吳敏 翟力欣 李啟躍 田光兆 姜玉東 王曉璐
摘要:為解決傳統(tǒng)農(nóng)業(yè)溫控系統(tǒng)存在的大慣性、時(shí)變非線性和純滯后性問題,以恒溫水浴溫度調(diào)控系統(tǒng)為研究對(duì)象,建立溫度調(diào)控機(jī)構(gòu)的一階加純滯后數(shù)學(xué)模型。充分考慮PID控制、模糊控制與灰色預(yù)測(cè)控制各自的優(yōu)點(diǎn),仿真評(píng)估灰色預(yù)測(cè)算法預(yù)測(cè)系統(tǒng)溫度的相對(duì)殘差均值為4.73×10-6,方差比為0.001 8,反映出模型預(yù)測(cè)的可靠性很高;設(shè)計(jì)將模糊PID作為主控制器,灰色預(yù)測(cè)算法作為輔助控制器的協(xié)同溫度控制模型。仿真試驗(yàn)結(jié)果表明:灰色預(yù)測(cè)—模糊PID控制器的超調(diào)量相對(duì)于傳統(tǒng)PID控制器下降0.35%,相對(duì)于模糊PID控制器下降0.18%;灰色預(yù)測(cè)—模糊PID控制器的調(diào)節(jié)時(shí)間相對(duì)于傳統(tǒng)PID控制器縮短232.8ms,相對(duì)于模糊PID控制器縮短204.9ms;灰色預(yù)測(cè)—模糊PID控制器的穩(wěn)定溫度值相對(duì)于傳統(tǒng)PID控制器減小3×10-3℃,相對(duì)于模糊PID控制器沒有發(fā)生變化;對(duì)于相同的擾動(dòng)信號(hào),灰色預(yù)測(cè)—模糊PID控制器的調(diào)節(jié)時(shí)間相對(duì)于傳統(tǒng)PID控制器縮短252.3ms,相對(duì)于模糊PID控制器縮短248.2ms?;疑A(yù)測(cè)與模糊PID的恒溫水浴協(xié)同溫度控制與傳統(tǒng)PID、模糊PID控制相比,具有更小的超調(diào)量、穩(wěn)態(tài)誤差和更快的調(diào)節(jié)速度以及更好的抗干擾性能。
關(guān)鍵詞:灰色預(yù)測(cè);模糊PID;恒溫水??;動(dòng)態(tài)響應(yīng)特性;抗干擾能力
中圖分類號(hào):S24 文獻(xiàn)標(biāo)識(shí)碼:A 文章編號(hào):20955553 (2023) 11012308
Collaborative temperature control of constant temperature water bath based on
grey prediction and Fuzzy PID
Wu Min Zhai Lixin Li Qiyue Tian Guangzhao Jiang Yudong Wang Xiaolu
(1. College of Mechanical and Electrical Engineering, Jinling Institute of Technology, Nanjing, 211169, China;
2. College of Intelligent Science and Control Engineering, Jinling Institute of Technology, Nanjing, 211169, China;
3. College of Engineering, Nanjing Agricultural University, Nanjing, 210095, China)
Abstract:In order to solve the problems of large inertia, time-varying nonlinearity and pure delay in the traditional agricultural temperature control system, the thermostatic water bath temperature control system was studied, and the first-order plus pure delay mathematical model was established of the temperature control mechanism. With full account of the advantages of PID control, fuzzy control and grey prediction control, the simulation evaluation showed that the mean value of the relative residual error of the grey prediction algorithm to predict the system temperature was 4.73×10-6, the variance ratio was 0.001 8, reflecting the high reliability of the model prediction; the cooperative temperature control model was designed with Fuzzy PID as the main controller and grey prediction algorithm as the auxiliary controller. The simulation results showed that the overshoot of the grey prediction Fuzzy PID controller was 0.35% lower than that of the traditional PID controller, and 0.18% lower than that of the Fuzzy PID controller; the adjusting time of the grey prediction Fuzzy PID controller was 232.8 ms shorter than that of the traditional PID controller and 204.9 ms shorter than that of the Fuzzy PID controller; compared with the traditional PID controller, the stable temperature value of the grey prediction Fuzzy PID controller decreased by 3×10-3℃, no change was detected when compared with the Fuzzy PID controller; for the same disturbance signal, the adjustment time of the grey prediction Fuzzy PID controller was 252.3 ms shorter than that of the traditional PID controller, and 248.2 ms shorter than that of the Fuzzy PID controller. The coordinated temperature control of constant temperature water bath based on grey prediction and Fuzzy PID, compared with traditional PID and Fuzzy PID control, had smaller overshoot, steady state error, faster regulation speed and better anti-interference performance.
