和有待解決的問題包括:

        (1)完善作物洪澇災(zāi)害脆弱性模型。農(nóng)作物洪澇災(zāi)害脆弱性模型是面向致災(zāi)過程,進行格點尺度作物損失估算的核心?,F(xiàn)有的農(nóng)作物洪澇災(zāi)害脆弱性模型對致災(zāi)因子的考慮尚不夠全面,針對旱澇急轉(zhuǎn)、雨后驟晴、澇漬相隨等復(fù)合型災(zāi)害及災(zāi)后恢復(fù)管理措施等因素缺乏相應(yīng)的參數(shù)化表達(朱建強等,2003;楊威等,2015;吳先華等,2016),對不同地域、不同作物品種的差異化適配程度不夠。為此,在淹沒水深和持續(xù)時間參數(shù)基礎(chǔ)上,增加考慮雨強、洪水流速、濁度、風(fēng)速和環(huán)境溫度等因子對作物的影響,構(gòu)建多致災(zāi)參數(shù)脆弱性模型,完善不同地域、不同作物品種和救災(zāi)措施干預(yù)下的脆弱性模型,建立完備的、適用于不同孕災(zāi)環(huán)境和承災(zāi)體的模型庫是未來脆弱性模型研究的重要內(nèi)容。

        (2)提高淹沒動態(tài)模擬效率和精度。對洪澇災(zāi)害致災(zāi)因子時空動態(tài)的監(jiān)測和模擬是及時、準(zhǔn)確估算災(zāi)害損失的關(guān)鍵。當(dāng)前在洪澇致災(zāi)因子刻畫方面主要基于水文、水動力模型方法,仍存在計算效率低、精度有待提高等技術(shù)瓶頸。為此,加強地表水情監(jiān)測和遙感反演地表參數(shù)產(chǎn)品與水文、水動力模型的同化算法研究(Tanaka et al.,2017;Oliveira et al.,2020),以及基于并行計算和計算機硬件的加速算法研究,是未來的發(fā)展趨勢之一。此外,發(fā)展基于機器學(xué)習(xí)和人工智能算法的降雨-淹沒模型(Xia et al.,2019;Kabir et al.,2020),或構(gòu)建水動力模型與機器學(xué)習(xí)相結(jié)合的混合模擬模型,是洪澇災(zāi)害評估方法研究領(lǐng)域的熱點和重要方向。

        (3)加強洪澇災(zāi)害評估綜合平臺建設(shè)。當(dāng)前,以大數(shù)據(jù)為支撐的災(zāi)害損失評估技術(shù),必須依托強大的軟硬件平臺來實現(xiàn)多源數(shù)據(jù)的存儲與管理、災(zāi)害過程的仿真模擬與快速評估、以及滿足應(yīng)急管理優(yōu)化調(diào)度的決策支持。近年來,國內(nèi)外相關(guān)機構(gòu)和部門針對洪澇災(zāi)害的監(jiān)測評估服務(wù)需求,分別建立了各自的業(yè)務(wù)系統(tǒng)平臺(Di et al.,2017;甘衍軍等,2017;王艷艷等,2019;程海云等,2020;Debusscher et al.,2020),但其針對性、完整性和智能化程度與業(yè)務(wù)發(fā)展和服務(wù)需求仍存在較大差距。依托現(xiàn)代信息技術(shù),實現(xiàn)跨部門大數(shù)據(jù)平臺的互聯(lián)互通,構(gòu)建面向監(jiān)測、預(yù)報、評估和決策調(diào)度的一體化綜合平臺,并向深度智能化的場景應(yīng)用轉(zhuǎn)變是未來發(fā)展的必然趨勢。

        鑒于農(nóng)作物洪澇災(zāi)害致災(zāi)機理的復(fù)雜性,加強多學(xué)科交叉融合研究,綜合利用衛(wèi)星遙感和現(xiàn)代信息技術(shù)完善承災(zāi)體和災(zāi)情數(shù)據(jù)庫,發(fā)展和建立考慮水利工程設(shè)施及其它減災(zāi)措施影響的評估方法也是今后需要加強的工作。

        參考文獻(References):

        陳家金,林晶,李麗純,等.2010.暴雨災(zāi)害對福建水稻產(chǎn)量影響的災(zāi)損評估方法[J].中國農(nóng)業(yè)氣象, 31(S1):132-136. Chen J J, lin J, Li L C, et al.2010. Study on damage assessment method of the rice yield affected by rainstorm disasters in Fujian [J]. Chinese Journal of Agrometeorolo- gy, 31(S1):132-136(in Chinese)

        陳永華,趙森,嚴(yán)欽泉,等.2006.不同淹澇脅迫強度對雜交稻和常規(guī)稻農(nóng)藝性狀和生化特性的影響[J].中國水稻科學(xué),20(5):512-516. Chen Y H, Zhao S, Yan Q Q, et al.2006. Effects of different submergence stresses on agronomic traits and biochemical characteristics in hybrid and traditional rice [J]. Chinese Journal of Rice Science, 20(5):512-516(in Chinese). doi:10.3321/j.issn:1001-7216.2006.05.010

        程海云.2020.洪水預(yù)報系統(tǒng)及其在工程調(diào)度中的作用[J].中國水利, (17):11-13. Cheng H Y.2020. The flood forecasting system and the impact in project scheduling [J]. China Water Resources, (17):11-13(in Chinese). doi:10.3969/j.issn.1000-1123.2020.17.014

        代輝,武文波,劉純波,等.2014.洪澇災(zāi)害天空地一體化災(zāi)情查勘技術(shù)研究[J].自然災(zāi)害學(xué)報, 23(1):1-6. Dai H, Wu W B, Liu C B, et al.2014. Integration research on flood disaster situation survey technology [J]. Journal of Natural Disasters, 23(1):1-6(in Chinese). doi:10.13577/j. jnd.2014.0101

        丁志雄.2004.基于 RS 與 GIS 的洪澇災(zāi)害損失評估技術(shù)方法研究[D].北京:中國水利水電科學(xué)研究院. Ding Z X.2004. A Study on the tech- nology and method of flood and waterlogging disaster loss assessment based on RS and GIS [D]. BeiJing: China Institute of Water Resources and Hydropower Research

        馮躍華,高子樂, 肖俊夫.2013.澇漬對夏玉米生長發(fā)育及產(chǎn)量的影響試驗[J].人民黃河,35(3):76-78, 81. Feng Y H, Gao Z L, Xiao J F.2013. Experimental study on effects of waterlogging on growth and yield for summer maize [J]. Yellow River, 35(3):76-78, 81(in Chinese). doi:10.3969/j.issn.1000-1379.2013.03.025

        甘衍軍,徐晶,趙平,等.2017.暴雨致洪預(yù)報系統(tǒng)及其評估[J].應(yīng)用氣象學(xué)報,28(4):385-398. Gan Y J, Xu J, Zhao P, et al.2017. Introduction and evaluation of a rainstorm-caused flood forecasting system[J]. Jour- nal of Applied Meteorological Science, 28(4):385-398(in Chinese). doi:10.11898/1001-7313.20170401

        高超,張勛,陸苗,等.2016.農(nóng)業(yè)旱澇災(zāi)害氣象因子的致災(zāi)閾值研究進展[J].灌溉排水學(xué)報,35(11):111-116. Gao C, Zhang X, Lu M, et al.2016. Advances in threshold of meteorological flood and drought in- ducingfactorsinagriculture [J].JournalofIrrigationandDrainage, 35(11):111-116(in Chinese). doi:10.13522/j.cnki. ggps.2016.11.021

        郭山川,杜培軍,蒙亞平,等.2021.時序Sentinel-1A 數(shù)據(jù)支持的長江中下游汛情動態(tài)監(jiān)測[J].遙感學(xué)報, 25(10):2127-2141. Guo S C, Du P J, Meng Y P, et al.2021. Dynamic monitoring on flooding situation in the Middle and Lower Reaches of the Yangtze River Region using Senti- nel-1A time series [J]. National Remote Sensing Bulletin, 25(10):2127-2141(in Chinese)

        黃治勇,龍利民,邵末蘭,等.2011.類比法在暴雨災(zāi)害損失定量預(yù)估中的應(yīng)用[J].大氣科學(xué)學(xué)報, 34(2):246-250. Huang Z Y, Long L M, Shao M L, et al.2011. Application of analogy method in quantitative preesti- mate of heavy rain disaster loss [J]. Transactions of Atmospheric Sci- ences,34(2):246-250(inChinese).doi:10.3969/j.issn.1674-7097.2011.02.015

        霍治國,范雨嫻,楊建瑩,等.2017.中國農(nóng)業(yè)洪澇災(zāi)害研究進展[J].應(yīng)用氣象學(xué)報,28(6):3-15. Huo Z G, Fan Y X, Yang J Y, et al.2017. Review on Agricultural Flood Disaster in China [J]. Journal of applied Meteo- rological Science, 28(6):3-15(in Chinese). doi:10.11898/1001-7313.20170601

        李京.2012.自然災(zāi)害災(zāi)情評估模型與方法體系[M].北京:科學(xué)出版社:1-282. Li J.2012. Model and method system of natural disaster assess- ment [M]. Beijing: Science Press:1-282

        李茂松,李森,李育慧.2004.中國近50年洪澇災(zāi)害災(zāi)情分析[J].中國農(nóng)業(yè)氣象,25(1):40-43. Li M S, Li S, Li Y H.2004. Analysis of flood disas- ter in the past 50 years in China [J]. Chinese Journal of Agrometeorolo- gy, 25(1):40-43(in Chinese). doi:10.3969/j.issn.1000-6362.2004.01.011

        李巧媛,丁賢法,許霖.2013.降水量對湖南省水稻生產(chǎn)的影響分析[J].湖北農(nóng)業(yè)科學(xué),52(2):265-268. Li Q Y, Ding X F, Xu L.2013. Impact of precipitation on Hunan rice production [J]. Hubei Agricultural Sci- ences,52(2):265-268(in Chinese). doi:10.3969/j.issn.0439-8114.2013.02.005

        李艷旗.2000.氣象衛(wèi)星遙感監(jiān)測作物干旱的相似選擇分析法[J].中國農(nóng)業(yè)氣象,21(2):54-55. Li Y Q.2000. Similar selection analysis method of meteorological satellite remote sensing monitoring drought-injured crops [J]. Chinese Journal of Agrometeorology, 21(2):54-55(in Chi- nese). doi:10.3969/j.issn.1000-6362.2000.02.014

        李玉昌,李陽生,李紹清.1998.淹澇脅迫對水稻生長發(fā)育危害與耐淹性機理研究的進展[J].中國水稻科學(xué), 12(S1):70-76. Li Y C, Li Y S, Li S Q.1998. Progress in research on injury to rice growth and development under submergence stress and mechanism of submergence tolerance[J]. Chinese Journal of Rice Science, 12(S1):70-76(in Chinese)

        梁益同,周月華,高偉,等.2017.暴雨洪澇災(zāi)情采集手機APP設(shè)計與應(yīng)用[J].暴雨災(zāi)害,36(3):276-280. Liang Y T, Zhou Y H, Gao W, et al.2017. Design and application of a disaster situation mobile phone APP for rainstorm flooding [J]. Torrential Rain and Disasters, 36(3):276-280(in Chinese). doi:10.3969/j.issn.1004-9045.2017.03.011