Keywords:grey prediction; Fuzzy PID; constant temperature water bath; dynamic response characteristics; anti interference capability
0引言
溫度對(duì)農(nóng)作物的生長(zhǎng)起著至關(guān)重要的作用,農(nóng)作物只有在適宜的溫度環(huán)境下,才會(huì)有序地進(jìn)行呼吸作用和光合作用,茁壯成長(zhǎng)。傳統(tǒng)農(nóng)業(yè)中,在不同季節(jié)種植不同蔬菜需要農(nóng)業(yè)大棚保持不同的溫度,農(nóng)民對(duì)于溫度的調(diào)控只能靠生產(chǎn)經(jīng)驗(yàn),具有主觀性,達(dá)不到精準(zhǔn)農(nóng)業(yè)的要求標(biāo)準(zhǔn)。隨著對(duì)農(nóng)業(yè)環(huán)境調(diào)控要求的不斷提升,農(nóng)業(yè)環(huán)境的實(shí)時(shí)監(jiān)控和精準(zhǔn)調(diào)節(jié)技術(shù)也不斷提高,例如:通過(guò)智能化系統(tǒng)可以監(jiān)測(cè)大棚在何種溫度條件下作物生長(zhǎng)最好,何種環(huán)境下病蟲害最少[1],甜菜夜蛾等病害在何種溫度下適宜生存[2]。李毅志等[3]研究發(fā)現(xiàn)溫度與香菇子實(shí)體的發(fā)育歷期呈現(xiàn)負(fù)相關(guān)關(guān)系,在一定范圍內(nèi),香菇子實(shí)體發(fā)育歷期隨溫度的升高而逐漸縮短,溫度影響相關(guān)酶活性,進(jìn)而對(duì)香菇子實(shí)體的生長(zhǎng)速度產(chǎn)生影響。根據(jù)這些記錄調(diào)節(jié)溫度控制系統(tǒng),可以確保農(nóng)作物處于最優(yōu)生產(chǎn)環(huán)境中,因此農(nóng)業(yè)生產(chǎn)中,如何對(duì)溫度環(huán)境智能的監(jiān)控和調(diào)節(jié)已成為研究熱點(diǎn)。
我國(guó)溫度控制產(chǎn)業(yè)發(fā)展水平目前仍有很大的上升空間,需要不斷注入活力,而溫度控制技術(shù)方法的創(chuàng)新正是活力的源泉[4]。恒溫水浴是農(nóng)業(yè)科研部門及企業(yè)實(shí)驗(yàn)室中直接或輔助加熱的重要設(shè)備,對(duì)溫度性能要求嚴(yán)格。本系統(tǒng)在恒溫水浴槽監(jiān)控系統(tǒng)的基礎(chǔ)上對(duì)溫度的調(diào)節(jié)進(jìn)行控制方法的研究。
傳統(tǒng)PID控制算法有著結(jié)構(gòu)簡(jiǎn)單、魯棒性強(qiáng)、控制效果好等優(yōu)點(diǎn),但應(yīng)用傳統(tǒng)PID控制算法需要建立精確的系統(tǒng)數(shù)學(xué)模型,控制器不能對(duì)已設(shè)置的PID參數(shù)進(jìn)行更改,缺乏自適應(yīng)能力[5]。在實(shí)際應(yīng)用中,由于受到周圍環(huán)境的影響以及恒溫水浴溫度調(diào)節(jié)系統(tǒng)本身就是一個(gè)大滯后、時(shí)變、非線性的復(fù)雜難控系統(tǒng),所以恒溫水浴的傳統(tǒng)PID溫度控制參數(shù)通常是根據(jù)經(jīng)驗(yàn)手動(dòng)調(diào)節(jié),無(wú)法在不確定環(huán)境中獲得最佳控制效果。為此,一些學(xué)者把不同的新型智能算法同傳統(tǒng)的PID控制結(jié)合起來(lái),優(yōu)勢(shì)互補(bǔ),實(shí)現(xiàn)更好的控制效果。李瑞等[6]研發(fā)了一套基于PID調(diào)節(jié)的加熱板控制系統(tǒng),該系統(tǒng)可以控制加熱板以恒定的速率或連續(xù)改變的速率加熱,實(shí)時(shí)監(jiān)控保溫溫度和保溫時(shí)間,調(diào)整溫度上沖量,以及保存數(shù)據(jù);李喜武等[7]以北方寒冷地區(qū)仔豬舍為研究對(duì)象,建立了基于模糊PID理論的仔豬溫床環(huán)境調(diào)控模型,經(jīng)過(guò)實(shí)驗(yàn)證明,該方法比傳統(tǒng)的PID算法具有更好的穩(wěn)態(tài)精度和自適應(yīng)能力;吳敏等[8]通過(guò)實(shí)驗(yàn)測(cè)得恒溫水浴的實(shí)際傳遞函數(shù),將經(jīng)過(guò)Z-N參數(shù)整定后的模糊PID算法應(yīng)用于恒溫水浴控制系統(tǒng);皇甫立群[9]針對(duì)溫室溫度控制系統(tǒng)存在的大慣性、非線性等問題,仿真實(shí)驗(yàn)中建立并比較了B-BP-PID控制器、BP-PID控制器和RBF-PID控制器的控制系統(tǒng),得出B-BP-PID控制器可以保證系統(tǒng)更有效的跟蹤系統(tǒng)模型并達(dá)到較高的辨識(shí)精度。
灰色預(yù)測(cè)模型可實(shí)現(xiàn)“超前控制”,能有效改善模糊PID控制器較大的滯后性、抗干擾能力差等問題。肖天非[10]將灰色預(yù)測(cè)算法和模糊控制算法相結(jié)合對(duì)注射機(jī)溫度控制系統(tǒng)進(jìn)行優(yōu)化,仿真實(shí)驗(yàn)結(jié)果對(duì)比PID控制算法,減小了系統(tǒng)的超調(diào)量和調(diào)節(jié)時(shí)間;李杰等[11]針對(duì)中央空調(diào)溫濕度系統(tǒng)混雜特性,采用灰色預(yù)測(cè)方法對(duì)系統(tǒng)中可測(cè)不可控的擾動(dòng)輸入進(jìn)行了仿真預(yù)測(cè),分析了溫濕度切換系統(tǒng)有限時(shí)間內(nèi)的穩(wěn)定特性并結(jié)合溫濕度幅值約束條件,得到各類設(shè)備的最優(yōu)切換序列;文淵博等[12]在用戶界面對(duì)未來(lái)某時(shí)刻的煙花倉(cāng)庫(kù)溫濕度進(jìn)行灰色預(yù)測(cè),使用戶能及時(shí)發(fā)現(xiàn)危險(xiǎn)預(yù)警;王彰云[13]和Tanaka[14]等分別將灰色預(yù)測(cè)—模糊PID算法應(yīng)用于溫度控制,但均缺少加入灰色預(yù)測(cè)后的可行性測(cè)試和抗干擾性能的實(shí)驗(yàn)分析。
本系統(tǒng)針對(duì)傳統(tǒng)PID算法難以滿足現(xiàn)代農(nóng)業(yè)環(huán)境溫度精準(zhǔn)調(diào)節(jié)的要求,以恒溫水浴溫度調(diào)控系統(tǒng)為研究對(duì)象建立溫度調(diào)控模型,提取傳統(tǒng)PID控制、模糊控制和灰色預(yù)測(cè)控制的優(yōu)點(diǎn),在模糊PID主控制器的反饋回路中加入灰色預(yù)測(cè)輔助控制器并進(jìn)行可行性測(cè)試,實(shí)時(shí)對(duì)主控制器的參數(shù)進(jìn)行在線調(diào)整,為農(nóng)業(yè)生產(chǎn)溫度環(huán)境智能精準(zhǔn)調(diào)控提供決策依據(jù)。
1恒溫水浴溫度控制系統(tǒng)實(shí)驗(yàn)數(shù)學(xué)模型
2溫度控制系統(tǒng)控制策略
2.1模糊PID主控制器設(shè)計(jì)