        藺萬煌,孫福增,彭克勤,等.1997.洪澇脅迫對水稻產(chǎn)量及產(chǎn)量構(gòu)成因素的影響[J].湖南農(nóng)業(yè)大學(xué)學(xué)報,23(1):53-57. Lin W H, Sun W Z, Peng K Q, et al.1997. Effects of flooding on the yield and the yield compo- nents of rice [J]. Journal of Hunan Agricultural University, 23(1):53-57(in Chinese)

        劉小飛,劉祖貴, 肖俊夫,等.2021.不同生育期淹澇對夏玉米葉片葉綠素及產(chǎn)量的影響[J].排灌機械工程學(xué)報, 39(9):937-943. Liu X F, Liu Z G, Xiao J F, et al.2021. Effects of waterlogging at different growth stag- es on leaf chlorophyll and yield of summer maize [J]. Journal of Drain- age and Irrigation Machinery Engineering, 39(9):937-943(in Chinese). doi:10.3969/j.issn.1674-8530.20.0167

        劉志明,晏明,逄格江.2001.1998年吉林省西部洪水過程遙感動態(tài)監(jiān)測與災(zāi)情評估[J].自然災(zāi)害學(xué)報, 10(3):98-102. Liu Z M, Yan M, Peng G J.2001. RS motional monitoring and damage evaluation of flood pro- cess in western Jilin Province in 1998[J]. Journal of natural Disasters, 10(3):98-102(in Chinese). doi:10.3969/j.issn.1004-4574.2001.03.017

        劉祖貴,劉戰(zhàn)東, 肖俊夫,等.2013.苗期與拔節(jié)期淹澇抑制夏玉米生長發(fā)育、降低產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報, 29(5):44-52. Liu Z G, Liu Z D, Xiao J F, et al.2013. Waterlogging at seeding and jointing stages inhibits growth and development, reduces yield in summer maize [J]. Transac- tions of the Chinese Society of Agricultural Engineering, 29(5):44-52(in Chinese)

        婁偉平,吳利紅,姚益平.2010.水稻暴雨災(zāi)害保險氣象理賠指數(shù)設(shè)計[J].中國農(nóng)業(yè)科學(xué), 43(3):632-639. Lou W P, Wu L H, Yao Y P.2010. Design of weather-based indemnity indices for paddy rice heavy rain damage insurance [J]. Science Agricultura Sinica, 43(3):632-639(in Chinese). doi:10.3864/j.issn.0578-1752.2010.03.026

        寧金花,霍治國,陸魁東,等.2013.不同生育期淹澇脅迫對雜交稻形態(tài)特征和產(chǎn)量的影響[J].中國農(nóng)業(yè)氣象, 34(6):678-684. Ning J H, Huo Z G, Lu K D, et al.2013. Effects of water logging on morphological and yield of hybrid rice during growth stages [J]. Chinese Journal of Agro- meteorology,34(6):678-684(inChinese).doi:10.3969/j.issn.1000-6362.2013.06.010

        潘瀾,薛立.2012.植物淹水脅迫的生理學(xué)機制研究進展[J].生態(tài)學(xué)雜志, 31(10):2662-2672. Pan L, Xue L.2012. Plant physiological mecha- nisms in adapting to waterlogging stress: A review [J]. Chinese Journal of Ecology, 31(10):2662-2672(in Chinese)

        彭勤生,廖曉軍,謝彥,等.2015.洪澇災(zāi)害對水稻損失評估分析[J].生物災(zāi)害科學(xué),38(3):246-249. Peng Q S, Liao X J, Xie Y, et al.2015. Assess- ment and analysis of rice loss in flood disasters [J]. Biological Disaster Science, 38(3):246-249(in Chinese). doi:10.3969/j.issn.2095-3704.2015.03.015

        秦鵬程,劉敏,李蘭.2016.有效降水指數(shù)在暴雨洪澇監(jiān)測和評估中的應(yīng)用[J].中國農(nóng)業(yè)氣象,37(1):84-90. Qin P C, Liu M, Li L.2016. Appli- cation of effective precipitation index in rainstorm flood disaster moni- toring and assessment [J]. Chinese Journal of Agrometeorology, 37(1):84-90(in Chinese). doi:10.3969/j.issn.1000-6362.2016.01.011

        邵長秀,潘學(xué)標(biāo),李家文,等.2019.不同生育階段洪澇淹沒時長對水稻生長發(fā)育及產(chǎn)量構(gòu)成的影響[J].農(nóng)業(yè)工程學(xué)報,35(3):125-133. Shao C X, Pan X B, Li J W, et al.2019. Effects of flooding duration in different growth stages on growth and yield component of rice [J]. Transactions of the Chinese Society of Agricultural Engineering, 35(3):125-133(in Chinese). doi:10.11975/j.issn.1002-6819.2019.03.016

        史培軍.1996.再論災(zāi)害研究的理論與實踐[J].自然災(zāi)害學(xué)報,5(4):8-19. Shi P J.1996. Theory and practice of disaster study [J]. Journal of Nat- ural Disasters, 5(4):8-19(in Chinese)

        孫志廣,王寶祥,周振玲等.2021.水稻萌發(fā)耐淹性種質(zhì)資源篩選及QTL定位[J].作物學(xué)報,47(1):61-70. Sun Z G, Wang B X, Zhou Z L, et al. Screening of germplasm resources and QTL mapping for germinability under submerged condition in rice (Oryza sativa L)[J]. Acta AgronomicaSinica, 47(1):61-70(in Chinese). doi:10.3724/SP.J.1006.2021.02030

        田小海,龔信文,工藤哲夫,等.2000.水稻在澇漬條件下的產(chǎn)量形成試驗初報[J].湖北農(nóng)學(xué)院學(xué)報,20(4):289-291. Tian X H, Gong X W, Gongteng Z F, et al.2000. Study on the yielding process of rice under waterlogged conditions [J]. Journal of Hubei Agricultural College, 20(4):289-291(in Chinese)

        王斌,周永進,許有尊,等.2014.不同淹水時間對分蘗期中稻生育動態(tài)及產(chǎn)量的影響[J].中國稻米,20(1):68-72. Wang B, Zhou Y J, Xu Y Z, et al.2014. Effects of waterlogging stress on growth and yield of middle season rice at the tillering stage [J]. China Rice, 20(1):68-72(in Chi- nese). doi:10.3969/j.issn.1006-8082.2014.01.016

        王洪春,羅宗雅.1956.水稻在不同生長發(fā)育時期的淹水試驗[J].植物生理學(xué)通訊, 5(4):399-409. Wang H C, Luo Z Y.1956. Waterlogging ex- periment of rice at different growth and development stages [J]. Plant Physiology Journal, 5(4):399-409(in Chinese)

        王礦,王友貞,湯廣民.2015.水稻拔節(jié)孕穗期淹水對產(chǎn)量要素的影響[J].灌溉排水學(xué)報,34(9):40-43. Wang K, Wang Y Z, Tang G M.2015. Ef- fects of submergence stress on rice yield factors on jointing-booting stage [J]. Journal of Irrigation and Drainage, 34(9):40-43(in Chinese). doi:10.13522/j.cnki. ggps.2015.09.008

        王守立,戴其根,張國良,等.2008.水稻不同品種與秧苗素質(zhì)耐淹特性的調(diào)查[J].揚州大學(xué)學(xué)報:農(nóng)業(yè)與生命科學(xué)版,29(2):67-71. Wang S L, Dai Q G, Zhang G L, et al.2008. The submergence tolerance of differ- ent variety and seeding in rice [J]. Journal of Yangzhou University (Ag- ricultural and Life Science Edition), 29(2):67-71(in Chinese)

        王曉森,鄧忠,張文正,等.2017.棉花不同生育期淹水歷時對其生長狀況和產(chǎn)量構(gòu)成的影響[J].灌溉排水學(xué)報, 36(7):1-6. Wang X S, Deng Z, Zhang W Z, et al.2017. Effect of timing and duration of flooding on growth and yield of cotton [J]. Journal of Irrigation and Drainage, 36(7):1-6(in Chinese). doi:10.13522/j.cnki. ggps.2017.07.001

        王艷艷,李娜,王杉,等.2019.洪災(zāi)損失評估系統(tǒng)的研究開發(fā)及應(yīng)用[J].水利學(xué)報,50(9):1103-1110. Wang Y Y, Li N, Wang S, et al.2019. De- velopment and application of flood damage assessment system [J]. Jour- nal of Hydraulic Engineering, 50(9):1103-1110(in Chinese). doi:10.13243/j.cnki.slxb.20190350

        吳啟俠,楊威,朱建強,等.2014.雜交水稻對淹水脅迫的響應(yīng)及排水指標(biāo)研究[J].長江流域資源與環(huán)境, 23(6):875-882. Wu Q X, Yang W, Zhu J Q, et al.2014. Response of hybrid rice to flooding and establish- ment of drainage index [J]. Resources and Environment in the Yangtze Basin, 23(6):875-882(in Chinese). doi:10.11870/cjlyzyyhj201406019

        吳先華,周蕾,高歌,等.2016.考慮防災(zāi)減災(zāi)能力的洪澇災(zāi)害災(zāi)損率曲線構(gòu)建——以里下河地區(qū)的李中鎮(zhèn)為例[J].地理科學(xué)進展,35(2):223-231. Wu X H, Zhou L, Gao G, et al.2016. Flood depth-damage curves for urban properties considering disaster prevention and mitiga- tion capabilities: Evidence from Lizhong Town, Lixiahe region, China [J]. Progress in Geography, 35(2):223-231(in Chinese)

        夏石頭,彭克勤,曾可.2000.水稻澇害生理及其與水稻生產(chǎn)的關(guān)系[J].植物生理學(xué)通訊,36(6):581-588. Xia S T, Peng K Q, Zeng K.2000. Re- lationship between physiological damage of flood to rice and ricepro- duction [J]. Plant Physiology Communications, 36(6):581-588(in Chi- nese)

        夏興生,朱秀芳,潘耀忠,等.2016.基于歷史案例的自然災(zāi)害災(zāi)情評估方法研究[J].災(zāi)害學(xué),31(1):219-225. Xia X S, Zhu X F, Pan Y Z, et al.2016. Study on evaluation method of natural disaster based on histori- cal cases [J]. Journal of Catastrophology, 31(1):219-225(in Chinese). doi:10.3969/j.issn.1000-811X.2016.01.040

        夏智宏,周月華,史瑞琴,等.2014.基于MapGIS的暴雨洪澇風(fēng)險評估系統(tǒng)設(shè)計與實現(xiàn)[J].自然災(zāi)害學(xué)報,23(3):132-137. Xia Z H, Zhou Y H, Shi R Q, et al.2014. Design and realization of rainstorm and flood risk evaluation system based on MapGIS [J]. Journal of Natural Disasters, 23(3):132-137(in Chinese). doi:10.13577/j. jnd.2014.0317

        謝彥,張茂文,劉許生,等.2011.洪澇對早、中稻生產(chǎn)的影響調(diào)查與研究結(jié)果簡報[J].中國農(nóng)學(xué)通報, 27(9):281-286. Xie Y, Zhang M W, Liu X S, et al.2011. Floods of Early rice production and research results Pre- sentation impact Survey [J]. Chinese Agricultural Science Bulletin, 27(9):281-286(in Chinese)