2.1.1模糊控制器參數(shù)的設(shè)定
2.1.2模糊規(guī)則和清晰化
根據(jù)經(jīng)驗(yàn)可知恒溫水浴的溫度特性,由此可以總結(jié)出一些操作經(jīng)驗(yàn),如“溫度高,降溫速度較慢,則暫時(shí)不需要加熱”等,將這些總結(jié)出的經(jīng)驗(yàn)轉(zhuǎn)化為模糊規(guī)則,控制器即可通過(guò)模擬人對(duì)系統(tǒng)當(dāng)前狀況的分析,做出相應(yīng)的控制[18],制定出模糊規(guī)則表并創(chuàng)建出相應(yīng)的模糊規(guī)則庫(kù),設(shè)置完成后的模糊推理輸入輸出曲面視圖和規(guī)則觀測(cè)器如圖4、圖5所示。
2.2灰色預(yù)測(cè)輔助控制器設(shè)計(jì)
2.2.1灰色預(yù)測(cè)GM(1,1)模型
灰色預(yù)測(cè)模型是一種通過(guò)少量、不完全的信息來(lái)建立數(shù)學(xué)模型并作出預(yù)測(cè)的方法,它可以借助于微分方程發(fā)現(xiàn)雜亂無(wú)章數(shù)列的發(fā)展規(guī)律及趨勢(shì),對(duì)于存在不確定因素的復(fù)雜系統(tǒng)預(yù)測(cè)效果較好,是處理小樣本預(yù)測(cè)問題的主要工具,適合應(yīng)用于貧信息系統(tǒng),運(yùn)算相對(duì)較為簡(jiǎn)單[19]。
常用的灰色系統(tǒng)預(yù)測(cè)模型主要有GM(1, 1)和GM(1,N),其中N為輸入變量個(gè)數(shù)。GM(1,1)模型的預(yù)測(cè)原理是:某一數(shù)據(jù)序列本身可能不具有明確的發(fā)展趨勢(shì),用累加的方法得到一個(gè)發(fā)展變化趨勢(shì)明顯的新數(shù)據(jù)序列,根據(jù)新數(shù)據(jù)序列的發(fā)展變化趨勢(shì)構(gòu)建模型并進(jìn)行估計(jì),再用累減的方式進(jìn)行逆向運(yùn)算,回歸原始數(shù)據(jù)序列,從而得出預(yù)測(cè)結(jié)果[20]。GM(1,N)模型的預(yù)測(cè)原理與GM(1,1)類似,區(qū)別在于GM(1,N)的輸入變量為N個(gè)。
在本恒溫水浴溫度控制系統(tǒng)中,預(yù)測(cè)模型主要用于預(yù)測(cè)反饋回路的溫度數(shù)據(jù),即本系統(tǒng)所用模型為單一輸入變量,因此選用GM(1,1)模型。以恒溫水浴箱運(yùn)行時(shí)的溫度數(shù)據(jù)作為原始數(shù)據(jù),建立GM(1,1)模型預(yù)測(cè)系統(tǒng)下一步的溫度,以此來(lái)達(dá)到超前控制的目的。
2.2.2灰色預(yù)測(cè)模型可行性測(cè)試
在系統(tǒng)加入灰色預(yù)測(cè)輔助控制器前,需要評(píng)估灰色模型預(yù)測(cè)恒溫水浴溫度的可靠性。為此取模糊PID控制輸出的一組溫度序列,在Matlab中編寫程序驗(yàn)證其可靠性,仿真結(jié)果如圖6所示。
3.1三種模型算法動(dòng)態(tài)響應(yīng)特性對(duì)比
3.2三種模型算法干擾仿真特性對(duì)比
在1 600ms時(shí)刻分別對(duì)PID控制器、模糊PID控制器和灰色預(yù)測(cè)—模糊PID控制器施加10%輸入幅值的擾動(dòng)信號(hào),仿真結(jié)果如圖8所示,虛線是未受干擾時(shí)的響應(yīng)曲線,實(shí)線是受到瞬時(shí)常值干擾時(shí)的響應(yīng)曲線。
可以看出,三種算法控制器在受到常值干擾后的響應(yīng)曲線均偏離設(shè)定值出現(xiàn)短暫的震蕩,然后逐漸恢復(fù)穩(wěn)定。重新恢復(fù)穩(wěn)定狀態(tài)的時(shí)刻和調(diào)節(jié)時(shí)間如表5所示。
經(jīng)對(duì)比可知,傳統(tǒng)PID控制器受擾動(dòng)后的調(diào)節(jié)持續(xù)時(shí)間較長(zhǎng),為834.4ms。其他兩種控制器相對(duì)而言在調(diào)節(jié)時(shí)間及響應(yīng)速度方面有較大的改善?;疑A(yù)測(cè)—模糊PID控制器的調(diào)節(jié)時(shí)間相對(duì)于傳統(tǒng)PID控制器縮短了252.3ms,相對(duì)于模糊PID控制器縮短了248.2ms,灰色預(yù)測(cè)—模糊PID控制器的調(diào)節(jié)時(shí)間最短且響應(yīng)最快。
4結(jié)論
為了滿足現(xiàn)代農(nóng)業(yè)環(huán)境溫度智能精準(zhǔn)調(diào)控,本研究以農(nóng)業(yè)相關(guān)實(shí)驗(yàn)室中直接或輔助加熱的重要設(shè)備——恒溫水浴溫度為調(diào)控對(duì)象,評(píng)估灰色模型預(yù)測(cè)恒溫水浴溫度的可行性,并對(duì)灰色預(yù)測(cè)與模糊PID的協(xié)同控制算法進(jìn)行仿真實(shí)驗(yàn),主要結(jié)論如下。
1) 在系統(tǒng)加入灰色預(yù)測(cè)輔助控制器前,仿真評(píng)估了灰色預(yù)測(cè)算法預(yù)測(cè)系統(tǒng)溫度的相對(duì)殘差均值為4.73×10-6,方差比為0.001 8,反映出模型預(yù)測(cè)的可靠性很高。
2) 在恒溫水浴槽監(jiān)控系統(tǒng)中加入同樣的溫度階躍輸入信號(hào)和溫度擾動(dòng)信號(hào),仿真表明:灰色預(yù)測(cè)—模糊PID控制器的超調(diào)量相對(duì)于傳統(tǒng)PID控制器下降0.35%,相對(duì)于模糊PID控制器下降0.18%;灰色預(yù)測(cè)—模糊PID控制器的調(diào)節(jié)時(shí)間相對(duì)于傳統(tǒng)PID控制器縮短232.8ms,相對(duì)于模糊PID控制器縮短204.9ms;灰色預(yù)測(cè)—模糊PID控制器的穩(wěn)定溫度值相對(duì)于傳統(tǒng)PID控制器減小3×10-3℃,相對(duì)于模糊PID控制器沒有發(fā)生變化;對(duì)于相同的擾動(dòng)信號(hào),灰色預(yù)測(cè)—模糊PID控制器的調(diào)節(jié)時(shí)間相對(duì)于傳統(tǒng)PID控制器縮短252.3ms,相對(duì)于模糊PID控制器縮短248.2ms。
灰色預(yù)測(cè)與模糊PID的恒溫水浴協(xié)同溫度控制灰色預(yù)測(cè)—模糊PID控制器相比于PID控制器和模糊PID控制器具有更好的跟隨性、穩(wěn)定性、控制精度和抗干擾能力,該研究對(duì)于改善農(nóng)業(yè)中環(huán)境溫度的精準(zhǔn)調(diào)控有廣泛的理論借鑒意義。
參考文獻(xiàn)
[1]孫恒. 環(huán)境脅迫對(duì)印楝生長(zhǎng)代謝及萜類酶基因表達(dá)的影響[D]. 北京: 中國(guó)林業(yè)科學(xué)研究院, 2020.Sun Heng. Effects of environmental stress on growth, metabolism and gene expression of terpenoid enzymes in Azadirachta indica [D]. Beijing: Chinese Academy of Forestry, 2020.