        熊勤學(xué),田小海,朱建強.2017.基于DHSVM模型的作物漬害時空分布信息提取[J].灌溉排水學(xué)報, 36(6):109-116. Xiong Q X, Tian X H, Zhu J Q.2017. Calculating Spatio-spatial Distribution of Waterlogged in Ji- anli County Using the DHSVM Model [J]. Journal of Irrigation and Drainage, 36(6):109-116(in Chinese). doi:10.13522/j.cnki.ggps.2017.06.019

        徐鵬,顧曉鶴,邱賀,等.2014.基于多時相 HJ影像的水稻洪澇災(zāi)情和產(chǎn)量監(jiān)測[J].災(zāi)害學(xué),29(2):188-192. Xu P, Gu X H, Qiu H, et al.2014. Monitoring of disaster situation and yield of rice under flood and water- logging based on multi-temporal HJ images [J]. Journal of Catastro- phology, 29(2):188-192(in Chinese). doi:10.3969/j.issn.1000-811X.2014.02.035

        言鴿,陳協(xié)清,劉德福.1992.濱湖地區(qū)水稻受澇減產(chǎn)函數(shù)的研究[J].水利經(jīng)濟,10(4):48-52. Yan G, Chen X Q, Liu D F.1992. Study on rice yield loss function of waterlogging in lakeside area [J]. Journal of Eco- nomics of Water Resources, 10(4):48-529(in Chinese)

        楊建瑩,霍治國,吳立,等.2015.西南地區(qū)水稻洪澇等級評價指標(biāo)構(gòu)建及風(fēng)險分析[J].農(nóng)業(yè)工程學(xué)報, 31(16):135-144. Yang J Y, Huo Z G, Wu L, et al.2015. Evaluation level construction and analysis of risk on rice flood in Southwest China [J]. Transactions of the Chinese Society of Ag- ricultural Engineering, 31(16):135-144(in Chinese). doi:10.11975/j. issn.1002-6819.2015.16.019

        楊威,朱建強,吳啟俠,等.2015.澇害和高溫下棉花苗期的生長生理代謝特征[J].農(nóng)業(yè)工程學(xué)報, 31(22):98-104. Yang W, Zhu J Q, Wu Q X, et al.2015. Growth and physiological metabolism characteristic of cotton seedlings under combination of waterlogging and heat stress [J]. Trans- actions of the Chinese Society of Agricultural Engineering, 31(22):98-104(in Chinese). doi:10.11975/j.issn.1002-6819.2015.22.014

        殷劍敏,孔萍,李迎春,等.2009.我國南方早稻洪澇災(zāi)害指標(biāo)試驗研究[J].自然災(zāi)害學(xué)報,18(4):1-5. Yin J M, Kong P, Li Y C, et al.2009. Ex-perimental research on flood disaster indices of early rice in southern China [J]. Journal of Natural Disasters, 18(4):1-5(in Chinese). doi:10.3969/j.issn.1004-4574.2009.04.001

        余衛(wèi)東,馮利平,盛紹學(xué),等.2014.黃淮地區(qū)澇漬脅迫影響夏玉米生長及產(chǎn)量[J].農(nóng)業(yè)工程學(xué)報, 30(13):127-136. Yu W D, Feng L P, Sheng S X, et al.2014. Effect of waterlogging at jointing and tasseling stages on growth and yield of summer maize [J]. Transactions of the Chinese So- ciety of Agricultural Engineering, 30(13):127-136(in Chinese). doi:10.3969/j.issn.1002-6819.2014.13.016

        俞建河.2016.不同淹水時期與歷時對夏玉米生長和產(chǎn)量的影響試驗研究[J].中國農(nóng)村水利水電, 47(3):149-153. Yu J H.2016. Experimen- tal study on the effects of waterlogging on the growth and yield of sum- mer maize at different growing stages and for different durations [J]. China Rural Water and Hydropower, 47(3):149-153(in Chinese). doi:10.3969/j.issn.1007-2284.2016.03.035

        袁藝.2010.自然災(zāi)害災(zāi)情評估研究與實踐進展[J].地球科學(xué)進展,25(1):22-32. Yuan Y.2010. Advances in the assessment of natural disastersituation [J]. Advances in Earth Science, 25(1):22-32(in Chinese)

        張桂香,霍治國,楊建瑩,等.2018.基于過程降水量的長江中下游地區(qū)單季稻洪澇災(zāi)害指標(biāo)構(gòu)建[J].中國農(nóng)業(yè)氣象,39(5):37-48. Zhang G X, Huo Z G, Yang J Y, et al.2018. Flood disaster index construction of single cropping rice based on process rainfall in middle and lower Yangtze River [J]. Chinese Journal of Agrometeorology, 39(5):37-48(in Chinese). doi:10.3969/j.issn.1000-6362.2018.05.004

        張朝,劉曉菲,史培軍.2010.水稻的洪澇災(zāi)害損失綜述—基于結(jié)合水文模型的農(nóng)作物產(chǎn)量損失評價的思考[C]//中國災(zāi)害防御協(xié)會風(fēng)險分析專業(yè)委員會第四屆年會論文集, 長春. Zhang Z, Liu X F, Shi P J.2010. A summary on the yield loss of paddy from flooding and water- logging disasters-a viewing from crop productivity model combined a hydrological model [C]//Chinese Perspective on Risk Analysis and Crises Response-Proceedings of the 4th Annual Meeting of Risk Anal- ysis, Changchun