[1]李春華, 曾青, 沙霖楠, 等. 大氣CO2濃度和溫度升高對(duì)水稻地上部干物質(zhì)積累和分配的影響[J]. 生態(tài)環(huán)境學(xué)報(bào), 2016, 25(8): 1336-1342.Li Chunhua, Zeng Qing, Sha Linnan, et al. Impacts of elevated atmospheric CO2 and temperature on above-ground dry matter accumulation and distribution of rice (Oryza sativa L.) [J]. Ecology and Environmental Sciences, 2016, 25(8): 1336-1342.
[2]唐穎. 高銨脅迫對(duì)土壤性質(zhì)、藍(lán)莓苗生長(zhǎng)及生理的影響[D]. 大連: 大連理工大學(xué), 2018.Tang Ying. Effects of high ammonium stress on soil properties, growth and physiology of blueberry seedlings [D]. Dalian: Dalian University of Technology, 2018.
[3]李毅志, 陸暢, 候昭宇, 等. 基于溫度和相對(duì)濕度的香菇子實(shí)體生長(zhǎng)模型構(gòu)建[J]. 食用菌學(xué)報(bào), 2021, 28(6): 87-97.Li Yizhi, Lu Chang, Hou Zhaoyu, et al. Establishment of growth models for Lentinula edodes fruiting body development based on temperature and relative humidity [J]. Acta Edulis Fungi, 2021, 28(6): 87-97.
[4]桑文, 高俏, 張長(zhǎng)禹, 等. 我國(guó)農(nóng)業(yè)害蟲物理防治研究與應(yīng)用進(jìn)展[J]. 植物保護(hù)學(xué)報(bào), 2022, 49(1): 173-183.Sang Wen, Gao Qiao, Zhang Changyu, et al. Researches and applications of physical control of agricultural insect pests in China [J]. Journal of Plant Protection, 2022, 49(1): 173-183.
[5]劉經(jīng)緯, 周瑞, 朱敏玲. 先進(jìn)模糊智能復(fù)合經(jīng)典PID控制理論與應(yīng)用及其Matlab實(shí)現(xiàn)[M]. 北京: 首都經(jīng)濟(jì)貿(mào)易大學(xué)出版社. 2019.
[6]李瑞, 李寧, 李玉龍, 等. 基于PID調(diào)節(jié)的可連續(xù)改變加熱速率的加熱板控制系統(tǒng)研制[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2022, 43(2): 84-92.Li Rui, Li Ning, Li Yulong, et al. A new heating block control system based on PID regulations for continuously changed heating rates [J]. Journal of Chinese Agricultural Mechanization, 2022, 43(2): 84-92.
[7]李喜武, 徐博, 袁月明, 等. 自適應(yīng)模糊PID算法仔豬床溫度控制系統(tǒng)研究[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2020, 41(10): 48-53, 73.Li Xiwu, Xu Bo, Yuan Yueming, et al. Research on temperature control system of piglet bed based on adaptive fuzzy PID algorithm [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(10): 48-53, 73.
[8]吳敏, 姜玉東, 王曉璐, 等. 基于模糊PID算法的恒溫水浴控制系統(tǒng)研究[J]. 金陵科技學(xué)院學(xué)報(bào), 2021, 37(3): 60-65.Wu Min, Jiang Yudong, Wang Xiaolu, et al. Research on control system of constant temperature water bath based on fuzzy PID algorithm [J]. Journal of Jinling Institute of Technology, 2021, 37(3): 60-65.
[9]皇甫立群. 基于改進(jìn)B樣條神經(jīng)網(wǎng)絡(luò)-PID控制器的溫室溫度控制技術(shù)[J]. 中國(guó)農(nóng)機(jī)化學(xué)報(bào), 2020, 41(7): 68-74.Huangfu Liqun. Temperature control technology of greenhouse based on improved B spline neural network-PID [J]. Journal of Chinese Agricultural Mechanization, 2020, 41(7): 68-74.
[10]肖天非. 注射機(jī)料筒溫度灰色預(yù)測(cè)控制研究[J]. 塑料科技, 2019, 47(12): 99-103.Xiao Tianfei. Research on grey prediction control of injection molding machine barrel temperature [J]. Plastics Science and Technology, 2019, 47(12): 99-103.