        趙阿興,馬宗晉.1993.自然災(zāi)害損失評估指標(biāo)體系的研究[J].自然災(zāi)害學(xué)報,2(3):1-7. Zhao A X, Ma Z J.1993. Study on loss assessment index system of natural disaster [J]. Journal of Natural Disasters, 2(3):1-7(in Chinese)

        趙鐵松,張安凝知,胡會芳.2022.暴雨洪澇災(zāi)害對農(nóng)作物損失定量評估研究[J].湖北農(nóng)業(yè)科學(xué),61(3):36-41. Zhao T S, Zhang A N Z, Hu H F.2022. Study on quantitative pre-assessment of crop rainstorm disaster loss [J]. Hubei Agricultural Sciences, 61(3):36-41(in Chinese). doi:10.14088/j.cnki.issn0439-8114.2022.03.008

        周新國,韓會玲,李彩霞,等.2014.拔節(jié)期淹水玉米的生理性狀和產(chǎn)量形成[J].農(nóng)業(yè)工程學(xué)報,30(9):119-125. Zhou X G, Han H L, Li C X, et al.2014. Physiological characters and yield formation of corn (Zea mays L) under waterlogging stress in jointing stage [J]. Transactions of the Chinese Society of Agricultural Engineering, 30(9):119-125(in Chinese). doi:10.3969/j.issn.1002-6819.2014.09.015

        周月華,彭濤,史瑞琴.2019.我國暴雨洪澇災(zāi)害風(fēng)險評估研究進展[J].暴雨災(zāi)害,38(5):494-501. Zhou Y H, Peng T, Shi R Q.2019. Research progress on risk assessment of heavy rainfall and flood disasters in Chi- na [J]. Torrential Rain and Disasters, 38(5):494-501(in Chinese). doi:10.3969/j.issn.1004-9045.2019.05.011

        朱建強,歐光華,張文英,等.2003.澇漬相隨對棉花產(chǎn)量與品質(zhì)的影響[J].中國農(nóng)業(yè)科學(xué),36(9):1050-1056. ZhuJ Q, Ou G H, Zhang W Y, et al.2003.Influence of subsurface waterlogging followed by surface waterlogging on Yield and Quality of Cotton [J]. Scientia Agricultura Sincia, 36(9):1050-1056(in Chinese). doi:10.3321/j.issn:0578-1752.2003.09.012

        Alfieri L, Cohen S, Galantowicz J, et al.2018. A global network for opera- tional flood risk reduction [J]. Environmental Science amp; Policy, 84:149-158. doi:10.1016/j.envsci.2018.03.014

        Cai Y, Guan K, Lobell D, et al.2019. Integrating satellite and climate da- ta to predict wheat yield in Australia using machine learning ap- proaches [J]. Agricultural and Forest Meteorology, 274:144-159. doi:10.1016/j.agrformet.2019.03.010

        Cao J, Zhang Z, Tao F, et al.2021. Integrating multi-Source data for rice yield prediction across China using machine learning and deep learn- ing approaches [J]. Agricultural and Forest Meteorology, 297:108275. doi:10.1016/j.agrformet.2020.108275

        Chen H, Liang Z, Liu Y, et al.2017. Integrated remote sensing imagery and two-dimensional hydraulic modeling approach for impact evaluation of flood on crop yields [J]. Journal of Hydrology, 553:262-275. doi:10.1016/j.jhydrol.2017.08.001

        Chen H L, Liang Q H, Liang Z Y, et al.2019. Remote-sensing disturbance detection index to identify spatio-temporal varying flood impact on crop production [J]. Agricultural and Forest Meteorology, 269:180-191. doi:10.1016/j.agrformet.2019.02.002

        Cohen S, Brakenridge G R, Kettner A, et al.2018. Estimating floodwater depths from flood inundation maps and topography [J]. Journal of the American Water Resources Association, 54(4):847-858. doi:10.1111/1752-1688.12609.

        Czajkowski J, Cunha L K, Michel-Kerjan E, et al.2016. Toward economic flood loss characterization via hazard simulation [J]. Environmental Re- search Letters, 11(8):084006. doi:10.1088/1748-9326/11/8/084006

        Debusscher B, Landuyt L, Van Coillie F.2020. A visualization tool for flood dynamics monitoring using a graph-based approach [J]. Remote Sens- ing, 12(13):2118. doi:10.3390/rs12132118

        DeVries B, Huang C Q, Armston J, et al.2020. Rapid and robust monitoring of flood events using Sentinel-1 and Landsat data on the Google Earth Engine [J]. Remote Sensing of Environment, 240:111664. doi:10.1016/ j.rse.2020.111664

        Di L, Yu E G, Kang L, et al.2017. RF-CLASS: A remote-sensing-based flood crop loss assessment cyber-service system for supporting crop statistics and insurance decision-making [J]. Journal of Integrative Ag- riculture, 16(2):408-423. doi:10.1016/S2095-3119(16)61499-5

        Dutta D, Herath S, Musiake K.2003. A mathematical model for flood loss estimation [J]. Journal of Hydrology, 277(1):24-49. doi:10.1016/ S0022-1694(03)00084-2

        FAO.2016. Damages and Losses from climate-related disasters in agricul- tural sectors [R]. www.fao.org/3/i6486e/i6486e.pdf

        Feng P Y, Wang B, Liu D L, et al.2019. Incorporating machine learning with biophysical model can improve the evaluation of climate extremes impacts on wheat yield in south-eastern Australia [J]. Agricultural and Forest Meteorology, 275:100-113. doi:10.1016/j.agrformet.2019.05.018 Folberth C, Baklanov A, Balkovi" J, et al.2019. Spatio-temporal down-scaling of gridded crop model yield estimates based on machine learn- ing [J]. Agricultural and Forest Meteorology, 264:1-15. doi:10.1016/j.agrformet.2018.09.021

        Ganji Z, Shokoohi A, Samani J M V.2012. Developing an agricultural floodloss estimation function (case study: rice)[J]. Natural Hazards, 64(1):405-419. doi:10.1007/s11069-012-0250-1

        Hirabayashi Y, Mahendran R, Koirala S, et al.2013. Global flood risk under climate change [J]. Nature Climate Change, 3(9):816-821. doi:10.1038/nclimate1911

        Hu R, Fang F, Pain C C, et al.2019. Rapid spatio-temporal flood prediction and uncertainty quantification using a deep learning method [J]. Jour- nal of Hydrology, 575:911-920. doi:10.1016/j.jhydrol.2019.05.087

        Ito O, Ella E, Kawano N.1999. Physiological basis of submergence toler- ance in rainfed lowland rice ecosystem [J]. Field Crops Research, 64(1):75-90. doi:10.1016/S0378-4290(99)00052-0

        Jain S, Saraf A, Goswami A, et al.2006. Flood inundation mapping using NOAA AVHRR data [J]. Water Resources Management, 20:949-959. doi:10.1007/s11269-006-9016-4

        Kabir S, Patidar S, Xia X, et al.2020. A deep convolutional neural network model for rapid prediction of fluvial flood inundation [J]. Journal of Hy- drology, 590:125481. doi:10.1016/j.jhydrol.2020.125481

        Kan G, Tang G, Yang Y, et al.2017. An Improved Coupled Routing and Ex- cess Storage (CREST) Distributed Hydrological Model and Its Verifica- tion in Ganjiang River Basin, China [J]. Water, 9(11):904. doi:10.3390/w9110904

        Kaur G, Singh G, Motavalli P P, et al.2020. Impacts and management strat- egies for crop production in waterlogged or flooded soils: A review [J].112(3):1475-1501. doi:10.1002/agj2.20093

        Kotera A, Nagano T, Hanittinan P, et al.2016. Assessing the degree of flood damage to rice crops in the Chao Phraya delta, Thailand, using MODIS satellite imaging [J]. Paddy and Water Environment, 14(1):271-280. doi:10.1007/s10333-015-0496-9

        Kotera A, Nawata E.2007. Role of plant height in the submergence tolerance of rice: A simulation analysis using an empirical model [J]. Agricultural Water Management, 89(1-2):49-58. doi:10.1016/j.agwat.2006.12.002

        Kreibich H, Van Loon A F, Schr?ter K, et al.2022. The challenge of unprecedented floods and droughts in risk management [J]. Nature, 608(7921):80-86. doi:10.1038/s41586-022-04917-5

        Kundzewicz Z W, Su B, Wang Y, et al.2019. Flood risk and its reduction in China [J]. Advances in Water Resources, 130:37-45. doi:10.1016/j. advwatres.2019.05.020

        Lazin R, Shen X Y, Anagnostou E, 2021. Estimation of flood-damaged crop- land area using a convolutional neural network [J]. Environmental Re- search Letters, 16(5):054011. doi:10.1088/1748-9326/abeba0

        Liu Y, Pender G.2015. A flood inundation modelling using v-support vec- tor machine regression model [J]. Engineering Applications of Artificial Intelligence, 46:223-231. doi:10.1016/j.engappai.2015.09.014

        Manfreda S, Samela C, Gioia A, et al.2015. Flood-prone areas assessment using linear binary classifiers based on flood maps obtained from 1D and 2D hydraulic models [J]. Natural Hazards, 79(2):735-754. doi:10.1007/s11069-015-1869-5

        Engelaar W M H G, Matsumaru T, Yoneyama T.2000. Combined effects of soil waterlogging and compaction on rice (Oryza sativa L.) growth, soil aeration, soil N transformations and N-15 discrimination [J]. Biology and Fertility of Soils, 32(6):484-493. doi:10.1007/s003740000282

        Oddo P C, Ahamed A, Bolten J D.2018. Socioeconomic impact evaluation for near real-time flood detection in the lower Mekong River Basin [J]. Hydrology, 5(2):23. doi:10.3390/hydrology5020023

        Oliveira M A, Fleischmann A, Paiva R.2020. On the contribution of remote sensing-based calibration to model multiple hydrological variables in tropical regions [J]. Journal of Hydrology, 597:126184. doi:10.1016/j. jhydrol.2021.126184

        Pan B X, Hsu K L, AghaKouchak A, et al.2019. Improving precipitation es- timation using convolutional neural network [J]. Water Resources Re- search, 55(3):2301-2321. doi:10.1029/2018WR024090

        Psomiadis E, Diakakis M, Soulis K.2020. Combining SAR and optical earth observation with hydraulic simulation for flood mapping and impact as- sessment [J]. Remote Sensing, 12(23):3980. doi:10.3390/rs12233980

        Rahman M S, Di L P.2020. A Systematic Review on Case Studies of Re- mote-Sensing-BasedFloodCropLossAssessment [J].Agriculture, 10(4):131. doi:10.3390/agriculture10040131

        Rahman M S, Di L P, Yu E G, et al.2021. Remote Sensing Based Rapid As- sessment of Flood Crop Damage Using Novel Disaster Vegetation Dam- age Index (DVDI)[J]. International Journal of Disaster Risk Science, 12:90-110. doi:10.1007/s13753-020-00305-7

        Reddy M D, Mittra B N.1985. Effect of complete plant submergence at dif- ferent growth stages on grain yield, yield components and nutrient con- tent of rice [J]. Plant and Soil, 86(3):379-386. doi:10.1007/bf02145458

        Runge J, Bathiany S, Bollt E, et al.2019. Inferring causation from time se- ries in Earth system sciences [J]. Nature Communications, 10(1):1-13. doi:10.1038/s41467-019-10105-3