[11]李杰, 張軍, 衡潤(rùn)來(lái), 等. 基于灰色預(yù)測(cè)模型的中央空調(diào)溫濕度系統(tǒng)控制策略[J]. 儀表技術(shù), 2019(2): 39-43.Li Jie, Zhang Jun, Heng Runlai, et al. Control strategy of temperature and humidity in central air conditioning system based on grey prediction model [J]. Instrumentation Technology, 2019(2): 39-43.
[12]文淵博, 毛夏煜, 郭溫鈺, 等. 煙花倉(cāng)庫(kù)溫濕度無(wú)線灰色預(yù)警系統(tǒng)設(shè)計(jì)[J]. 自動(dòng)化與儀表, 2020, 35(6): 48-53.Wen Yuanbo, Mao Xiayu, Guo Wenyu, et al. Design of wireless gray early warning system for temperature and humidity in firework warehouse [J]. Automation & Instrumentation, 2020, 35(6): 48-53.
[13]王彰云, 黎明. 灰色預(yù)測(cè)模糊PID技術(shù)在船舶主機(jī)缸套冷卻水溫控制的應(yīng)用[J]. 艦船科學(xué)技術(shù), 2017, 39(14): 79-81.Wang Zhangyun, Li Ming. Application of grey prediction fuzzy PID technology in cooling water temperature control of marine main engine cylinder liner [J]. Ship Science and Technology, 2017, 39(14): 79-81.
[14]Tanaka M. A total power control technology on PID temperature controllers [J]. Transactions of the Institute of Electrical Engineers of Japan C, 2016(2): 112-119.
[15]于薇, 董全林. 灰色預(yù)測(cè)模糊PID控制在調(diào)節(jié)閥智能定位系統(tǒng)中的應(yīng)用[J]. 液壓與氣動(dòng), 2015(12): 39-44.Yu Wei, Dong Quanlin. Application of grey prediction & fuzzy PID control algorithm in intelligent valve position control system [J]. Chinese Hydraulics & Pneumatics, 2015(12): 39-44.
[16]王林鍵. 非線性機(jī)器人系統(tǒng)的自適應(yīng)模糊控制研究[D]. 邯鄲: 河北工程大學(xué), 2021.Wang Linjian. Research on adaptive fuzzy control of nonlinear robot system [D]. Handan: Hebei University of Engineering, 2021.
[17]陳詩(shī)慧. 基于神經(jīng)網(wǎng)絡(luò)的模糊PID伺服電機(jī)控制系統(tǒng)仿真研究[D]. 南京: 南京航空航天大學(xué), 2019.Chen Shihui. Simulation research of fuzzy PID servo motor control system based on neural[D]. Nanjing: Nanjing University of Aeronautics and Astronautics, 2019.
[18]闞玉錦, 蘇進(jìn), 丁響林. 基于模糊PID控制的工程車輛機(jī)械液壓控制策略研究[J]. 蘭州文理學(xué)院學(xué)報(bào)(自然科學(xué)版), 2022, 36(1): 78-82, 88.Kan Yujin, Su Jin, Ding Xianglin. Research on hydraulic control strategy of engineering vehicle based on fuzzy PID control [J]. Journal of Lanzhou University of Arts and Science (Natural Science Edition), 2022, 36(1): 78-82, 88.
[19]王雪珂. 水電機(jī)組灰色模糊PID調(diào)速器設(shè)計(jì)與仿真[D]. 鄭州: 鄭州大學(xué), 2017.Wang Xueke. Design and simulation of grey-fuzzy PID governor for hydro generator unit [D]. Zhengzhou: Zhengzhou University, 2017.
[20]王海霞, 尤鳳翔, 張兵. 基于灰色預(yù)測(cè)模型的板形PID控制器優(yōu)化仿真與應(yīng)用[J]. 兵器裝備工程學(xué)報(bào), 2021, 42(10): 211-217.Wang Haixia, You Fengxiang, Zhang Bing. Optimization simulation and application of flatness PID controller based on grey prediction model [J]. Journal of Ordnance Equipment Engineering, 2021, 42(10): 211-217.