        Samela C, Albano R, Sole A, et al.2018. A GIS tool for cost-effective delin- eation of flood-prone areas [J]. Computers Environment amp; Urban Sys- tems, 70:43-52. doi:10.1016/j.compenvurbsys.2018.01.013

        Sanyal J, Lu X.2004. Application of remote sensing in flood management with special reference to monsoon Asia: a review [J]. Natural Hazards, 33(2):283-301. doi:10.1023/B:NHAZ.0000037035.65105.95

        Sayama T, Tatebe Y, Tanaka S.2017. An emergency response-type rain- fall-runoff-inundation simulation for 2011 Thailand floods [J]. Journal of Flood Risk Management, 10(1):65-78. doi:10.1111/jfr3.12147

        Sharma A R, Ghosh A.1999. Submergence tolerance and yield performance of lowland rice as affected by agronomic management practices in east- ern India [J]. Field Crops Research, 63(3):187-198. doi:10.1016/ S0378-4290(99)00039-8

        Shen X Y, Anagnostou E N, Allen G H, et al.2019. Near-real-time non-obstructed flood inundation mapping using synthetic aperture ra- dar [J]. Remote Sensing of Environment, 221:302-315. doi:10.1016/j. rse.2018.11.008

        Shokoohi A, Ganji Z, Samani J M V, et al.2018. Analysis of spatial and temporal risk of agricultural loss due to flooding in paddy farms [J].

        Paddy and Water Environment, 16(4):737-748. doi:10.1007/s10333-018-0665-8

        Shrestha B B, Okazumi T, Miyamoto M, et al.2016. Flood damage assess- ment in the Pampanga river basin of the Philippines [J]. Journal of Flood Risk Management, 9(4):355-369. doi:10.1111/jfr3.12174

        Tanaka T, Tachikawa Y, Ichikawa Y, et al.2017. Impact assessment of up- stream flooding on extreme flood frequency analysis by incorporating a flood-inundation model for flood risk assessment [J]. Journal of Hy- drology, 554:370-382. doi:10.1016/j.jhydrol.2017.09.012

        Teng J, Jakeman A J, Vaze J, et al.2017. Flood inundation modelling: A re- view of methods, recent advances and uncertainty analysis [J]. Environ- mental Modelling amp; Software, 90:201-216. doi:10.1016/j.envsoft.2017.01.006

        Ticehurst C, Dutta D, Karim F, et al.2015. Improving the accuracy of daily MODIS OWL flood inundation mapping using hydrodynamic model- ling [J]. Natural Hazards, 78(2):803-820. doi:10.1007/s11069-015-1743-5

        Ticehurst C, Guerschman J, Yun C.2014. The strengths and limitations in using the daily MODIS open water likelihood algorithm for identifying flood events [J]. Remote Sensing, 6:11791-11809. doi:10.3390/ rs61211791

        Tokar A S, Johnson P A.1999. Rainfall-runoff modeling using artificial neural networks [J]. Journal of Hydrologic Engineering, 4(3):232-239. doi:10.1061/(ASCE)1084-0699(1999)4:3(232)

        Wang J H, Yang H, Li L, et al.2011. The coupled routing and excess stor- age (CREST) distributed hydrological model [J]. Hydrological Sciences Journal-Journal Des Sciences Hydrologiques, 56(1):84-98. doi:10.1080/02626667.2010.543087

        Win S, Zin W, Kawasaki A, et al.2018. Establishment of flood damage function models: A case study in the Bago River Basin, Myanmar [J]. International Journal of Disaster Risk Reduction, 28:688-700. doi:10.1016/j.ijdrr.2018.01.030

        Xia X, Liang Q, Ming X.2019. A full-scale fluvial flood modelling frame- work based on a high-performance integrated hydrodynamic modelling system (HiPIMS)[J]. Advances in Water Resources, 132:103392. doi:10.1016/j.advwatres.2019.103392

        Xu H Q.2006. Modification of normalised difference water index (NDWI) to enhance open water features in remotely sensed imagery [J]. Interna- tional Journal of Remote Sensing, 27(14):3025-3033. doi:10.1080/01431160600589179

        (責(zé)任編輯王銀平)

        久久久久亚洲av无码观看| 久久精品一区二区熟女| 青青草视频网站免费看| 人妻精品久久久一区二区 | 国产高清在线精品一区二区三区 | 91自拍视频国产精品| 国产精品无码制服丝袜| 无遮挡1000部拍拍拍免费| 牛牛在线视频| 中国猛少妇色xxxxx| chinesefreexxxx国产麻豆| 国产成人综合亚洲av| 精品国产乱码一区二区三区| 国产丝袜长腿在线看片网站| 国产精品国产三级国产aⅴ下载 | 大肉大捧一进一出视频出来呀| 日本乱人伦在线观看| 欧美aⅴ在线| 亚洲人成人一区二区三区| 国产av无码专区亚洲aⅴ | 久久熟妇少妇亚洲精品| a级国产乱理伦片| 午夜福利理论片高清在线观看| 无码任你躁久久久久久| 国产精在线| 五月婷婷激情六月开心| 日本午夜理论片在线观看| 亚洲中文字幕在线观看| 3d动漫精品啪啪一区二区下载| av草草久久久久久久久久久| 国产亚洲精品高清视频| 尤物国产一区二区三区在线观看| 国产区女主播在线观看| 国产激情精品一区二区三区| 在线a免费观看| 久久精品中文字幕免费| 久久亚洲乱码中文字幕熟女| 欧美日韩在线视频| 青青久在线视频免费观看| 一级做a爰片久久毛片| h动漫尤物视频|